Alstom wins nuclear equipment contracts in China

By Industrial Info Resources


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Through a partnership with Shaanxi Diesel Heavy Industry Company Limited, Alstom China Limited recently won contracts to supply nuclear power equipment for a series of Chinese projects from China Nuclear Power Engineering Company Limited CNPEC, which is the general contracting arm of China National Nuclear Corporation CNNC, and the CNPEC, which is the general contracting arm of China Guangdong Nuclear Power Corporation CGNPC.

These contracts are worth about $55 million in total.

According to these contracts, Alstom will supply five emergency diesel generators EDGs to units 5 and 6 of Tianwan Nuclear Power Plant in the Jiangsu province, and will provide liquid purification equipment LPE by evaporation-stripping five nuclear plants in China, including units 5 and 6 of Tianwan Nuclear Power Plant units 3 and 4 of Ningde Nuclear Power Plant and units 3 and 4 of Fuqing Nuclear Power Plant in East China's Fujian province units 1 and 2 of Fangchenggang Nuclear Power Plant in the Guangxi province and units 1 and 2 of Yangjiang Nuclear Power Plant in the Guangdong province. All of this equipment will be used on CPR 1000 reactors, which are the pressurized reactors modified and improved by Chinese technology.

As reported, the ordered equipment will be manufactured in China, mainly by Alstom Wuhan Engineering and Technology Company Limited.

As a leading supplier for China's nuclear industry, Alstom has been supporting the development of China's nuclear power industry ever since its involvement in the construction of Daya Bay, the first major nuclear power plant in China, 20 years ago. Partnering with Dongfang Electric Corporation, Alstom has been involved in most of China's major nuclear projects, such as Taishan, Lingao I & II, Hongyanhe and many others, by supplying key nuclear equipment.

Related News

Electricity Prices Surge to Record as Europe Struggles to Keep Lights on

France Electricity Crisis drives record power prices as nuclear outages squeeze supply, forcing energy imports, fuel oil and coal generation, amid gas market shocks, weak wind output, and freezing weather straining the grid.

 

Key Points

A French power shortfall from nuclear outages, record prices, heavy imports, and oil-fired backup amid cold weather.

✅ EDF halted reactors; 10% capacity offline, 30% by January

✅ Imports surge; fuel oil and coal units dispatched

✅ Prices spike as gas reverses flow and wind output drops

 

Electricity prices surged to a fresh record as France scrambled to keep its lights on, sucking up supplies from the rest of Europe.

France, usually an exporter of power, is boosting electricity imports and even burning fuel oil, and has at times limited nuclear output due to high river temperatures during heatwaves. The crunch comes after Electricite de France SA said it would halt four reactors accounting for 10% of the nation’s nuclear capacity, straining power grids already facing cold weather. Six oil-fired units were turned on in France on Tuesday morning, according to a filing with Entsoe.

“It’s illustrating how severe it is when they’re actually starting to burn fuel oil and importing from all these countries,” said Fabian Ronningen, an analyst at Rystad Energy. The unexpected plant maintenance “is reflected in the market prices,” he said

Europe is facing an energy crisis, with utilities relying on coal and oil. Almost 30% of France’s nuclear capacity will be offline at the beginning of January, leaving the energy market at the mercy of the weather. To make matters worse, Germany is closing almost half of its nuclear capacity before the end of the year, as Europe loses nuclear power just when it really needs energy.

German power for delivery next year surged 10% to 278.50 euros a megawatt-hour, while the French contract for January added 9.5% to a record 700.60 euros. Prices also gained, under Europe’s marginal pricing system, as gas jumped after shipments from Russia via a key pipeline reversed direction, flowing eastward toward Poland instead.

Neighboring countries are boosting their exports to France this week to cover for lost nuclear output, with imports from Germany rising to highest level in at least four years. In the U.K., four coal power units were operating on Tuesday with as much as 1.5 gigawatts of hourly output being sent across the channel. 

The power crisis is so severe that the French government has asked EDF to restart some nuclear reactors earlier than planned amid outage risks for nuclear-powered France. Ecology Minister Barbara Pompili said last weekend that, in addition to the early reactor restarts and past river-temperature limits, the country had contracts with some companies in which they agreed to cut production during peak demand hours in exchange for payments from the government.

Higher energy prices threaten to derail Europe’s economic recovery just as the coronavirus omicron variety is spreading. Trafigura Group’s Nyrstar will pause production at its zinc smelter in France in the first week of January because of rising electricity prices. Norwegian fertilizer producer Yara International, which curbed output earlier this year, said it would continue to monitor the situation closely and curtail production where necessary.

Freezing weather this week is also sending short-term power prices surging as renewables can’t keep up, even though wind and solar overtook gas in the EU last year. German wind output plunged to a five-week low on Tuesday.

 

Related News

View more

Crews have restored power to more than 32,000 Gulf Power customers

Gulf Power Hurricane Michael Response details rapid power restoration, grid rebuilding, and linemen support across the Florida Panhandle, Panama City, and coastal areas after catastrophic winds, rain, and storm surge damaged transmission lines and substations.

 

Key Points

Gulf Power's effort to restore electricity after Hurricane Michael, including grid rebuilding and storm recovery.

✅ 3,000+ crews deployed for restoration and rebuilding

✅ Transmission, distribution, and substations severely damaged

✅ Panhandle customers warned of multi-week outages

 

Less than 24 hours ago, Hurricane Micheal devastated the residents in the Florida Panhandle with its heavy winds, rainfall and storm surge, as reflected in impact numbers across the region.

Gulf Power crews worked quickly through the night to restore power to their customers.

Linemen crews were dispatched from numerous of cities all over the U. S., reflecting FPL's massive Irma response to help those impacted by Hurricane Michael.

According to Jeff Rogers, Gulf Power spokesperson; “This was an unprecedented storm, and our customers will see an unprecedented response from Gulf Power. The destruction we’ve seen so far to this community and our electrical system is devastating — we’re seeing damage across our system, including distribution lines, transmission lines and substations.”

Gulf Power told Channel 3 said they dealt with issues like trees and heavy debris blocking roads from strong winds, and communications down can slow down the rebuilding and restoration process, but Gulf Power said they are prepared for this type of storm devastation.

According to Gulf Power, Hurricane Micheal caused so much damage to Panama City's electrical grid that crews not only had repair the lines, they had to rebuild the electrical system, a scenario similar to a complete rebuild seen after Hurricane Laura in Louisiana.

Gulf Power officials say, "Less than 24 hours after the storm, more than 3,000 storm personnel from around the country arrived in the Panama City area Thursday to begin the restoration and rebuilding process. So far, more than 4,000 customers have been restored on Panama City Beach. Power has been restored to all customers in Escambia, Santa Rosa and Okaloosa counties, and it’s expected that customers in Walton County will be restored tonight. But customers in the hardest hit areas should prepare to be without power for weeks, not days in some areas. Initial evaluations by Gulf Power indicate widespread, heavy damage to the electrical system in the Panama City area."

According to Gulf Power, crews have restored power to more than 32,000 Gulf Power customers in the wake of Hurricane Michael, but the work is just beginning for power restoration in the Panama City area.

Rogers said, “We’re heartbroken for our customers and our teammates who live in and near the Panama City area,” said Rogers. “This is the type of storm that changes lives — so aside from restoring power to our customers quickly and safely, our focus in the coming days and weeks will also be to help restore hope to these communities and help give them a sense of normalcy as soon as possible.”

 

Related News

View more

OpenAI Expands Washington Effort to Shape AI Policy

OpenAI Washington Policy Expansion spotlights AI policy, energy infrastructure, data centers, and national security, advocating AI economic zones and a national transmission grid to advance U.S. competitiveness and align with pro-tech administration priorities.

 

Key Points

OpenAI's D.C. push to scale policy outreach and AI infrastructure across energy, data centers, and national security.

