IESO releases 18-month outlook

By Canada News Wire


CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
The reliability outlook for Ontario's electricity system is generally positive and improving over the next year and a half, said the Independent Electricity System Operator (IESO) in its latest 18-Month Outlook.

About 4,300 megawatts (MW) of new supply is scheduled to come into or return to service over the Outlook period, with further enhancements planned on the transmission network. Ontario's import capability will increase by about 30 per cent with the new 1,250 MW interconnection between Ontario and Quebec, scheduled to be completed by next spring.

"Ontario's reliability picture has improved compared to what we experienced last summer," said Ken Kozlik, IESO Chief Operating Officer. "We are heading into this summer with an additional 1,300 MW of supply on-line from the Portlands Energy Centre and two nuclear units that were unavailable last summer."

Under normal weather conditions, sufficient supply is forecast in Ontario to meet electricity demands for most of the summer with occasional reliance on imports from neighbouring jurisdictions. In cases of extreme weather, Ontario may rely more heavily on imports.

Lower energy demand is being forecast for 2009 compared to 2008 as a result of increasing conservation efforts and a slowing economy. Peak demands are also expected to decline in the 18-month forecast period.

Related News

Prevent Summer Power Outages

Summer Heatwave Electricity Shutoffs strain utilities and vulnerable communities, highlighting energy assistance, utility moratoriums, cooling centers, demand response, and grid resilience amid extreme heat, climate change, and rising air conditioning loads.

 

Key Points

Service disconnections for unpaid bills during extreme heat, risking vulnerable households and straining power grids.

✅ Moratoriums and flexible payment plans reduce shutoff risk.

✅ Cooling centers and assistance programs protect at-risk residents.

✅ Demand response, smart grids, and efficiency ease peak loads.

 

As summer temperatures soar, millions of people across the United States face the grim prospect of electricity shutoffs due to unpaid bills, as heat exacerbates electricity struggles for many families nationwide. This predicament highlights a critical issue exacerbated by extreme weather conditions and economic disparities.

The Challenge of Summer Heatwaves

Summer heatwaves not only strain power grids, as unprecedented electricity demand has shown, but also intensify energy consumption as households and businesses crank up their air conditioning units. This surge in demand places considerable stress on utilities, particularly in regions unaccustomed to prolonged heatwaves or lacking adequate infrastructure to cope with increased loads.

Vulnerable Populations

The threat of electricity shutoffs disproportionately affects vulnerable populations, including low-income households who face sky-high energy bills during extreme heat, elderly individuals, and those with underlying health conditions. Lack of access to air conditioning during extreme heat can lead to heat-related illnesses such as heat exhaustion and heatstroke, posing serious health risks.

Economic and Social Implications

The economic impact of electricity shutoffs extends beyond immediate discomfort, affecting productivity, food storage, and the ability to work remotely for those reliant on electronic devices, while rising electricity prices further strain household budgets. Socially, the inability to cool homes and maintain basic comforts strains community resilience and exacerbates inequalities.

Policy and Community Responses

In response to these challenges, policymakers and community organizations advocate for measures to prevent electricity shutoffs during heatwaves. Proposed solutions include extending moratoriums on shutoffs, informed by lessons from COVID-19 energy insecurity measures, implementing flexible payment plans, providing financial assistance to at-risk households, and enhancing communication about available resources.

Public Awareness and Preparedness

Raising public awareness about energy conservation during peak hours and promoting strategies to stay cool without overreliance on air conditioning are crucial steps towards mitigating electricity demand. Encouraging energy-efficient practices and investing in renewable energy sources also contribute to long-term resilience against climate-driven energy challenges.

Collaborative Efforts

Collaboration between government agencies, utilities, nonprofits, and community groups is essential in developing comprehensive strategies to safeguard vulnerable populations during heatwaves, especially when systems like the Texas power grid face renewed stress during prolonged heatwaves. By pooling resources and expertise, stakeholders can better coordinate emergency response efforts, distribute cooling centers, and ensure timely assistance to those in need.

Technology and Innovation

Advancements in smart grid technology and decentralized energy solutions offer promising avenues for enhancing grid resilience and minimizing disruptions during extreme weather events. These innovations enable more efficient energy management, demand response programs, and proactive monitoring of grid stability, though some utilities face summer supply-chain constraints that delay deployments.

Conclusion

As summer heatwaves become more frequent and severe, the risk of electricity shutoffs underscores the urgent need for proactive measures to protect vulnerable communities. By prioritizing equity, sustainability, and resilience in energy policy and practice, stakeholders can work towards ensuring reliable access to electricity, particularly during times of heightened climate vulnerability. Addressing these challenges requires collective action and a commitment to fostering inclusive and sustainable solutions that prioritize human well-being amid changing climate realities.

 

Related News

View more

How ‘Virtual Power Plants’ Will Change The Future Of Electricity

Virtual Power Plants orchestrate distributed energy resources like rooftop solar, home batteries, and EVs to deliver grid services, demand response, peak shaving, and resilience, lowering costs while enhancing reliability across wholesale markets and local networks.

 

Key Points

Virtual Power Plants aggregate solar and batteries to provide grid services, cut peak costs, and boost reliability.

✅ Aggregates DERs via cloud to bid into wholesale markets

✅ Reduces peak demand, defers costly grid upgrades

✅ Enhances resilience vs outages, cyber risks, and wildfires

 

If “virtual” meetings can allow companies to gather without anyone being in the office, then remotely distributed solar panels and batteries can harness energy and act as “virtual power plants.” It is simply the orchestration of millions of dispersed assets within a smarter electricity infrastructure to manage the supply of electricity — power that can be redirected back to the grid and distributed to homes and businesses. 

The ultimate goal is to revamp the energy landscape, making it cleaner and more reliable. By using onsite generation such as rooftop solar and smart solar inverters in combination with battery storage, those services can reduce the network’s overall cost by deferring expensive infrastructure upgrades and by reducing the need to purchase cost-prohibitive peak power. 

“We expect virtual power plants, including aggregated home solar and batteries, to become more common and more impactful for energy consumers throughout the country in the coming years,” says Michael Sachdev, chief product officer for Sunrun Inc., a rooftop solar company, in an interview. “The growth of home solar and batteries will be most apparent in places where households have an immediate need for backup power, as they do in California, where grid reliability pressures have led utilities to turn off the electricity to reduce wildfire risk.”

Most Popular In: Energy

How Extremophile Bacteria Living In Nuclear Reactors Might Help Us Make Vaccines
Apple, Ford, McDonald’s, Microsoft Among This Summer’s Climate Leaders
What’s Next For Oil And Gas?
Home battery adoption, such as Tesla Powerwall systems, is becoming commonplace in Hawaii and in New England, he adds, because those distributed assets are improving the efficiency of the electrical network. It is a trend that is reshaping the country’s energy generation and delivery system by relying more on clean onsite generation and less on fossil fuels.

Sunrun has recently formed a business partnership with AutoGrid, which will manage Sunrun’s fleet of rechargeable batteries. It is a cloud-based system that allows Sunrun to work with utilities to dispatch its “storage fleet” to optimize the economic results. AutoGrid compiles the data and makes AI-driven forecasts that enable it to pinpoint potential trouble spots. 

But a distributed energy system, or a virtual power plant, would have 200,000 subsystems. Or, 200,000 5 kilowatt batteries would be the equivalent of one power plant that has a capacity of 1,000 megawatts. 

“A virtual power plant acts as a generator,” says Amit Narayan, chief executive officer of AutoGrid, in an interview. “It is one of the top five innovations of the decade. If you look at Sunrun, 60% of every solar system it sells in the Bay Area is getting attached to a battery. The value proposition comes when you can aggregate these batteries and market them as a generation unit. The pool of individual assets may improve over time. But when you add these up, it is better than a large-scale plant. It is like going from mainframe computers to laptops.”

The AutoGrid executive goes on to say that centralized systems are less reliable than distributed resources. While one battery could falter, 200,000 of them that operate from remote locations will prove to be more durable — able to withstand cyber attacks and wildfires. Sunrun’s Sachdev adds that the ability to store energy in batteries, as seen in California’s expanding grid-scale battery use supporting reliability, and to move it to the grid on demand creates value not just for homes and businesses but also for the network as a whole.

The good news is that the trend worldwide is to make it easier for smaller distributed assets, including energy storage for microgrids that support local resilience, to get the same regulatory treatment as power plants. System operators have been obligated to call up those power supplies that are the most cost-effective and that can be easily dispatched. But now regulators are giving virtual power plants comprised of solar and batteries the same treatment. 

In the United States, for example, the Federal Energy Regulatory Commission issued an order in 2018 that allows storage resources to participate in wholesale markets — where electricity is bought directly from generators before selling that power to homes and businesses. Under the ruling, virtual power plants are paid the same as traditional power suppliers. A federal appeals court this month upheld the commission’s order, saying that it had the right to ensure “technological advances in energy storage are fully realized in the marketplace.” 

“In the past, we have used back-up generators,” notes AutoGrid’s Narayan. “As we move toward more automation, we are opening up the market to small assets such as battery storage and electric vehicles. As we deploy more of these assets, there will be increasing opportunities for virtual power plants.” 

Virtual power plants have the potential to change the energy horizon by harnessing locally-produced solar power and redistributing that to where it is most needed — all facilitated by cloud-based software that has a full panoramic view. At the same time, those smaller distributed assets can add more reliability and give consumers greater peace-of-mind — a dynamic that does, indeed, beef-up America’s generation and delivery network.

 

Related News

View more

Ontario's EV Jobs Boom

Honda Canada EV Supply Chain accelerates electric vehicles with Ontario assembly, battery manufacturing, CAM/pCAM and separator plants in Alliston, creating green jobs, strengthening domestic manufacturing, and reducing greenhouse gas emissions across North America.

 

Key Points

A $15B Ontario initiative for end-to-end EVs, batteries, and components, creating jobs and cutting emissions.

✅ Alliston EV assembly and battery plants anchor production.

✅ CAM/pCAM and separator facilities via POSCO, Asahi JV.

✅ $15B build-out drives jobs, R&D, and lower emissions.

 

The electric vehicle (EV) revolution is gaining momentum in Canada, with Honda Canada announcing a historic $15 billion investment to establish the country's first comprehensive EV supply chain in Ontario. This ambitious project promises to create thousands of new jobs, solidify Canada's position in the EV market, and significantly reduce greenhouse gas emissions.

Honda's Electrifying Vision

The centerpiece of this initiative is a brand-new, world-class electric vehicle assembly plant in Alliston, Ontario. This will be Honda's first dedicated EV assembly plant globally, marking a significant shift towards a more sustainable future. Additionally, a standalone battery manufacturing plant will be constructed at the same location, ensuring a reliable and efficient domestic supply of EV batteries.

Beyond Assembly: A Complete Ecosystem

Honda's vision extends beyond just vehicle assembly. The investment also includes the construction of two additional plants dedicated to critical battery components, mirroring activity such as a Niagara Region battery plant in Ontario: a cathode active material and precursor (CAM/pCAM) processing plant and a separator plant. These facilities, established through joint ventures with POSCO Future M Co., Ltd. and Asahi Kasei Corporation, will ensure a comprehensive in-house EV production capability.

Jobs, Growth, and a Greener Future

This large-scale project is expected to create significant economic benefits for Ontario. The construction and operation of the new facilities are projected to generate over one thousand well-paying manufacturing jobs, similar to GM's Ontario EV plant announcements that underscore employment gains across the province. Additionally, the investment will stimulate growth within Ontario's leading auto parts supplier and research and development ecosystems, bolstered by government-backed EV plant upgrades that reinforce local supply chains, creating even more indirect job opportunities.

But the benefits extend beyond the economy. The transition to electric vehicles plays a crucial role in combating climate change. By bringing EV production onshore, Honda Canada is contributing to a significant reduction in greenhouse gas emissions, aligning with Canada's ambitious climate goals for transportation.

A Catalyst for Change

Honda's investment is a significant vote of confidence in Canada's potential as a leader in the EV industry, as recent EV manufacturing deals put the country in the race. The establishment of this comprehensive EV supply chain will not only benefit Honda, but also attract other EV manufacturers and solidify Ontario's position as a North American EV hub.

The road ahead for Canada's EV industry is bright. With Honda's commitment and this groundbreaking project, and with Ford's Oakville EV plans underway, Canada is well on its way to a cleaner, more sustainable future powered by electric vehicles.

 

Related News

View more

Ontario government wants new gas plants to boost electricity production

Ontario Gas Plant Expansion aims to boost grid reliability as nuclear refurbishments proceed, using natural gas to meet electricity demand, despite critics urging renewables, energy storage, and efficiency to reduce carbon emissions, protecting investment growth.

 

Key Points

Ontario plan to expand gas plants for reliability during nuclear outages, sparking debate on emissions and clean options.

✅ IESO data: gas share rose from 4% (2017) to 10.4% (2022).

✅ Government cites nuclear refurbishments and demand growth.

✅ Critics propose storage, wind, solar, and efficiency.

 

The Ontario government is preparing to expand gas-fired power plants in Ontario; a move critics say will make the province's electricity system dirtier and could eventually leave taxpayers on the hook.

The province is currently soliciting bids for additional gas-fired electricity generation, which means new gas plants get built, or existing gas plants get expanded. 

It's poised to be Ontario's biggest increase in the gas-fired power supply in more than a decade since the previous Liberal government scrapped two gas plants, in Mississauga and Oakville, at a cost the auditor general pegged at around $1 billion. 

Doug Ford's energy minister, Todd Smith, says Ontario needs gas plants now to help meet an expected surge in demand for electricity as the province faces a supply shortfall in the coming years and to provide power while some units of the province's nuclear stations are down for refurbishment. 

"It's really important to have natural gas as an insurance policy to keep the lights on and provide the reliability that we need," Smith said in an interview. 

"We need natural gas for the short term, especially to get us through these refurbishments."

The portion of Ontario's electricity supply that comes from natural gas matters for the environment and the province's economy. Manufacturing companies increasingly seek clean power that emits as little carbon dioxide as possible. 

The portion of Ontario's electricity supply that comes from natural gas matters for the environment and the province's economy. Manufacturing companies increasingly seek a power supply that emits as little carbon dioxide as possible. 

Increasing the amount of gas-fired generation in the electricity system puts Ontario's ability to attract such investments at risk as it complicates balancing demand and emissions across the grid, says Evan Pivnick, program manager with Clean Energy Canada, a think tank. 

"Building new natural gas (power plants) in Ontario today should be seen as an absolute last resort for meeting our energy needs," said Pivnick in an interview. 

Ontario's electricity system has among the lowest rates of CO2 emissions in North America, with roughly half of the annual supply provided by nuclear power, one-quarter from hydro dams, and one-tenth from wind turbines. 

However, Ontario's gas plants have produced a growing amount of electricity in recent years, despite an early report exploring a gas halt by the minister, and that trend will continue if new gas plants are built. 

In 2017, gas- and oil-fired generation provided just four percent of Ontario's electricity supply, according to figures from the provincial agency that manages the grid, the Independent Electricity System Operator (IESO). 

By 2022, that figure reached 10.4 percent. 

Ontario doesn't need new gas plants to meet the electricity demand, says Bryan Purcell, vice president of policy and programs at The Atmospheric Fund. This agency invests in low-carbon projects in the Greater Toronto and Hamilton Area. 

"We're quite concerned about where Ontario's electric grid is going," said Purcell. "Thankfully, there's still time to adjust course and look at other options." 

According to Purcell and Pivnick, those options to avoid gas could include power storage (in which excess generated energy is stored for later use when electricity demand rises), wind and solar projects, or energy efficiency and conservation programs.

 

Related News

View more

Energy crisis is a 'wake up call' for Europe to ditch fossil fuels

EU Clean Energy Transition underscores the shift from fossil fuels to renewable energy, decarbonization, and hydrogen, as soaring gas prices and electricity volatility spur resilience, storage, and joint procurement across the single market.

 

Key Points

EU Clean Energy Transition shifts from fossil fuels to renewables, enhancing resilience and reducing price volatility.

✅ Cuts reliance on Russian gas and fossil imports

✅ Scales renewables, hydrogen, and energy storage

✅ Stabilizes electricity prices via market resilience

 

Soaring energy prices, described as Europe's energy nightmare, are a stark reminder of how dependent Europe is on fossil fuels and should serve to accelerate the shift towards renewable forms of energy.

"This experience today of the rising energy prices is a clear wake up call... that we should accelerate the transition to clean energy, wean ourselves off the fossil fuel dependency," a senior EU official told reporters as the European Commission unveiled a series of emergency electricity measures aimed at tackling the crisis.

The European Union is facing a sharp spike in energy prices, driven by increased global demand as the world recovers from the pandemic and lower-than-expected natural gas deliveries from Russia. Wholesale electricity prices have increased by 200% compared to the 2019 average, underscoring why rolling back electricity prices is tougher than it appears, according to the European Commission.

"Winter is coming and for many electricity costs are larger than they have been for a decade," Energy Commissioner Kadri Simson told reporters on Wednesday.

80 million European households struggle to stay warm
Wholesale gas prices — which have surged to record highs in France, Spain, Germany and Italy, amid reports of Germany's local utilities crying for help — are expected to remain high through the winter.

Prices are expected to fall in the spring, but remain higher than the average of past years, according to the Commission. Most EU countries rely on gas-fired power stations to meet electricity demand, and about 40% of that gas comes from Russia, with the EU outlining a plan to dump Russian energy to reduce this reliance, according to Eurostat.

Simson said that the Commission's initial assessment indicates that Russia's Gazprom has been fulfilling its long-term contracts "while providing little or no additional supply."
Kremlin spokesman Dmitry Peskov told journalists on Wednesday that Russia has increased gas supplies to Europe to the maximum possible level under existing contracts, but could not exceed those thresholds. "We can say that Russia is flawlessly fulfilling all contractual obligations," he said.

Measures EU states can take to help consumers and businesses cope with soaring electricity costs include emergency income support to households to help them pay their energy bills, alongside potential gas price cap strategies, state aid for companies, and targeted tax reductions. Member states can also temporarily delay bill payments and put in place processes to ensure that no one is disconnected from the grid.

Green energy the solution
The Commission also published a series of longer term measures the bloc should consider to reduce its dependence on fossil fuels and tackle energy price volatility, despite opposition from nine countries to electricity market reforms.

"Our immediate priority is to protect Europe's consumers, especially the most vulnerable," Simson said. "Second, we want to make our energy system better prepared and more resilient, so we don't have to face a similar situation in the future," she added.

Energy crisis could force more UK factories to close
This would require speeding up the green energy transition rather than slowing it down, Simson said. "We are not facing an energy price surge because of our climate policy or because renewable energy is expensive. We are facing it because the fossil fuel prices are spiking," she continued.

"The only long term remedy against demand shocks and price volatility is a transition to a green energy system."

Simson said she will propose to EU leaders a package of measures to decarbonize Europe's gas and hydrogen markets by 2050. Other measures to improve energy market stability could include increasing gas storage capacity and buying gas jointly at an EU level.

 

Related News

View more

IEA praises Modi govt for taking electricity to every village; calls India 'star performer'

India Village Electrification hailed by the IEA in World Energy Outlook 2018 showcases rapid energy access progress, universal village power, clean cooking advances via LPG, and Modi-led initiatives, inspiring Indonesia, Bangladesh, and Sub-Saharan Africa.

 

Key Points

A national push to power every Indian village, praised by the IEA for boosting energy access and clean cooking.

✅ Electrified 597,464 villages ahead of schedule in April 2018.

✅ IEA hails India in World Energy Outlook 2018 as star performer.

✅ LPG connections surge via Ujjwala, aiding clean cooking access.

 

The global energy watchdog International Energy Agency (IEA) has called India's electrification of every village the greatest success story of 2018. In its latest report, World Energy Outlook 2018, the IEA has called India a "star performer" in terms of achieving the big milestone of the providing power to each village. "In particular, one of the greatest success stories in access to energy in 2018 was India completing the electrification of all of its villages," said the IEA. It added that countries like Indonesia and Bangladesh have also achieved the commendable electrification rate of 95% (up from 50% in 2000), and 80% (up from 20% in 2000), respectively, even as Europe's electrification push continues as part of broader transitions.

This 643-page report by the IEA says over 120 million people worldwide gained access to electricity in 2017 and charts growth in the electric car market as part of broader energy trends. For the first time ever, the total number of people without access fell below 1 billion, it said.  The mega plan of providing electricity to 597,464 villages in India was announced by Prime Minister Narendra Modi during his Independence Day speech in 2015. On April 28, 2018, PM Modi confirmed that India had achieved its goal ahead of schedule. "This is one of the greatest achievements in the history of energy," said the IEA.

Praising the Narendra Modi government for making efforts towards lighting up every village in India, the agency said: "Since 2000 around half a billion people have gained access to electricity in India, with political effort over the last five years significantly accelerating progress."

India's achievement of providing universal household electricity access will improve the lives of over 230 million people, said the IEA, even as analyses like a Swedfund report debate some poverty outcomes in electrified areas. For a start, electric lighting makes the use of candles, kerosene and other polluting fuels for lighting redundant, not only saving money (and providing more light) but also seriously improving health, it said.

Though the global energy agency has called India "a success story", and a "bright spot for energy access", it says huge challenges remain in other regions of the world where over 670 million people still live without electricity access. "90% of these people are concentrated in sub-Saharan Africa, with countries such as Nigeria facing severe shortages," said the report.

Seven decades after independence and nearly three decades after India's economic liberalisation, the Modi government achieved the historic milestone of giving power to every single village of India, 12 days ahead of the deadline set by PM Modi. Leisang in Manipur became the last village to be connected to the grid, while a Delhi energy storage project explores ways to balance supply and demand.

The agency also praised India for tackling a related problem: access to clean cooking facilities. "While an estimated 780 million people in India rely on biomass for cooking, progress is emerging, as India is one of the few countries in the world targeting this "blind spot" of energy policy," it said.

Around 36 million LPG connections have been made since Prime Minister Modi and Minister for Petroleum and Natural Gas, Dharmendra Pradhan, launched the Pradhan Mantri Ujjwala Yojana scheme in May 2016 to provide free connections to families living below the poverty line. In India, around 50 million free LPG stoves and initial refills have been provided to poor households via this scheme since 2015. The government has set a target of providing LPG connections to 80 million households by 2020.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified