Norway to build first miniature seawater power station
NORWAY - As the world beefs up its search for the perfect renewable energy source of the future, Norwegian company Statkraft says the answer may have been on the tip of our tongues all along: salt.
The publicly-held energy company aims to begin building the world's first miniature seawater power station next year along the banks of the Oslo fjord.
"Osmotic" power is a clean energy source that according to Statkraft could theoretically supply 1,600 TWh (teraWatt-hours) worldwide, or about half of Europe's current energy consumption. "It is totally CO2-free," Statkraft's new energy business developer Jon Dugstad told AFP.
"The only thing we do is that we mix fresh water and sea water. We don't add anything in that process, which is a completely natural process," he added, pointing out that the power is created anywhere where rivers run into the sea. Osmotic power takes advantage of the different salt concentrations in liquids: When saltwater and freshwater are separated using a filter called a semi-permeable membrane, the water containing the least salt naturally migrates towards the saltwater, creating pressure that can be transformed into energy.
In a small factory in the southern Norwegian town of Hurum, Statkraft is planning to build a miniature osmotic power station capable of pumping out between two and four kWh (kiloWatt-hours), just enough to keep a few light bulbs burning. If the experiment works, the company is considering building a larger-scale station capable of producing between 160 and 170 GWh (gigaWatt-hours), or enough to cover the electricity needs of about 15,000 households.
Osmotic power could become competitive around 2015, according to Statkraft.
Europe, North America, South Africa and certain parts of South America are expected to be the most fertile markets for osmotic power.
Related News
Melting Glass Experiment Surprises Scientists by Defying a Law of Electricity
LONDON - A team of scientists working with electrical currents and silicate glass have been left gobsmacked after the glass appeared to defy a basic physical law.
If you pass an electrical current through a material, the way that current generates heat can be described by Joule's first law. It's been observed time and time again, with the temperature always evenly distributed when the material is homogeneous (or uniform).
But not in this recent experiment. A section - and only a section - of silicate glass became so hot that it melted, and even evaporated. Moreover, it did so at a much…