Deregulation – is competiton the answer?

By Industrial Heating


CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
Be careful what you ask forÂ… you just might get it. Just ask the coalition of Industrial Energy Users in Ohio.

In the late 1990s, they lobbied hard for electricity deregulation. As a result, Ohio Senate Bill 3 was passed in 1999, which established a framework to “deregulate” energy pricing by allowing the market to set the price for energy through supplier competition.

Under the old system, the price of electricity was strictly based on a formula weighted heavily on what it cost the power company to produce it. This established a rate cap. Deregulation removes rate caps. Prices are based on what power suppliers and traders believe the market will bear, resulting in prices having only a nominal relation to cost. The result has been some serious growing pains for deregulated states.

Ohio is on the verge of learning what a dozen states have already realized – market-based energy schemes apparently do not result in cheaper prices. In fact, the results have led to unprecedented energy costs, with some states realizing 100% increases (doubling) in energy prices and averaging around 36% across the board. USA Today reported on Aug. 10, 2007, that average prices rose 21% in regulated states from 2002-2006. At the same time, they leapt 36% in deregulated states where rate caps expired.

Why isnÂ’t competition resulting in cheaper prices?

First off, since the passage of the 1935 Public Utility Holding Company Act (PUHCA), big utilities have been permitted to operate as a monopoly in their geographic area but have been prevented from expanding their reach. The law was enacted to prevent national conglomerates from dominating the electricity industry.

Over the past 20 years, some groups – namely large investor-owned power companies – contended that the law has outlived its usefulness and now stands in the way of increased competition that could lower prices and improve services.

Conceptually, free market competition should drive down prices and increase efficiency.

According to Mark Shanahan, energy advisor to Ohio Governor Ted Strickland, “Free markets falter when real competition is either lacking or doesn’t exist. This is because the fundamental premise underlying a free market is that no one is protected from failure. In the Ohio electricity-generation market (as in other states), there are some questions as to whether the primary electricity generators truly risk failure in a system that, according to these same generators, is actually hurting for new generation capacity.”

Secondly, rate caps have meant artificially cheap energy – removing the cap means a market correction. A crucial strategy of deregulation is to allow the expected market pricing correction to occur with an environment of robust competition. The idea is that competition would temper a run on pricing.

States entering the deregulated market have learned from prior states, and they have begun nurturing competition by using creative tier approaches while establishing competitive advantages for smaller suppliers. With limited supply and increasing demand, the market should be open for new entry, shouldnÂ’t it?

To market capitalists, the intuitive response is yes – but at a cost.

Much like other capital-intensive industries, entry is not very easy, especially when energy prices have been held artificially low. As energy prices increase, more opportunities exist for competition to economically compete. Until then, energy costs will increase prior to market stabilization.

A number of analysts believe that the correction in energy pricing will actually mean greater opportunities for alternative-energy technologies. In essence, the increasing cost of oil, coal and natural gas production will allow alternatives to become more affordable. It is price – meeting the alternative technologies at a point – that permits entry into the market. This should not be confused or misinterpreted as alternative-energy technologies driving up price.

Rather it is alternative energy finding an opening through deregulation.

If energy price increases are inevitable, then what can be done? There are a number of ways to respond. The most strategic is to plan for higher prices by reducing energy demand and planning for change. There is little doubt that consumers must internalize the mantra – “The least expensive unit of energy is the one you never buy.”

By the way, this is also the “greenest” kind of energy.

Related News

SaskPower eyes buying $300M worth of electricity from Flying Dust First Nation

SaskPower-Flying Dust flare gas power deal advances a 20 MW, 20-year Power Purchase Agreement, enabling grid supply from FNPA-backed generation, supporting renewable strategy, lower carbon footprint targets, and First Nation economic development in Saskatchewan.

 

Key Points

A 20 MW, 20-year PPA converting flare gas to grid power, with SaskPower buying from Flying Dust First Nation via FNPA.

✅ 20 MW of flare gas generation linked to Saskatchewan's grid

✅ 20-year term; about $300M total value to SaskPower

✅ FNPA-backed project; PPA targeted in 6-12 months

 

An agreement signed between SaskPower, which reported $205M income in 2019-20, and Flying Dust First Nation is an important step toward a plan that could see the utility buy $300 million worth of electricity from Flying Dust First Nation, according to Flying Dust's chief.

"There's still a lot of groundwork that needs to be done before we get building but you know we're a lot closer today with this signing," Jeremy Norman told reporters Friday.

Norman's community was assisted by the First Nations Power Authority (FNPA), a non-profit that helps First Nations get into the power sector, with examples like the James Bay project showing what Indigenous ownership can achieve.

The agreement signed Friday says SaskPower will explore the possibility of buying 20 megawatts of flare gas power from FNPA, which it will look to Flying Dust to produce.

#google#

 

20-year plan

The proposed deal would span 20 years and cost SaskPower around $300 million over those years, as the utility also explores geothermal power to meet 2030 targets.

The exact price would be determined once a price per metawatt is brought forward.

"We won't be able to do this ourselves," Norman said.

Flare gas power generation works by converting flares from the oil and gas sector into electricity. Under this plan, SaskPower would take the electricity provided by Flying Dust and plug it into the provincial power grid, complementing a recent move to buy more power from Manitoba Hydro to support system reliability.

"This is a great opportunity as we advance our renewable strategy, including progress on doubling renewables by 2030, and try to achieve a lower carbon footprint by 2030 and beyond," Marsh said.

Ombudsman report details dispute between senior with breathing disorder, SaskPower

Norman said the business deal presents an opportunity to raise money to reinvest into the First Nation for things like more youth programming.

For the next steps, both parties will need to sign a power purchase agreement that spells out the exact prices for the power generation.

Marsh expects to do so in the next six to 12 months, with development of the required infrastructure to take place after that.

 

Related News

View more

Britons could save on soaring bills as ministers plan to end link between gas and electricity prices

UK Electricity-Gas Price Decoupling aims to reform wholesale electricity pricing under the Energy Security Bill, shielding households from gas price spikes, supporting renewables, and easing the cost-of-living crisis through market redesign and transparent tariffs.

 

Key Points

Policy to decouple power prices from gas via the Energy Security Bill, stabilizing bills and reflecting renewables

✅ Breaks gas-to-power pricing link to cut electricity costs

✅ Reduces volatility; shields households from global gas shocks

✅ Highlights benefits of renewables and market transparency

 

Britons could be handed relief on rocketing household bills under Government plans to sever the link between the prices of gas and electricity, including proposals to restrict energy prices in the market, it has emerged.

Ministers are set to bring forward new laws under the Energy Security Bill to overhaul the UK's energy market in the face of the current cost-of-living crisis.

They have promised to provide greater protection for Britons against global fluctuations in energy prices, through a price cap on bills among other measures.

The current worldwide crisis has been exacerbated by the Ukraine war, which has sent gas prices spiralling higher.

Under the current make-up of Britain's energy market, soaring natural gas prices have had a knock-on effect on electricity costs.

But it has now been reported the new legislation will seek to prevent future shocks in the global gas market having a similar impact on electricity prices.

Yet the overhaul might not come in time to ease high winter energy costs for households ahead of this winter.

According to The Times, Business Secretary Kwasi Kwarteng will outline proposals for reforms in the coming weeks.

These will then form part of the Energy Security Bill to be introduced in the autumn, with officials anticipating a decrease in energy bills by April.

The newspaper said the plans will end the current system under which the wholesale cost of gas effectively determines the price of electricity for households.

Although more than a quarter of Britain's electricity comes from renewable sources, under current market rules it is the most expensive megawatt needed to meet demand that determines the price for all electricity generation.

This means that soaring gas prices have driven up all electricity costs in recent months, even though only around 40% of UK electricity comes from gas power stations.

Energy experts have compared the current market to train passengers having to pay the peak-period price for every journey they make.

One Government source told The Times: 'In the past it didn’t really matter because the price of gas was reasonably stable.

'Now it seems completely crazy that the price of electricity is based on the price of gas when a large amount of our generation is from renewables.'

It was also claimed ministers hope the reforms will make the market more transparent and emphasise to consumers the benefits of decarbonisation, amid an ongoing industry debate over free electricity for consumers.

A Government spokesperson said: 'The high global gas prices and linked high electricity prices that we are currently facing have given added urgency to the need to consider electricity market reform.

 

Related News

View more

Neste increases the use of wind power at its Finnish production sites to nearly 30%

Neste wind power agreement boosts renewable electricity in Finland, partnering with Ilmatar and Fortum to supply Porvoo and Naantali sites, cutting Scope 2 emissions and advancing a 2035 carbon-neutral production target via long-term PPAs.

 

Key Points

A PPA to source wind power for sites, cutting Scope 2 emissions and supporting Neste's 2035 carbon-neutral goal.

✅ 10-year PPA with Ilmatar; + Fortum boosts renewable electricity share.

✅ Supplies ~7% of Porvoo-Naantali electricity; capacity >20 MW.

✅ Cuts Scope 2 emissions by ~55 kt CO2e per year toward 2035 neutrality.

 

Neste is committed to reaching carbon neutral production by 2035, mirroring efforts such as Olympus 100% renewable electricity commitments across industry.

As part of this effort, the company is increasing the use of renewable electricity at its production sites in Finland, reflecting trends such as Ireland's green electricity targets across Europe, and has signed a wind power agreement with Ilmatar, a wind power company. The agreement has been made together with Borealis, Neste's long-term partner in the Kilpilahti area in Porvoo, Finland.

As a result of the agreement with Ilmatar, as well as that signed with Fortum at the end of 2019, and in line with global growth such as Enel's 450 MW wind project in the U.S., nearly 30% of the energy used at Neste's production sites in Porvoo and Naantali will be renewable wind power in 2022.

'Neste's purpose is to create a healthier planet for our children. Our two climate commitments play an important role in living up to this ambition, and one of them is to reach carbon neutral production by 2035. It is an enormous challenge and requires several concrete measures and investments, including innovations like offshore green hydrogen initiatives. Wind power, including advances like UK offshore wind projects, is one of the over 70 measures we have identified to reduce our production's greenhouse gas emissions,' Neste's President and CEO Peter Vanacker says.

With the ten year contract, Neste is committed to purchase about one-third of the production of Ilmatar's two wind farms, reflecting broader market moves such as BC Hydro wind deals in Canada. The total capacity of the agreement is more than 20 MW, and the energy produced will correspond to around 7% of the electricity consumption at Neste's sites in Porvoo and Naantali. The wind power deliveries are expected to begin in 2022.

The two wind power agreements help Neste to reduce the indirect greenhouse gas emissions (Scope 2 emissions defined by the Greenhouse Gas Protocol) of electricity purchases at its Finnish production sites, a trend mirrored by Dutch green electricity growth across Europe, annually by approximately 55 kilotons. 55 kt/a CO2e equals annual carbon footprint of more than 8,500 EU citizens.

 

Related News

View more

EDP Plans to Reject $10.9 Billion-China Three Gorges Bid

EDP Takeover Bid Rejection signals pushback on China Three Gorges' acquisition bid, as investors, shareholders, and analysts cite low premium, valuation concerns, and strategic renewables assets across Portugal, the US, Brazil, and Europe utilities.

 

Key Points

EDP's board views China Three Gorges' 3.26 euro per share offer as too low, citing valuation and renewables exposure.

✅ Bid premium 4.8% above close seen as inadequate.

✅ Stock surged above offer; market expects higher price.

✅ Advisors UBS and Morgan Stanley guiding EDP.

 

EDP-Energias de Portugal SA is poised to reject a 9.1 billion euro ($10.9 billion) takeover offer from China Three Gorges Corp. on the grounds that it undervalues Portugal’s biggest energy company, according to people with knowledge of the matter.

The board of EDP, which may meet as early as this week, views the current bid of 3.26 euros a share as too low as it indicates a premium of 4.8 percent over Friday’s close, said the people, asking not to be identified because the discussions are private. EDP is also working with advisers including UBS Group AG and Morgan Stanley on the potential deal, they said.

Representatives for EDP, UBS and Morgan Stanley declined to comment. Representatives for Three Gorges didn’t immediately respond to requests for comment.

#google#

Shares of EDP surged the most in a decade to above the bid level on Monday, signaling that investors expect the Chinese utility, which is its biggest investor, to sweeten the offer to gain full control. For Three Gorges, which spent two decades building a hydro-power plant spanning China’s Yangtze River, the deal would bolster its efforts to expand abroad and give it deeper access to markets in Europe, the U.S. and Brazil.

China’s biggest renewable-energy developer already is the largest shareholder of EDP with a 23 percent stake and now is seeking more than 50 percent. While the government in Lisbon has indicated it’s comfortable with the Chinese offer, EDF electricity price deal illustrates policy dynamics in the region and it holds out little incentive for shareholders to tender their stock.

 

Stock Jumps

Shares of EDP rose 9.3 percent to 3.40 euros in Lisbon on Monday, even as rolling back European electricity prices remains challenging, after earlier jumping by the most since October 2008.

“We believe the price offered is too low for China Three Gorges to achieve full control of a vehicle that provides, among other things, a strategic footprint into U.S. renewables,” Javier Garrido, an analyst at JPMorgan Chase & Co., said in a note. “We expect management and minorities to claim a higher price.”

The offer adds to a wave of investments China has made overseas, both to earn a yield on its cash and to gain expertise in industries ranging from energy to telecommunications and transport. Concern about those deals has been mounting in the U.S. regulatory arena recently. European Union governments have been divided in their response, with Portugal among those most supportive of inward investment.

“China Three Gorges is an ambitious company, with expansion already in international hydro, Chinese onshore wind and floating solar, and European offshore wind,” said Angus McCrone, a senior analyst at Bloomberg New Energy Finance in London. “It may have to do better on bid price than the 5 percent premium so far offered for EDP.”

 

Fortum’s Troubles

The low premium offered by Three Gorges echoes the struggle Fortum Oyj had in winning over investors in its bid for Uniper SE last year, while North American deals such as Hydro One’s Avista bid faced customer backlash as well, highlighting parallels. The Finnish utility offered 8 billion euros to buy out the remainder of Uniper in September, immediately sending shares of the German power generator above the offer prices. At least for now, Fortum has settled for a 47 percent stake it bought in Uniper from EON SE, and most other shareholders decided to keep their stake.

The EDP transaction would advance a wave of consolidation among Europe’s leading utilities, which are acquiring assets and development skills in renewables as governments across the region crack down on pollution. EDP is one of Europe’s leading developers of renewable energy, building mainly wind farms and hydro plants, and has expanded in markets including Brazil and the U.S. electrification market.

 

Related News

View more

Wind and Solar Double Global Share of Electricity in Five Years

Wind And Solar Energy Growth is reshaping the global power mix, accelerating grid decarbonization as coal declines; boosted by pandemic demand drops, renewables now supply near 10% of electricity, advancing climate targets toward net-zero trajectories.

 

Key Points

It is the rise in wind and solar's share of electricity, driving decarbonization and displacing coal globally.

✅ Share doubled in five years across 83% of global electricity

✅ Coal's share fell; renewables neared 10% in H1 2020

✅ Growth still insufficient for 1.5 C; needs ~13% coal cuts yearly

 

Wind and solar energy doubled its share of the global power mix over the last five years, with renewable power records underscoring the trend, moving the world closer to a path that would limit the worst effects of global warming.

The sources of renewable energy made up nearly 10% of power in most parts of the world in the first half of this year, according to analysis from U.K. environmental group Ember, while globally over 30% of electricity is renewable in broader assessments.

That decarbonization of the power grid was boosted this year as shutdowns to contain the coronavirus reduced demand overall, leaving renewables to pick up the slack.

Ember analyzed generation in 48 countries that represent 83% of global electricity. The data showed wind and solar power increased 14% in the first half of 2020 compared with the same period last year while global demand fell 3% because of the impact of the coronavirus.

At the same time that wind turbines and solar panels have proliferated, coal’s share of the mix has fallen around the world. In some, mainly western European countries, where renewables surpassed fossil fuels, coal has been all but eliminated from electricity generation.


China relied on the dirtiest fossil fuel for 68% of its power five years ago, and solar PV growth in China has accelerated since then. That share dipped to 62% this year and renewables made up 10% of all electricity generated.

Still, the growth of renewables may not be going fast enough for the world to hit its climate goals, even as the U.S. is projected to have one-fourth of electricity from renewables soon, and coal is still being burnt for power in many parts of the world.

Coal use needs to fall by about 79% by 2030 from last year’s levels - a fall of 13% every year throughout the decade to come, and in the U.S. renewable electricity surpassed coal in 2022, Ember said.

New installations of wind farms are set to hold more or less steady in the next five years, according to data from BloombergNEF on deployment trends. That will make it difficult to realize a sustained pace of doubling renewable power every five years.

“If your expectations are that we need to be on target for 1.5 degrees, clearly we’re not going fast enough,” said Dave Jones, an analyst at Ember. “We’re not on a trajectory where we’re reducing coal emissions fast enough.”

 

Related News

View more

Why electric buses haven't taken over the world—yet

Electric Buses reduce urban emissions and noise, but require charging infrastructure, grid upgrades, and depot redesigns; they offer lower operating costs and simpler maintenance, with range limits influencing routes, schedules, and on-route fast charging.

 

Key Points

Battery-electric buses cut emissions and noise while lowering operating and maintenance costs for transit agencies.

✅ Lower emissions, noise; improved rider experience

✅ Requires charging, grid upgrades, depot redesigns

✅ Range limits affect routes; on-route fast charging helps

 

In lots of ways, the electric bus feels like a technology whose time has come. Transportation is responsible for about a quarter of global emissions, and those emissions are growing faster than in any other sector. While buses are just a small slice of the worldwide vehicle fleet, they have an outsize effect on the environment. That’s partly because they’re so dirty—one Bogotá bus fleet made up just 5 percent of the city’s total vehicles, but a quarter of its CO2, 40 percent of nitrogen oxide, and more than half of all its particulate matter vehicle emissions. And because buses operate exactly where the people are concentrated, we feel the effects that much more acutely.

Enter the electric bus. Depending on the “cleanliness” of the electric grid into which they’re plugged, e-buses are much better for the environment. They’re also just straight up nicer to be around: less vibration, less noise, zero exhaust. Plus, in the long term, e-buses have lower operating costs, and related efforts like US school bus electrification are gathering pace too.

So it makes sense that global e-bus sales increased by 32 percent last year, according to a report from Bloomberg New Energy Finance, as the age of electric cars accelerates across markets worldwide. “You look across the electrification of cars, trucks—it’s buses that are leading this revolution,” says David Warren, the director of sustainable transportation at bus manufacturer New Flyer.

Today, about 17 percent of the world’s buses are electric—425,000 in total. But 99 percent of them are in China, where a national mandate promotes all sorts of electric vehicles. In North America, a few cities have bought a few electric buses, or at least run limited pilots, to test the concept out, and early deployments like Edmonton's first e-bus offer useful lessons as systems ramp up. California has even mandated that by 2029 all buses purchased by its mass transit agencies be zero-emission.

But given all the benefits of e-buses, why aren’t there more? And why aren’t they everywhere?

“We want to be responsive, we want to be innovative, we want to pilot new technologies and we’re committed to doing so as an agency,” says Becky Collins, the manager of corporate initiative at the Southeastern Pennsylvania Transportation Authority, which is currently on its second e-bus pilot program. “But if the diesel bus was a first-generation car phone, we’re verging on smartphone territory right now. It’s not as simple as just flipping a switch.”

One reason is trepidation about the actual electric vehicle. Some of the major bus manufacturers are still getting over their skis, production-wise. During early tests in places like Belo Horizonte, Brazil, e-buses had trouble getting over steep hills with full passenger loads. Albuquerque, New Mexico, canceled a 15-bus deal with the Chinese manufacturer BYD after finding equipment problems during testing. (The city also sued). Today’s buses get around 225 miles per charge, depending on topography and weather conditions, which means they have to re-up about once a day on a shorter route in a dense city. That’s an issue in a lot of places.

If you want to buy an electric bus, you need to buy into an entire electric bus system. The vehicle is just the start.

The number one thing people seem to forget about electric buses is that they need to get charged, and emerging projects such as a bus depot charging hub illustrate how infrastructure can scale. “We talk to many different organizations that get so fixated on the vehicles,” says Camron Gorguinpour, the global senior manager for the electric vehicles at the World Resources Institute, a research organization, which last month released twin reports on electric bus adoption. “The actual charging stations get lost in the mix.”

But charging stations are expensive—about $50,000 for your standard depot-based one. On-route charging stations, an appealing option for longer bus routes, can be two or three times that. And that’s not even counting construction costs. Or the cost of new land: In densely packed urban centers, movements inside bus depots can be tightly orchestrated to accommodate parking and fueling. New electric bus infrastructure means rethinking limited space, and operators can look to Toronto's TTC e-bus fleet for practical lessons on depot design. And it’s a particular pain when agencies are transitioning between diesel and electric buses. “The big issue is just maintaining two sets of fueling infrastructure,” says Hanjiro Ambrose, a doctoral student at UC Davis who studies transportation technology and policy.

“We talk to many different organizations that get so fixated on the vehicles. The actual charging stations get lost in the mix as the American EV boom gathers pace across sectors.”

Then agencies also have to get the actual electricity to their charging stations. This involves lengthy conversations with utilities about grid upgrades, rethinking how systems are wired, occasionally building new substations, and, sometimes, cutting deals on electric output, since electric truck fleets will also strain power systems in parallel. Because an entirely electrified bus fleet? It’s a lot to charge. Warren, the New Flyer executive, estimates it could take 150 megawatt-hours of electricity to keep a 300-bus depot charged up throughout the day. Your typical American household, by contrast, consumes 7 percent of that—per year. “That’s a lot of work by the utility company,” says Warren.

For cities outside of China—many of them still testing out electric buses and figuring out how they fit into their larger fleets—learning about what it takes to run one is part of the process. This, of course, takes money. It also takes time. Optimists say e-buses are more of a question of when than if. Bloomberg New Energy Finance projects that just under 60 percent of all fleet buses will be electric by 2040, compared to under 40 percent of commercial vans and 30 percent of passenger vehicles.

Which means, of course, that the work has just started. “With new technology, it always feels great when it shows up,” says Ambrose. “You really hope that first mile is beautiful, because the shine will come off. That’s always true.”

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified