GMP upgrading 80-year-old power station

By Associated Press


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Little by little, an aging Green Mountain Power generating station fed by Marshfield Reservoir is being brought into the 21st century.

The utility isn't changing the 1920s-technology turbine generator at the base of Danville Hill in Marshfield. It's replacing a 7,000-foot long wooden pipe that transports the reservoir's water to it with a new steel pipe in a project that could last five years. The pipe is called a penstock.

Even though the plant, known as Marshfield 6, can produce five megawatts of power and replacing the penstock is expected to cost about $7 million, keeping the plant running is still a bargain.

"It runs us around $1,000 a foot installed," said GMP Field Operations Manager Charlie Pughe, who is overseeing the project. "It's got an 80-year expected life on it and if you're pumping out five megawatts an hour down at the plant at today's market prices, it's very economical, plus it's clean. It's 100 percent non-emitting generation so it's part of our portfolio that's absolutely worth keeping online."

When the plant was installed in the mid-1920s, it was cutting edge technology. The five megawatts capacity was enough to power more than 2,000 homes. Based on the plant's average yearly output (it doesn't run all the time) the plant makes enough power for about 830 homes.

The Marshfield plant has been upgraded with technology that allows it to be controlled from GMP's central command center in Colchester, but the generating technology is the same used when Calvin Coolidge was president.

Simply, the wooden pipe, which has always leaked, has reached the end of its usable life.

"I don't think anybody is too upset about the wood pipe going. Everyone is kind of lamenting the fact that we won't have those beautiful ice sculptures along Route 2 in the wintertime anymore," Pughe said. "Some people think that's a good thing. Some people think that's a shame to lose that kind of neat looking stuff."

The wooden penstock isn't original. The entire pipe was replaced in the late 1950s with new boards.

GMP, Vermont's second-largest electric utility, has eight hydro operations that — combined — produce 37 megawatts of electricity. The smallest is West Danville, which uses a wooden penstock shorter than the one being replaced in Marshfield, produces 1 megawatt of power.

As the demand for electricity continues to grow, utilities are looking for new sources of power. But they're not forgetting hundreds of small plants.

"There's a need out there for this older equipment to be kept running and we're trying to fulfill that need," said Larry King, a field service engineer for GE Energy, Optimization and Control, of Loveland, Colo., who visits Vermont once a year or so to work on the speed control mechanisms of Marshfield 6 and some of GMP's other hydro stations.

They sometimes manufacture new parts to 1920s specifications.

"They're special," said King, who works on several dozen similar plants across North America. "You get out there working on it, it just amazes me, how in the world did they come up with this. You get them laid out in front of you and wow, they all have to work together."

GMP built a number of plants in the early years of the last century, but the Marshfield and West Danville plants are the only ones that were made with wooden pipe. The rest use steel or concrete penstocks, even the ones built around the same time as Marshfield 6, Pughe said.

He didn't know why the choice was made to use wood in Marshfield and Danville. "They had plenty of carpenters around. It was a barrel-making process," Pughe said. The wooden boards are held together by iron rings placed every six inches.

The project to replace the wooden pipe began last year. Construction workers take out a section in the fall when the water is low and then hook it back up with the steel section in place all so GMP can make power again through next fall.

Last year, they replaced 900 feet. This year they're expecting to replace about 1,400. At that rate they expect the entire project to take four or five years, Pughe said.

GMP is waiting for the Vermont Agency of Transportation to renovate a stretch of Route 2 so it can install a replacement section beneath Route 2.

"It's held up pretty well," Pughe said. "The leaks, you know, it's just water coming through it, so it's not really a big deal."

Related News

The Need for Electricity During the COVID-19 Pandemic

US utilities COVID-19 resilience shows electric utilities maintaining demand stability, reaffirming earnings guidance, and accessing the bond market for low-cost financing, as Dominion, NextEra, and Con Edison manage recession risks.

 

Key Points

It is the sector's capacity to sustain demand, financing access, and guidance despite pandemic recession pressures.

✅ Bond market access locks in low-cost, long-term debt

✅ Stable residential load offsets industrial weakness

✅ Guidance largely reaffirmed by major utilities

 

Dominion Energy (D) expects "incremental residential load" gains, consistent with COVID-19 electricity demand patterns, as a result of COVID-19 fallout. Southern Company CEO Tom Fanning says his company is "nowhere near" a need to review earnings guidance because of a potential recession, in a region where efficiency and demand response can help level electricity demand for years.

Sempra Energy (SRE) has reaffirmed earnings per share guidance for 2020 and 2021, as well timing for the sale of assets in Chile and Peru, and peers such as Duke Energy's renewables plan have reaffirmed capital investments to deliver cleaner energy and economic growth. And Xcel Energy (XEL) says it still "hasn’t seen material impact on its business."

Several electric utilities have demonstrated ability to tap the bond market, in line with utility sector trends in recent years, to lock in low-cost financing, as America moves toward broader electrification, despite ongoing turmoil. Their ranks include Dominion Energy, renewable energy leader NextEra Energy (NEE) and Consolidated Edison (ED), which last week sold $1 billion of 30-year bonds at a coupon rate of just 3.95 percent.

It’s still early days for US COVID-19 fallout. And most electric companies have yet to issue guidance. That’s understandable, since so much is still unknown about the virus and the damage it will ultimately do to human health and the global economy. But so far, the US power industry is showing typical resilience in tough times, as it coordinates closely with federal partners to maintain reliability.

Will it last? We won’t know for certain until there’s a lot more data. NextEra is usually first to report its Q1 earnings reports and detailed guidance. But that’s not expected until April 23. And companies may delay financials further, should the virus and efforts to control it impede collection and analysis of data, and as they address electricity shut-off risks affecting customers.

 

Related News

View more

Energy Vault Secures $28M for California Green Hydrogen Microgrid

Calistoga Resiliency Centre Microgrid delivers grid resilience via green hydrogen and BESS, providing island-mode backup during PSPS events, wildfire risk, and outages, with black-start and grid-forming capabilities for reliable community power.

 

Key Points

A hybrid green hydrogen and BESS facility ensuring resilient, islanded power for Calistoga during PSPS and outages.

✅ 293 MWh capacity with 8.5 MW peak for critical backup

✅ Hybrid lithium-ion BESS plus green hydrogen fuel cells

✅ Island mode with black-start and grid-forming support

 

Energy Vault, a prominent energy storage and technology company known for its gravity storage, recently secured US$28 million in project financing for its innovative Calistoga Resiliency Centre (CRC) in California. This funding will enable the development of a microgrid powered by a unique combination of green hydrogen and battery energy storage systems (BESS), marking a significant step forward in enhancing grid resilience in the face of natural disasters such as wildfires.

Located in California's fire-prone regions, the CRC is designed to provide critical backup power during Public Safety Power Shutoff (PSPS) events—periods when utility companies proactively cut power to prevent wildfires. These events can leave communities without electricity for extended periods, making the need for reliable, independent power sources more urgent as many utilities see benefits in energy storage today. The CRC, with a capacity of 293 MWh and a peak output of 8.5 MW, will ensure that the Calistoga community maintains power even when the grid is disconnected.

The CRC features an integrated hybrid system that combines lithium-ion batteries and green hydrogen fuel cells, even as some grid-scale projects adopt vanadium flow batteries for long-duration needs. During a PSPS event or other grid outages, the system will operate in "island mode," using hydrogen to generate electricity. This setup not only guarantees power supply but also contributes to grid stability by supporting black-start and grid-forming functions. Energy Vault's proprietary B-VAULT DC battery technology complements the hydrogen fuel cells, enhancing the overall performance and resilience of the microgrid.

One of the key aspects of the CRC project is the utilization of green hydrogen. Unlike traditional hydrogen, which is often produced using fossil fuels, green hydrogen is generated through renewable energy sources like solar or wind power, with large-scale initiatives such as British Columbia hydrogen project accelerating supply, making it a cleaner and more sustainable alternative. This aligns with California’s ambitious clean energy goals and is expected to reduce the carbon footprint of the region’s energy infrastructure.

The CRC project also sets a precedent for future hybrid microgrid deployments across California and other wildfire-prone areas, with utilities like SDG&E Emerald Storage highlighting growing adoption. Energy Vault has positioned the CRC as a model for scalable, utility-scale microgrids that can be adapted to various locations facing similar challenges. Following the success of this project, Energy Vault is expanding its portfolio with additional projects in Texas, where it anticipates securing up to US$25 million in financing.

The funding for the CRC also includes the sale of an investment tax credit (ITC), a key component of the financing structure that helps make such ambitious projects financially viable. This structure is crucial as it allows companies to leverage government incentives to offset development costs, including CEC long-duration storage funding, thus encouraging further investment in green energy infrastructure.

Despite some skepticism regarding the transportation of hydrogen rather than producing it onsite, the project has garnered strong support. California’s Public Utilities Commission (CPUC) acknowledged the potential risks of transporting green hydrogen but emphasized that it is still preferable to using more harmful fuel sources. This recognition is important as it validates Energy Vault’s approach to using hydrogen as part of a broader strategy to transition to clean, reliable energy solutions.

Energy Vault's shift from its traditional gravity-based energy storage systems to battery energy storage systems, such as BESS in New York, reflects the company's adaptation to the growing demand for versatile, efficient energy solutions. The hybrid approach of combining BESS with green hydrogen represents an innovative way to address the challenges of energy storage, especially in regions vulnerable to natural disasters and power outages.

As the CRC nears mechanical completion and aims for full commercial operations by Q2 2025, it is poised to become a critical part of California’s grid resilience strategy. The microgrid's ability to function autonomously during emergencies will provide invaluable benefits not only to Calistoga but also to other communities that may face similar grid disruptions in the future.

Energy Vault’s US$28 million financing for the Calistoga Resiliency Centre marks a significant milestone in the development of hybrid microgrids that combine the power of green hydrogen and battery energy storage. This project exemplifies the future of energy resilience, showcasing a forward-thinking approach to mitigating the impact of natural disasters and ensuring a reliable, sustainable energy future for communities at risk. With its innovative use of renewable energy sources and cutting-edge technology, the CRC sets a strong example for future energy storage projects worldwide.

 

Related News

View more

Grounding and Bonding and The NEC - Section 250

Electrical Grounding and Bonding NEC 250 Training equips electricians with Article 250 expertise, OSHA compliance knowledge, lightning protection strategies, and low-impedance fault current path design for safer industrial, commercial, and institutional power systems.

 

Key Points

Live NEC 250 course on grounding and bonding, covering safety, testing, and OSHA-compliant design.

✅ Interprets NEC Article 250 grounding and bonding rules

✅ Designs low-impedance fault current paths for safety

✅ Aligns with OSHA, lightning protection, and testing best practices

 

The Electricity Forum is organizing a series of live online Electrical Grounding and Bonding - NEC 250 training courses this Fall:

  • September 8-9 , 2020 - 10:00 am - 4:30 pm ET
  • October 29-30 , 2020 - 10:00 am - 4:30 pm ET
  • November 23-24 , 2020 - 10:00 am - 4:30 pm ET

 

This interactive 12-hour live online instructor-led  Grounding and Bonding and the NEC Training course takes an in-depth look at Article 250 of the National Electrical Code (NEC) and is designed to give students the correct information they need to design, install and maintain effective electrical grounding and bonding systems in industrial, commercial and institutional power systems, with substation maintenance training also relevant in many facilities.

One of the most important AND least understood sections of the NEC is the section on Electrical Grounding, where resources like grounding guidelines can help practitioners navigate key concepts.

No other section of the National Electrical Code can match Article 250 (Grounding and Bonding) for confusion that leads to misapplication, violation, and misinterpretation. It's generally agreed that the terminology used in Section 250 has been a source for much confusion for industrial, commercial and institutional electricians. Thankfully, this has improved during the last few revisions to Article 250.

Article 250 covers the grounding requirements for providing a path to the earth to reduce overvoltage from lightning, with lightning protection training providing useful context, and the bonding requirements for a low-impedance fault current path back to the source of the electrical supply to facilitate the operation of overcurrent devices in the event of a ground fault.

Our Electrical Grounding Training course will address all the latest changes to  the Electrical Grounding rules included in the NEC, and relate them to VFD drive training considerations for modern systems.

Our course will cover grounding fundamentals, identify which grounding system tests can prevent safety and operational issues at your facilities, and introduce related motor testing training topics, and details regarding which tests can be conducted while the plant is in operation versus which tests require a shutdown will be discussed. 

Proper electrical grounding and bonding of equipment helps ensure that the electrical equipment and systems safely remove the possibility of electric shock, by limiting the voltage imposed on electrical equipment and systems from lightning, line surges, unintentional contact with higher-voltage lines, or ground-fault conditions. Proper grounding and bonding is important for personnel protection, with electrical safety tips offering practical guidance, as well as for compliance with OSHA 29 CFR 1910.304(g) Grounding.

It has been determined that more than 70 per cent of all electrical problems in industrial, commercial and institutional power systems, including large projects like the New England Clean Power Link, are due to poor grounding, and bonding errors. Without proper electrical grounding and bonding, sensitive electronic equipment is subjected to destruction of data, erratic equipment operation, and catastrophic damage. This electrical grounding and bonding training course will National Electrical Code.

Complete course details here:

https://electricityforum.com/electrical-training/electrical-grounding-nec

 

 

 

Related News

View more

Relief for power bills in B.C. offered to only part of province

BC Hydro COVID-19 Relief offers electricity bill credits for laid-off workers and small business support, announced by Premier John Horgan, while FortisBC customers face deferrals and billing arrangements across Kelowna, Okanagan, and West Kootenay.

 

Key Points

BC Hydro COVID-19 Relief gives bill credits to laid-off residents; FortisBC offers deferrals and payment plans.

✅ Credit equals 3x average monthly bill for laid-off BC Hydro users

✅ Small businesses on BC Hydro get three months bill forgiveness

✅ FortisBC waives late fees, no disconnections, offers deferrals

 

On April 1, B.C. Premier John Horgan announced relief for BC Hydro customers who are facing bills after being laid-off during the economic shutdown due to the COVID-19 epidemic, while the utility also explores time-of-use rates to manage demand.

“Giving people relief on their power bills lets them focus on the essentials, while helping businesses and encouraging critical industry to keep operating,” he said.

BC Hydro residential customers in the province who have been laid off due to the pandemic will see a credit for three times their average monthly bill and, similar to Ontario's pandemic relief fund, small businesses forced to close will have power bills forgiven for three months.

But a large region of the province which gets its power from FortisBC will not have the same bail out.

FortisBC is the electricity provider to the tens of thousands who live and work in the Silmikameen Valley on Highway 3, the city of Kelowna, the Okanagan Valley south from Penticton, the Boundary region along the U.S. border. as well as West Kootenay communities.

“We want to make sure our customers are not worried about their FortisBC bill,” spokesperson Nicole Brown said.

FortisBC customers will still be on the hook for bills despite measures being taken to keep the lights on, even as winter disconnection pressures have been reported elsewhere.

Recent storm response by BC Hydro also highlights how crews have kept electricity service reliable during recent atypical events.

“We’ve adjusted our billing practices so we can do more,” she said. “We’ve discontinued our late fees for the time being and no customer will be disconnected for any financial reason.”

Brown said they will work one-on-one with customers to help find a billing arrangement that best suits their needs, aligning with disconnection moratoriums seen in other jurisdictions.

Those arrangement, she said, could include a “deferral, an equal payment plan or other billing options,” similar to FortisAlberta's precautions announced in Alberta.

Global News inquired with the Premier’s office why FortisBC customers were left out of Wednesday’s announcement and were deferred to the Ministry of Energy, Mines and Petroleum Resources.

The Ministry referred us back to FortisBC on the issue and offered no other comment, even as peak rates for self-isolating customers remained unchanged in parts of Ontario.

“We’re examining all options of how we can further help our customers and look forward to learning more about the program that BC Hydro is offering,” Brown said.

Disappointed FortisBC customers took to social media to vent about the disparity.

 

Related News

View more

We Energies refiles rate hike request driven by rising nuclear power costs

We Energies rate increase driven by nuclear energy costs at Point Beach, Wisconsin PSC filings, and rising utility rates, affecting electricity prices for residential, commercial, and industrial customers while supporting WEC carbon reduction goals.

 

Key Points

A 2021 utility rate hike to recover Point Beach nuclear costs, modestly raising Wisconsin electricity bills.

✅ Residential bills rise about $0.73 per month

✅ Driven by $55.82/MWh Point Beach contract price

✅ PSC review and consumer advocates assessing alternatives

 

Wisconsin's largest utility company is again asking regulators to raise rates to pay for the rising cost of nuclear energy.

We Energies says it needs to collect an additional $26.5 million next year, an increase of about 3.4%.

For residential customers, that would translate to about 73 cents more per month, or an increase of about 0.7%, while some nearby states face steeper winter rate hikes according to regulators. Commercial and industrial customers would see an increase of 1% to 1.5%, according to documents filed with the Public Service Commission.

If approved, it would be the second rate increase in as many years for about 1.1 million We Energies customers, who saw a roughly 0.7% increase in 2020 after four years of no change, while Manitoba Hydro rate increase has been scaled back for next year, highlighting regional contrasts.

We Energies' sister utility, Wisconsin Public Service Corp., has requested a 0.13% increase, which would add about 8 cents to the average monthly residential bill, which went up 1.6% this year.

We Energies said a rate increase is needed to cover the cost of electricity purchased from the Point Beach nuclear power plant, which according to filings with the Securities Exchange Commission will be $55.82 per megawatt-hour next year.

So far this year, the average wholesale price of electricity in the Midwestern market was a little more than $25.50 per megawatt-hour, and recent capacity market payouts on the largest U.S. grid have fallen sharply, reflecting broader market conditions.

Owned and operated by NextEra Energy Resources, the 1,200-megawatt Point Beach Nuclear Plant is Wisconsin's last operational reactor. We Energies sold the plant for $924 million in 2007 and entered into a contract to purchase its output for the next two decades.

Brendan Conway, a spokesman for WEC Energy Group, said customers have benefited from the sale of the plant, which will supply more than a third of We Energies' demand and is a key component in WEC's strategy to cut 80% of its carbon emissions by 2050, amid broader electrification trends nationwide.

"Without the Point Beach plant, carbon emissions in Wisconsin would be significantly higher," Conway said.

As part of negotiations on its last rate case, WEC agreed to work with consumer advocates and the PSC to review alternatives to the contracted price increases, which were structured to begin rising steeply in 2018.

Tom Content, executive director of the Citizens Utility Board, said the contract will be an issue for We Energies customers into the next decade

"It's a significant source (of energy) for the entire state," Content said. "But nuclear is not cheap."

WEC filed the rate requests Monday, one week after the withdrawing similar applications. Conway said the largely unchanged filings had "undergone additional review by senior management."

WEC last week raised its second quarter profit forecast to 67 to 69 cents per share, up from the previous range of 58 to 62 cents per share.

The company credited better than expected sales in April and May along with operational cost savings and higher authorized profit margin for American Transmission Company, of which WEC is the majority owner.

Wisconsin's other investor-owned utilities have reported lower than expected fuel costs for 2020 and 2021, even as emergency fuel stock programs in New England are expected to cost millions this year.

Alliant Energy has proposed using about $31 million in fuel savings to help freeze rates in 2021, aligning with its carbon-neutral electricity plans as it rolls out long-term strategy, while Xcel Energy is proposing to lower its rates by 0.8% next year and refund its customers about $9.7 million in fuel costs for this year.

Madison Gas and Electric is negotiating a two-year rate structure with consumer groups who are optimistic that fuel savings can help prevent or offset rate increases, though some utilities are exploring higher minimum charges for low-usage customers to recover fixed costs.

 

Related News

View more

As Alberta electricity generators switch to gas, power price cap comes under spotlight

Alberta Energy-Only Electricity Market faces capacity market debate, AESO price cap review, and coal-to-gas shifts by TransAlta and Capital Power, balancing reliability with volatility as investment signals evolve across Alberta's grid.

 

Key Points

An energy market paying generators only for electricity sold, with AESO oversight and a price cap guiding new capacity.

✅ AESO reviewing $999 per MW-h wholesale price cap.

✅ UCP retained energy-only; capacity market plan cancelled.

✅ TransAlta and Capital Power shift to coal-to-gas.

 

The Kenney government’s decision to cancel the redesign of Alberta’s electricity system to a capacity market won’t side-track two of the province’s largest power generators from converting coal-fired facilities to burn natural gas as part of Alberta’s shift from coal to cleaner energy overall.

But other changes could be coming to the province’s existing energy-only electricity market — including the alteration of the $999 per megawatt-hour (MW-h) wholesale price cap in Alberta.

The heads of TransAlta Corp. and Capital Power Corp. are proceeding with strategies to convert existing coal-fired power generating facilities to use natural gas in the coming years.

Calgary-based TransAlta first announced in 2017 that it would make the switch, as the NDP government was in the midst of overhauling the electricity sector and wind generation began to outpace coal in the province.

At the time, the Notley government planned to phase out coal-fired power by 2030, even as Alberta moved to retire coal by 2023 in practice, and shift Alberta into an electricity capacity market in 2021.

Such a move, made on the recommendation of the Alberta Electric System Operator (AESO), was intended to reduce price volatility and ensure system reliability.

Under the energy-only market, generators receive payments for electricity produced and sold into the grid. In a capacity market, generators are also paid for having power available on demand, regardless of how often they sell energy into the provincial grid.

The UCP government decided last month to ditch plans for a capacity market after consulting with the sector, saying it would be better for consumers.

On a conference call, TransAlta CEO Dawn Farrell said the company will convert coal-fired generating plants to burn gas, although it may alter the mix between simple conversions and switching to so-called “hybrid” plants.

(A hybrid conversion is a larger and more-expensive switch, as it includes installing a new gas turbine and heat-recovery steam generator, but it creates a highly efficient combined cycle unit.)

“Our view is fundamentally that carbon will be priced over the next 20 years no matter what,” she said Friday.

“We cannot get off coal fast enough in this company, and gas right now in Alberta is extremely inexpensive…

“So our coal-to-gas strategy is completely predicated on our belief that it’s not smart to be in carbon-intensive fuels for the future.”

Elsewhere in Canada, the Stop the Shock campaign has advocated for reviving coal power, underscoring ongoing policy debates.

The company said it’s planning the coal-to-gas conversion and re-powering of some or all of the units at its Keephills and Sundance facilities to gas-fired generation sometime between 2020 and 2023.

Similarly, Capital Power CEO Brian Vaasjo said the Edmonton-based company is moving ahead with a project that will allow it to burn both coal and natural gas at its Genesee generating station, even as Ontario’s energy minister sought to explore a halt to natural gas generation elsewhere.

In June, the company announced it would spend an estimated $50 million between 2019 and 2021 to allow it to use gas at the facility.

“What we’re doing is going to be dual fuel, so we will be able to operate 100 per cent natural gas or 100 per cent coal and everything in between,” Vaasjo said in an interview.

“You can expect to see we will be burning coal in the winter when natural gas prices are high, and we will be burning natural gas in summer when gas prices are real low.”

The transition comes as the government’s decision to stick with the energy-only market has been welcomed by players in the industry, and as Alberta's electricity future increasingly leans on wind resources.

A study by electricity consultancy EDC Associates found the capacity market would result in consumers paying an extra $1.4 billion in direct costs in 2021-22, as it required more generation to come online earlier than expected.

These additional costs would have accumulated to $10 billion by 2030, said EDC chief executive Duane-Reid Carlson.

For Capital Power, the decision to stick with the current system makes the province more investable in the future. Vaasjo said there was great uncertainty about the transition to a capacity market, and the possibility of rules shifting further.

Officials with Enmax Corp. said the city-owned utility would not have invested in future generation under the proposed capacity market.

“There is no short-term need (today) for new generation, so we’re just looking at the market and saying, ‘OK, as it evolves, we will see what happens,’” said Enmax vice-president Tim Boston.

Sticking with the energy-only market doesn’t mean Alberta will keep the existing rules.

In a July 25 letter, Alberta Energy Minister Sonya Savage directed AESO chair Will Bridge to examine if changes to the existing market are needed and report back by July 2020.

AESO, which manages the power grid, has been asked to investigate whether the current price cap of $999 per megawatt-hour (MW-h) should be changed.

The price ceiling hasn’t been altered since the energy-only market was implemented by the Klein government about two decades ago.

While allowing prices to go higher would increase volatility, reflecting lessons from Europe’s power crisis about scarcity pricing, during periods of rising demand and limited supply, it would send a signal to generators when investment in new generation is required, said Kent Fellows, a research associate at the University of Calgary’s School of Public Policy.

“Keeping the price (cap) too low could end up costing us more in the long run,” he said.

In a 2016 report, AESO said the province examined raising the price cap to $5,000 per MW-h, but “determined that it was unlikely to be successful in attracting investment due to increased price volatility.”

However, the amount of future generation that will be required in Alberta has been scaled back by the province.

In the United States, the Electricity Reliability Council of Texas (ERCOT) allows wholesale power prices in the state to climb to a cap of $9,000 per megawatt hours as demand rises — as it did Tuesday in the midst of a heat wave, according to Bloomberg.

Jim Wachowich, legal counsel for the Consumers’ Coalition of Alberta, said while few players are exposed to spot electricity prices, he has yet to be convinced raising the cap would be good for Albertans.

“Someone has to show me the evidence, and I suspect that’s what the minister has asked the AESO to do,” he said.

Generators say they believe some tinkering is needed to the energy-only market to ensure new generation is built when it’s required.

“The No. 1 change that the government has to … think about is in pricing,” added Farrell.

“If you don’t have enough of a price signal in an energy-only market to attract new capital, you won’t get new capital — and you’ll run up against the wall.”

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified