AMI and GIS generate big savings for Unitil

By Aerospace Online


CSA Z463 Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
Advanced metering infrastructure (AMI) technology, combined with geographic information system (GIS) software, has significantly cut operating costs for meter reading at UnitilÂ’s distribution operating subsidiaries in Massachusetts and New Hampshire.

ESRIÂ’s ArcGIS has given the utility greater insight about the behavior of its customers, the integrity of its system, and the direction it should take for improved performance.

UnitilÂ’s AMI incorporates ArcGIS to process data captured from a bidirectional advanced metering system as well as data accessed from the customer information system (CIS). Based on the first yearÂ’s success, Unitil anticipates a payback within five years in labor savings and process efficiencies.

In 2004, Unitil migrated from a CAD-based mapping system to ArcGIS with Telvent Miner & MinerÂ’s ArcFM software for asset management. Recently, the integration of GIS with AMI has extended the value of GIS for the company.

“Suddenly, GIS became more to our people than making pretty maps,” explains Beth Picardi, Unitil’s GIS analyst. “The primary objective of the AMI project was to automate meter reading. In addition to those savings, we have gained a wealth of data on system performance that can be leveraged by integrating AMI with ArcGIS and other company enterprise systems.”

In 2007, Unitil deployed a system wide gas and electric AMI for 115,000 customers. Meters were retrofitted with endpoints from Hunt Technologies, LLC, which utilize power line carrier, fixed network technology to monitor and receive daily usage data. AMI data layers are created by combining data from UnitilÂ’s CIS database with GPS meter coordinates. This information is the basis for a variety of analyses useful to engineering and operations within the company.

“Viewing this data in GIS has led to an intuitive understanding of system performance,” notes Picardi. “Meters reporting a loss of communication have allowed us to research and better understand the need for an outage management system and how AMI can augment it. In addition to outages, GIS allows us to visualize momentary outages, end-of-line voltage readings, and reliability performance metrics directly from AMI.”

Unitil continues to find new ways to leverage its AMI data in GIS, giving the company a better understanding of its customer needs and improving its ability to proactively meet those needs. One example is the enhancement of vegetation management strategies by overlaying historical tree trimming data layers with momentary outage data. Soon, it will be possible to evaluate the local system benefits of considering various demand-side revenue policies such as time-of-use billing or demand response.

“GIS and AMI integration is making GIS an enterprise solution here at Unitil,” concludes Picardi.

Related News

Only one in 10 utility firms prioritise renewable electricity – global study

Utility Renewable Investment Gap highlights Oxford study in Nature Energy: most electric utilities favor fossil fuels over clean energy transition, expanding coal and gas, risking stranded assets and missing climate targets despite global decarbonization commitments.

 

Key Points

Most utilities grow fossil capacity over renewables, slowing decarbonization and jeopardizing climate goals.

✅ Only 10% expand renewables faster than coal and gas growth

✅ 60% still add fossil plants; 15% actively cut coal and gas

✅ Risks: stranded assets, missed climate targets, policy backlash

 

Only one in 10 of the world’s electric utility companies are prioritising clean energy investment over growing their capacity of fossil fuel power plants, according to research from the University of Oxford.

The study of more than 3,000 utilities found most remain heavily invested in fossil fuels despite international efforts to reduce greenhouse gas emissions and barriers to 100% renewables in the US that persist, and some are actively expanding their portfolio of polluting power plants.

The majority of the utility companies, many of which are state owned, have made little change to their generation portfolio in recent years.

Only 10% of the companies in the study, published in the research journal Nature Energy, are expanding their renewable energy capacity, mirroring global wind and solar growth patterns, at a faster rate than their gas- or coal-fired capacity.

Advertisement
Of the companies prioritising renewable energy growth, 60% have not stopped concurrently expanding their fossil fuel portfolio and only 15% of these companies are actively reducing their gas and coal capacity.

Galina Alova, the author of the report, said the research highlighted “a worrying gap between what is needed” to tackle the climate crisis, with calls for a fossil fuel lockdown gaining attention, and “what actions are being taken by the utility sector”.

The report found 10% of utilities were favouring growth in gas-fired power plants. This cluster is dominated by US utilities, even as renewables surpass coal in US generation in the broader market, eager to take advantage of the country’s shale gas reserves, followed by Russia and Germany.

Only 2% of utilities are actively growing their coal-fired power capacity ahead of renewables or gas. This cluster is dominated by Chinese utilities – which alone contributed more than 60% of coal-focused companies – followed by India and Vietnam.

The report found the majority of companies prioritising renewable energy were clustered in Europe. Many of the industry’s biggest players are investing in low-carbon energy and green technologies, even as clean energy's dirty secret prompts debate, to replace their ageing fossil fuel power plants.


Sign up to the daily Business Today email or follow Guardian Business on Twitter at @BusinessDesk
In the UK, amid UK renewables backlog that has stalled billions, coal plants are shutting at pace ahead of the government’s 2025 ban on coal-fired power in part because the UK’s domestic carbon tax on power plants make them uneconomic to run.

“Although there have been a few high-profile examples of individual electric utilities investing in renewables, this study shows that overall, the sector is making the transition to clean energy slowly or not at all,” Alova said.

“Utilities’ continued investment in fossil fuels leaves them at risk of stranded assets – where power plants will need to be retired early – and undermines global efforts to tackle climate change.”
 

 

Related News

View more

U.S. offshore wind power about to soar

US Offshore Wind Lease Sales signal soaring renewable energy growth, drawing oil and gas developers, requiring BOEM auctions, seismic surveying, transmission planning, with $70B investment, 8 GW milestones, and substantial job creation in coastal communities.

 

Key Points

BOEM-run auctions granting areas for offshore wind, spurring projects, investment, and jobs in federal waters.

✅ $70B investment needed by 2030 to meet current demand

✅ 8 GW early buildout could create 40,000 US jobs

✅ Requires BOEM auctions, seismic surveying, transmission corridors

 

Recent offshore lease sales demonstrate that not only has offshore wind arrived in the U.S., but it is clearly set to soar, as forecasts point to a $1 trillion global market in the coming decades. The level of participation today, especially from seasoned offshore oil and gas developers, exemplifies that the offshore industry is an advocate for the 'all of the above' energy portfolio.

Offshore wind could generate 160,000 direct, indirect and induced jobs, with 40,000 new U.S. jobs with the first 8 gigawatts of production, while broader forecasts see a quarter-million U.S. wind jobs within four years.

In fact, a recent report from the Special Initiative on Offshore Wind (SIOW), said that offshore wind investment in U.S. waters will require $70 billion by 2030 just based on current demand, and the UK's rapid scale-up offers a relevant benchmark.

Maintaining this tremendous level of interest from offshore wind developers requires a reliable inventory of regularly scheduled offshore wind sales and the ability to develop those resources. Coastal communities and extreme environmental groups opposing seismic surveying and the issuance of incidental harassment authorizations under the Marine Mammal Protection Act may literally take the wind out of these sales. Just as it is for offshore oil and gas development, seismic surveying is vital for offshore wind development, specifically in the siting of wind turbines and transmission corridors.

Unfortunately, a long-term pipeline of wind lease sales does not currently exist. In fact, with the exception of a sale proposed offshore New York offshore wind or potentially California in 2020, there aren't any future lease sales scheduled, leaving nothing upon which developers can plan future investments and prompting questions about when 1 GW will be on the grid nationwide.

NOIA is dedicated to working with the Bureau of Ocean Energy Management and coastal communities, consumers, energy producers and other stakeholders, drawing on U.K. wind lessons where applicable, in working through these challenges to make offshore wind a reality for millions of Americans.

 

Related News

View more

Ontario's electric debacle: Liberal leadership candidates on how they'd fix power

Ontario Electricity Policy debates rates, subsidies, renewables, nuclear baseload, and Quebec hydro imports, highlighting grid transmission limits, community consultation, conservation, and the province's energy mix after cancelled wind projects and rising costs to taxpayers.

 

Key Points

Ontario Electricity Policy guides rates, generation, grid planning, subsidies and imports for reliable, low-cost power.

✅ Focuses on rates, subsidies, and consumer affordability

✅ Balances nuclear baseload, renewables, and Quebec hydro imports

✅ Emphasizes grid transmission, consultation, and conservation

 

When Kathleen Wynne’s Liberals went down to defeat at the hands of Doug Ford and the Progressive Conservatives, Ontario electricity had a lot to do with it. That was in 2018. Now, two years later, Ford’s government has electricity issues of its own, including a new stance on wind power that continues to draw scrutiny.

Electricity is politically fraught in Ontario. It’s among the most expensive in Canada. And it has been mismanaged at least as far back as nuclear energy cost overruns starting in the 1980s.

From the start Wynne’s government was tainted by the gas plant scandal of her predecessor Dalton McGuinty and then she created her own with the botched roll-out of her green energy plan. And that helped Ford get elected promising to lower electricity prices. But, rates haven’t gone down under Ford while the cost to the government coffers for subsidizing them have soared - now costing $5.6 billion a year.

Meanwhile, Ford’s government has spent at least $230 million to tear up green energy contracts signed by the former Liberal government, including two wind-farm projects that were already mid-construction.

Lessons learned?
In the final part of a three-part series, the six candidates vying to become the next leader of the Ontario Liberals discuss the province's electricity system, including the lessons learned from the prior Liberal government's botched attempts to fix it that led to widespread local opposition to a string of wind power projects, and whether they'd agree to import more hydroelectricity from Quebec.

“We had the right idea but didn’t stick the landing,” said Steven Del Duca, a member of the former Wynne government who lost his Vaughan-area seat in 2018, referring to its green-energy plan. “We need to make sure that we work more collaboratively with local communities to gain the buy-in needed to be successful in this regard.”

“Consultation and listening is key,” agreed Mitzie Hunter, who was education minister under Kathleen Wynne and in 2018 retained her seat in the legislature representing Scarborough-Guildwood. “We must seek input from community members about investments locally,” she said. “Inviting experts in to advise on major policy is also important to make evidence-based decisions."

Michael Coteau, MPP for Don Valley East and the third leadership candidate who was a member of the former government, called for “a new relationship of respect and collaboration with municipalities.”

He said there is an “important balance to be achieved between pursuing province wide objectives for green-energy initiatives and recognizing and reflecting unique local conditions and circumstances.”

Kate Graham, who has worked in municipal public service and has not held a provincial public office, said that experts and local communities are best placed to shape decisions in the sector.

In the final part of a three-part series, Ontario's Liberal leadership contenders discuss electricity, lessons learned from the bungled rollout of previous Liberal green policy, and whether to lean more on Quebec's hydroelectricity.
“What's gotten Ontario in trouble in the past is when Queen's Park politicians are the ones micromanaging the electricity file,” she said.

“Community consultation is vitally important to the long-term success of infrastructure projects,” said Alvin Tedjo, a former policy adviser to Liberal ministers Brad Duguid and Glen Murray.

“Community voices must be heard and listened to when large-scale energy programs are going to be implemented,” agreed Brenda Hollingsworth, a personal injury lawyer making her first foray into politics.

Of the six candidates, only Coteau went beyond reflection to suggest a path forward, saying he would review the distribution of responsibilities between the province and municipalities, with the aim of empowering cities and towns.

Turn back to Quebec?
Ford’s government has also turned away from a deal signed in 2016 to import hydroelectricity from Quebec.

Graham and Hunter both said they would consider increasing such imports. Hunter noted that the deal, which would displace domestic natural gas production, will lower the cost of electricity paid by Ontario ratepayers by a net total of $38 million from 2017 to 2023, according to the province’s fiscal watchdog.

“I am open to working with our neighbouring province,” Hunter said. “This is especially important as we seek to bring electricity to remote northern, on-reserve Indigenous communities.”

Tedjo said he has no issues with importing clean energy as long as it’s at a fair price.

Hollingsworth and Coteau both said they would withhold judgment until they could see the province’s capacity status in 2022.

“In evaluating the case for increasing importation of water power from Quebec, we must realistically assess the limitations of the existing transmission system and the cost and time required to scale up transmission infrastructure, among other factors,” Coteau said.

Del Duca also took a wait-and-see approach. “This will depend on our energy needs and energy mix,” he said. “I want to see our energy needs go down; we need more efficiency and better conservation to make that happen.”

What's the right energy mix?
Nuclear energy currently accounts for about a third of Ontario’s energy-producing capacity, even as Canada explores zero-emissions electricity by 2035 pathways. But it actually supplies about 60 percent of Ontario’s electricity. That is because nuclear reactors are always on, producing so-called baseload power.

Hydroelectricity provides another 25 percent of supply, while oil and natural gas contribute 6 per cent and wind adds 7 percent. Both solar and biofuels account for less than one percent of Ontario’s energy supply. However, a much larger amount of solar is not counted in this tally, as it is used at or near the sites where it is generated, and never enters the transmission system.

Asked for their views on how large a role various sources of power should play in Ontario’s electricity mix in the future, the candidates largely backed the idea of renewable energy, but offered little specifics.

Graham repeated her statement that experts and communities should drive that conversation. Tedjo said all non-polluting technologies should play a role in Ontario’s energy mix, as provinces like Alberta demonstrate parallel growth in green energy and fossil fuels. Coteau said we need a mix of renewable-energy sources, without offering specifics.

“We also need to pursue carbon capture and sequestration, working in particular with our farming communities,” he added.

 

Related News

View more

Putting Africa on the path to universal electricity access

West and Central Africa Electricity Access hinges on utility reform, renewable energy, off-grid solar, mini-grids, battery storage, and regional grid integration, lowering costs, curbing energy poverty, and advancing SDG7 with sustainable, reliable power solutions.

 

Key Points

Expanding reliable power via renewables, grid trade, and off-grid systems to cut energy poverty and unlock inclusive growth.

✅ Utility reform lowers costs and improves service reliability

✅ Regional grid integration enables clean, least-cost power trade

✅ Off-grid solar and mini-grids electrify remote communities

 

As commodity prices soar and leaders around the world worry about energy shortages and prices of gasoline at the pump, millions of people in Africa still lack access to electricity.  One-half of the people on the continent cannot turn on a fan when temperatures go up, can’t keep food cool, or simply turn the lights on. This energy access crisis must be addressed urgently.

In West and Central Africa, only three countries are on track to give every one of their people access to electricity by 2030. At this slow pace, 263 million people in the region will be left without electricity in ten years.  West Africa has one of the lowest rates of electricity access in the world; only about 42% of the total population, and 8% of rural residents, have access to electricity.

These numbers, some far too big, others far too small, have grave consequences. Electricity is an important step toward enhancing people’s opportunities and choices. Access is key to boosting economic activity and contributes to improving human capital, which, in turn, is an investment in a country’s potential.  

Without electricity, children can’t do their schoolwork at night. Businesspeople can’t get information on markets or trade with each other. Worse, as the COVID-19 pandemic has shown so starkly, limited access to energy constrains hospital and emergency services, further endangering patients and spoiling precious medicine.  

What will it take to power West and Central Africa?  
As the African continent recovers from COVID-19 impacts, now is the critical time to accelerate progress towards universal energy access to drive the region’s economic transformation, promote socio-economic inclusion, and unlock human capital growth. Without reliable access to electricity, the holes in a country’s social fabric can grow bigger, those without access growing disenchanted with inequality.  

Tackling the Africa region’s energy access crisis requires four bold approaches. 

First, this involves making utilities financially viable. Many power providers in the region are cash-strapped, operate dilapidated and aging generation fleet and infrastructure. Therefore, they can’t deliver reliable and affordable electricity to their customers, let alone deliver electricity to those that currently must rely on inadequate alternatives to electricity. Overall, fewer than half of the utilities in Sub-Saharan Africa recover their operating costs, resulting in GDP losses as high as four percent in some countries.

Improving the performance of national utilities and greening their power generation mix is a prerequisite to lowering the costs of supply, thus expanding electricity access to those currently unelectrified, usually lower-income and often remote households. 

In that effort — and this a critical second point — West and Central African countries need to look beyond their borders and further integrate their national utilities and grids to other systems in the region. The region has an abundance of affordable clean energy sources — hydropower in Guinea, Mali, and Cote d’Ivoire; high solar irradiation in the Sahel — but the regional energy market is fragmented. 

Without efficient regional trade, many countries are highly dependent on one or two energy resources and heavily reliant on inefficient, polluting generation sources, requiring fuel imports linked to volatile international oil prices.

The vision of an integrated regional power market in countries of the Economic Community of West African States (ECOWAS) is coming a step closer to reality thanks to an ambitious program of cross-border interconnection projects. If countries take full advantage of this grid, the share of the region’s electricity consumption traded across borders would more than double from 8 percent today to about 17 percent by 2030. Overall, regional power trade could lower the lifecycle cost of West Africa’s power generation system by about 10 percent and provide greener energy by 2030. 

Third, electrification efforts need to be open to private sector investments and innovations, such as renewables like solar energy and battery storage, which have made a tremendous impact in enabling access for millions of poor and underserved households.  Specifically, off-grid solar systems and mini-grids have become a proven reliable way to provide affordable modern electricity services, powering homes in rural communities, healthcare facilities, and schools.

Burkina Faso, which enjoys one of the best solar radiation conditions in the region, is a successful example of leveraging the transformative impact of solar energy and battery storage. With support from the World Bank, the country is deploying solar energy to power its national grid, as well as mini-grids and individual household systems. Solar power with battery storage is competitive in Burkina Faso compared to other technologies and its government was successful in attracting private sector investments to support this technology.

Last, achieving universal electricity access will involve significant commitment from political leaders, especially developing policies and regulations that can attract high-quality investments.  

A significant step in that direction was achieved at the World Bank’s 2020 Annual Meetings with a commitment to set up the Powering Transformation Platform in each African country. Through the platform, each government will set their country-specific vision, goals and metrics, track progress, and explore and exchange innovative ideas and emerging best practices according to their own national energy needs and plans. 

This platform will bring together the elements needed to bring electricity to all in West and Central Africa and help attract new financing.

Over the last 3 years, the World Bank has doubled its investments to increase electricity access rates in Central and West Africa.  We have committed more than $7.8 billion to support 40 electricity access programs, of which more than half directly support new electricity connections. These operations are expected to provide access to 16 million people. The aim is to increase electricity access rates in West and Central Africa from 50 percent today to 64 percent by 2026.

However, World Bank’s financing alone is not enough. Our estimates show that nearly $20 billion are required for universal electrification across Sub-Saharan Africa, aligning with calls to quadruple power investment to meet demand, with about $10 billion annually needed for West and Central Africa. 

Closing the funding gap will require mobilizing traditional and new partners, especially the private sector, which is willing to invest if enabling conditions are in place, as well as philanthropic capital, that can fill in the space in areas not yet commercially attractive. The World Bank is ready to play a catalytical role in leveraging new investments. 

This is vital as less than a decade remains to reach the 2030 SDG7 goal of ensuring electricity for all through affordable, reliable, and modern energy services. As headlines worldwide focus on soaring energy prices in the developed world, we cannot lose sight of the vast populations in Africa that still cannot access basic energy services. This is the true global energy crisis.  

 

Related News

View more

Hydro One bends to government demands, caps CEO pay at $1.5M

Hydro One CEO Pay Cap sets executive compensation at $1.5 million under Ontario's provincial directive, linking incentives to transmission and distribution cost reductions, governance improvements, and board pay limits at the electricity utility.

 

Key Points

The Hydro One CEO Pay Cap limits pay to $1.5M, linking incentives to cost reductions and defined targets.

✅ Base salary set at $500,000 per year.

✅ Incentives capped at $1,000,000, tied to cost cuts.

✅ Board pay capped: chair $120,000; members $80,000.

 

Hydro One has agreed to cap the annual compensation of its chief executive at $1.5 million, the provincial utility said Friday, acquiescing to the demands of the Progressive Conservative government.

The CEO's base salary will be set at $500,000 per year, while short-term and long-term incentives are limited to $1 million. Performance targets under the pay plan will include the CEO's contributions to reductions in transmission and distribution costs, even as Hydro One has pursued a bill redesign to clarify charges for customers.

The framework represents a notable political victory for Premier Doug Ford, who vowed to fire Hydro One's CEO and board during the campaign and promised to reduce the annual earnings of Hydro One's board members.

In February, the province issued a directive to the board, ordering it to pay the utility's CEO no more than the $1.5 million figure it has now agreed to, as part of a broader push to lower electricity rates across Ontario.

Hydro One and the government had been at loggerheads over executive compensation, with the company refusing repeated requests to slash the CEO pay below $2,775,000. The board argued it would have difficulty recruiting suitable leaders for anything less, even as customers contend with a recovery rate that could raise hydro bills.

Further, the company agreed to pay the board chair no more than $120,000 annually and board members no more than $80,000 — figures Energy Minister Greg Rickford had outlined in his directive last month, amid calls for cleaning up Ontario's hydro mess from policy commentators.

"Hydro One's compliance with this directive allows us to move forward as a province. It sets the company on the right course for the future, proving that it can operate as a top-class electricity utility while reining in executive compensation and increasing public transparency," Rickford said in a statement issued Friday morning.

 

Related News

View more

Germany launches second wind-solar tender

Germany's Joint Onshore Wind and Solar Tender invites 200 MW bids in an EEG auction, with PV and onshore wind competing on price per MWh, including grid integration costs and network fees under BNA rules.

 

Key Points

A BNA-run 200 MW EEG auction where PV and onshore wind compete on price per MWh, including grid integration costs.

✅ 200 MW cap; minimum project size 750 kW

✅ Max subsidy 87.50 per MWh; bids include network costs

✅ Solar capped at 10-20 MW; wind requires prior approval

 

Germany's Federal Network Agency (BNA) has launched its second joint onshore wind and solar photovoltaic (PV) tender, with a total capacity of 200 MW.

A maximum guaranteed subsidy payment has been set at 87.50 per MWh for both energy sources, which BNA says will have to compete against each other for the lowest price of electricity. According to auction rules, all projects must have a minimum of 750 kW.

The auction is due to be completed on 2 November.

The network regulator has capped solar projects at 10 MW, though this has been extended to 20 MW in some districts, amid calls to remove barriers to PV at the federal level. Onshore wind projects did not receive any such restrictions, though they require approval from Federal Immission Control three weeks prior to the bid date of 11 Octobe

Bids also require network and system integration costs to be included, and similar solicitations have been heavily subscribed, as an over-subscribed Duke Energy solar solicitation in the US market illustrates.

According to Germanys Renewable Energy Act (EEG), two joint onshore wind and solar auctions must take place each year between 2018 and 2021. After this, the government will review the scheme and decide whether to continue it beyond 2021.

The first tender, conducted in April, saw the entire 200 MW capacity given to solar PV projects, reflecting a broader solar power boost in Germany during the energy crisis. Of the 32 contracts awarded, value varied from 39.60 per MWh to 57.60 per MWh. Among the winning bids were five projects in agricultural and grassland sites in Bavaria, totalling 31 MW, and three in Baden-Wrttemberg at 17 MW.

According to the Agency, the joint tender scheme was initiated in an attempt to determine the financial support requirements for wind and solar in technology-specific auctions, however, solar powers sole win in the April auction meant it was met with criticism, even as clean energy accounts for 50% of Germany's electricity today.

The heads of the Federal Solar Industry Association (BSW-Solar) and German Wind Energy Association (BWE) saying the joint tender scheme is unsuitable for the build-out of the two technologies.

A BWE spokesman previously stressed the companys rejection of competition between wind and solar, saying: It is not clear how this could contribute to an economically meaningful balanced energy mix,

Technologies that are in various stages of development must not enter into direct competition with each other. Otherwise, innovation and development potential will be compromised.

Similarly, BSW-Solar president Carsten Krnig said: We are happy for the many solar winners, but consider the experiment a failure. The auction results prove the excellent price-performance ratio of new solar power plants, as solar-plus-storage is cheaper than conventional power in Germany, but not the suitability of joint tenders.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.