✅ Triples D.C. policy team to expand bipartisan engagement

✅ Advocates AI economic zones and transmission grid build-out

✅ Aligns with pro-tech leadership, prioritizing national security

 

OpenAI, the creator of ChatGPT, is significantly expanding its presence in Washington, D.C., aiming to influence policy decisions that will shape the future of artificial intelligence (AI) and its integration into critical sectors like energy and national security. This strategic move comes as the company seeks to position itself as a key player in the U.S. economic and security landscape, particularly in the context of global competition with China in strategic industries.

Expansion of Policy Team

To enhance its influence, OpenAI is tripling the size of its Washington policy team. While the 12-person team is still smaller compared to tech giants like Amazon and Meta, it reflects OpenAI's commitment to engaging more actively with policymakers, as debates over Biden's climate law shape the regulatory landscape. The company has recruited individuals from across the political spectrum, including former aides to President Bill Clinton and Vice President Al Gore, to ensure a diverse and comprehensive approach to policy advocacy.

Strategic Initiatives

OpenAI is promoting an ambitious plan to develop tech and energy infrastructure tailored for AI development. This initiative aims to deliver more affordable energy to data centers and reduce corporate electricity bills, which are essential for AI operations. The company is advocating for the establishment of AI economic zones and a national transmission highway to support the growing energy demands of AI technologies. By aligning these proposals with the incoming Trump administration's pro-tech stance, OpenAI seeks to secure federal support for its projects.

Engagement with the Trump Administration

The transition from the Biden administration to the incoming Trump administration presents new opportunities for OpenAI, even as state legal challenges shape early energy policy moves. The Trump administration is perceived as more favorable toward the tech industry, with appointments of Silicon Valley figures like Elon Musk and David Sacks to key positions. OpenAI is leveraging this environment to advocate for policies that support AI development and infrastructure expansion, positioning itself as a strategic asset in the U.S.-China economic and security competition.

The AI industry is increasingly viewed as a critical component of national security and economic competitiveness. OpenAI's efforts to engage with policymakers reflect a broader industry push to be recognized as a vital player in the U.S. economic and security landscape. By promoting AI as a strategic asset, OpenAI aims to secure support for its initiatives, including clean-energy projects in coal communities, and ensure that the U.S. remains at the forefront of AI innovation.

OpenAI's strategic expansion in Washington, D.C., underscores its commitment to influencing policy decisions that will shape the future of AI and its integration into critical sectors. By enhancing its policy team, advocating for infrastructure development, where Alberta's data center boom illustrates rising demand, and aligning with the incoming administration's priorities, even as energy dominance goals face real-world constraints, OpenAI aims to position itself as a key player in the evolving landscape of artificial intelligence. This proactive approach reflects the company's recognition of the importance of policy engagement in driving innovation and securing a competitive edge in the global AI arena.

 

Related News

View more

Ontario to Rely on Battery Storage to Meet Rising Energy Demand

Ontario Battery Energy Storage anchors IESO strategy, easing peak demand and boosting grid reliability. Projects like Oneida BESS (250MW) and nearly 3GW procurements integrate renewables, wind and solar, enabling flexible, decarbonized power.

 

Key Points

Provincewide grid batteries help IESO manage peaks, integrate renewables, and strengthen reliability across Ontario.

✅ IESO forecasts 1,000MW peak growth by 2026

✅ Oneida BESS adds 250MW with 20-year contract

✅ Nearly 3GW storage procured via LT1 and other RFPs

 

Ontario’s electricity grid is facing increasing demand amid a looming supply crunch, prompting the province to invest heavily in battery energy storage systems (BESS) as a key solution. The Ontario Independent Electricity System Operator (IESO) has highlighted that these storage technologies will be crucial for managing peak demand in the coming years.

Ontario's energy demands have been on the rise, driven by factors such as population growth, electric vehicle manufacturing, data center expansions, and heavy industrial activity. The IESO's latest assessment, and its work on enabling storage, covering the period from April 2025 to September 2026, indicates that peak demand will increase by approximately 1,000MW between the summer of 2025 and 2026. This forecasted rise in energy use is attributed to the acceleration of various sectors within the province, underscoring the need for reliable, scalable energy solutions.

A significant portion of this solution will be met by large-scale energy storage projects. Among the most prominent is the Oneida BESS, a flagship project that will contribute 250MW of storage capacity. This project, developed by a consortium including Northland Power and NRStor, will be located on land owned by the Six Nations of the Grand River. Expected to be operational soon, it will play a pivotal role in ensuring grid stability during high-demand periods. The project benefits from a 20-year contract with the IESO, guaranteeing payments that will support its financial viability, alongside additional revenue from participating in the wholesale energy market.

In addition to Oneida, Ontario has committed to acquiring nearly 3GW of energy storage capacity through various procurement programs. The 2023 Expedited Long-Term 1 (LT1) request for proposals (RfP) alone secured 881MW of storage, with additional projects in the pipeline. A notable example is the Hagersville Battery Energy Storage Park, which, upon completion, will be the largest such project in Canada. The success of these procurement efforts highlights the growing importance of BESS in Ontario's energy strategy.

The IESO’s proactive approach to energy storage is not only a response to rising demand but also a step toward decarbonizing the province’s energy system. As Ontario transitions away from traditional fossil fuels, BESS will provide the necessary flexibility to accommodate increasing renewable energy generation, a clean energy solution widely recognized in jurisdictions like New York, particularly from intermittent sources like wind and solar. By storing excess energy during periods of low demand and dispatching it when needed, these systems will help maintain grid stability, and as many utilities see benefits even without mandates, reduce reliance on fossil fuel-based power plants.

Looking ahead, Ontario's energy storage capacity is expected to grow significantly, complemented by initiatives such as the Hydrogen Innovation Fund, with projects from the 2023 LT1 RfP expected to come online by 2027. As more storage resources are integrated into the grid, the province is positioning itself to meet its rising energy needs while also advancing its environmental goals.

Ontario’s increasing reliance on battery energy storage is a clear indication of the province’s commitment to a sustainable and resilient energy future, aligning with perspectives from Sudbury sustainability advocates on the grid's future. With substantial investments in storage technology, Ontario is not only addressing current energy challenges but also paving the way for a cleaner, more reliable energy system in the years to come.

 

Related News

View more

South Australia rides renewables boom to become electricity exporter

Australia electricity grid transition is accelerating as renewables, wind, solar, and storage drive decentralised generation, emissions cuts, and NEM trade shifts, with South Australia becoming a net exporter post-Hazelwood closure and rooftop solar surging.

 

Key Points

Australia electricity shift to renewables, distributed generation and storage, cutting emissions, reshaping NEM flows.

✅ South Australia now exports power post-Hazelwood closure

✅ Rooftop solar is the fastest-growing NEM generation source

✅ Gas peaking and storage investments balance variable renewables

 

The politics may not change much, but Australia’s electricity grid is changing before our very eyes – slowly and inevitably becoming more renewable, more decentralised, and in step with Australia's energy transition that is challenging the pre-conceptions of many in the industry.

The latest national emissions audit from The Australia Institute, which includes an update on key electricity trends in the national electricity market, notes some interesting developments over the last three months.

The most surprising of those developments may be the South Australia achievement, which shows that since the closure of the Hazelwood brown coal generator in Victoria in March 2017, and as renewables outpacing brown coal in other markets, South Australia has become a net exporter of electricity, in net annualised terms.

Hugh Saddler, lead author of the study, notes that this is a big change for South Australia, which in 1999 and 2000, when it had only gas and local coal, used to import 30% of its electricity demand.

#google#

The fact that wholesale prices in South Australia were higher in other states – then, as they are now – has nothing to with wind and solar, but the fact that it has no low-cost conventional source and a peaky demand profile (then and now).

“The difference today is that the state is now taking advantage of its abundant resources of wind and solar radiation, and the new technologies which have made them the lowest cost sources of new generation, to supply much of its electricity requirements,” Saddler writes.

Other things to note about the flows between states is that Victoria was about equal on imports and exports with its three neighbouring states, despite the closure of Hazelwood. NSW continues to import around 10% of its needs from cheaper providers in Queensland.

Gas-fired generation had increased in the last year or two in South Australia as a result of the Northern closure, but is still below the levels of a decade ago.

But because it is expensive, this is likely to spur more investment in storage.

As for rooftop solar, Saddler notes that the share of residential solar in the grid is still relatively small but, despite excess solar risks flagged by distributors, it is the most steadily growing generation source in the NEM.

That line is expected to grow steadily. By 2040, or perhaps 2050, the share of distributed generation, which includes rooftop solar, battery storage and demand management, is expected to reach nearly half of all Australia’s grid demand.

Saddler, says, however, that the increase in large-scale solar over the last few months is a significant milestone in Australia’s transition towards clean electricity generation, mirroring trends in India's on-grid solar development seen in recent years. (See very top graph).

“Firstly, they are a concrete demonstration that the construction cost advantage, which wind enjoyed over solar until a year or two ago, is gone.

“From now on we can expect new capacity to be a mix of both technologies. Indeed, the Clean Energy Regulator states that it expects solar to account for half of all (new renewable) capacity by 2020, and the US is moving toward 30% from wind and solar as well.”

 

Related News

View more

Ontario faces growing electricity supply gap, study finds

Ontario Electricity Capacity Gap threatens reliability as IESO forecasts shortfalls from the Pickering shutdown and rapid electrification, requiring new low-emission nuclear generation to meet net-zero targets, maintain baseload, and stabilize the grid.

 

Key Points

Expected 2030 shortfalls from Pickering closure and electrification, requiring new low-emission nuclear to meet net-zero.

✅ IESO projects a 3.6-9.5 GW capacity gap by 2030

✅ Pickering shutdown removes baseload, stressing reliability

✅ New low-emission nuclear needed to meet net-zero targets

 

Ontario faces an electricity supply shortage and reliability risks in the next four to eight years and will not meet net-zero objectives without building new low-emission, nuclear generation starting as soon as possible, according to a report released yesterday by the Power Workers' Union (PWU). The capacity needed to fill the expected supply gap will be equivalent to doubling the province's planned nuclear fleet in eight years.

The planned closure of the Pickering nuclear power plant in 2025 and the increase in demand from electrification of the economy are the drivers behind a capacity gap in 2030 of at least 3.6 GW which could widen to as much as 9.5 GW, Electrification Pathways for Ontario to Reduce Emissions, finds. Ontario's Independent Electricity System Operator (IESO) has since 2013 been forecasting a significant gap in the province's electricity supply due the closure of Pickering, but has been underestimating the impact of electrification, the report says.

In addition, the electrification of buildings, transport and industry sectors that will be needed to achieve goals of net-zero emissions by 2050 that being set by the federal government and civil society will see the province's electricity demand increase by at least 130% over current planning forecasts, and potentially by over 190%. Leveraging electricity, natural gas and hydrogen synergies can reduce supply needs, but 55 GW of new electricity capacity, including new large-scale nuclear plants, will still be needed by 2050 - four times Ontario's current nuclear and hydro assets - the report finds.

These findings underscore the urgent need for a paradigm shift in Ontario's electricity planning and procurement process, the authors say, adding that immediate action is needed both to mitigate the system reliability risks and enable the significant societal benefits needed to pursue net-zero objectives. Planning for procurement to replace Pickering's capacity, or to pursue life extension options, must begin as soon as possible.

"Policymakers around the world realise climate change can't be tackled without nuclear. Ontario's nuclear fleet has delivered emissions reductions for over 50 years," PWU President Jeff Parnell said. "In fact, without building new nuclear units, Ontario will miss its emission reduction targets and carbon emissions from electricity generation will rise dramatically, as explored in why Ontario's power could get dirtier today."

"This report clearly shows that Ontario cannot sustain the low-carbon status of its hydro and nuclear-based electricity system, decarbonise its economy and meet its carbon reduction targets without new nuclear or continued operation at Pickering in the near term. Most disturbing is the fact that we are already well behind and needed to start planning for this capacity yesterday," he said.

The six operating Candu reactors at Ontario Power Generation's Pickering plant have been kept in operation to provide baseload electricity during the refurbishment of units at the Darlington and Bruce plants. Currently, the company plans to shut down Pickering units 1 and 4 in 2024 and units 5 to 8 in 2025, even as Ontario moves to refurbish Pickering B to extend life.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.