Wind Tower Proposal Considered Near

By Northern Ontario Business


CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
A former project management worker for firms in the oil fields of Alberta is looking to the green fields of Northern Ontario as he examines the potential for a wind farm south of the Magnetawan First Nation.

“With the provincial announcements of standard operating contracts to purchase power from private companies, Ontario has become very favorable for wind power,” Cameron Lewis, owner of the Toronto-based Environmental Electric Company, says.

“It’s a great time for alternative energy sources, and let’s face it, the province needs power.”

As a first step, Lewis is seeking to build a 60-metre wind testing tower on Crown land in Wallbridge Township, a kilometre south of the Magnetawan Indian Reserve.

Armed with an anenometer to measure the areaÂ’s wind speed and air density, the tower will also feature a solar-powered panel to power a cell phone, which will transmit data to an Ottawa-based engineering company. The tower, which has a diameter of two-and-a-half inches, is expected to be in place for approximately one year in order to provide the company information about seasonal and overall annual trends.

If results are positive, Lewis will look to build a 10 megawatt facility within the next three to four years, which can cost up to $30 million to build.

Permission to proceed with this first phase of the project currently sits with the Ministry of Natural Resources (MNR), which closed the public input phase on August 15. An answer is expected to be provided by early fall.

Should the MNR give the project its stamp of approval, the tower is expected to be erected by mid-fall by North Bay-based Northern WindPower. Though hesitant to discuss costs due to some still-uncertain factors, Lewis said the pricetag to be “over six figures and under a million.”

Lewis says heÂ’s received nothing but positive feedback thus far, with one helpful local offering him permission to make use of his private road. While this specific access wonÂ’t be necessary, Lewis says itÂ’s indicative of the general attitude heÂ’s encountered thus far. He also acknowledges that public response to an actual wind farm, rather than just a testing station, may be wholly different.

However, by being selective about the proposed location, he says the project should be able to avoid many of the pitfalls associated with such endeavors. By locating the potential site away from waterfront and central populations, Lewis says heÂ’s confident the site will skirt some of the controversies that have dogged similar projects in recent years.

A waterfront wind tower proposal for Parry SoundÂ’s Carling Township in 2005 drew such animosity from local residents that the proponent eventually withdrew the application. By finding a location largely away from residences and waterfronts, the site would be able to generate power without being subject to NIMBY - not in my backyard - or public usage conflicts, Lewis says.

“If you’re going to do wind towers, I kinda have a belief they should be away from people because even though statistics say 70 to 80 per cent people look at them and find them positive, that other 20 per cent does not, so we need to reduce that if we can. I’m a bit of a green guy, and there’s got to be some corporate responsibility, and I don’t want to wreck the sightlines of Georgian Bay either.”

This step represents LewisÂ’ first major step as a wind power entrepreneur, although he first considered the virtues of wind power when working in the manufacturing and project management sectors in AlbertaÂ’s oil fields a few short years ago. However, revenues were too low and technology too crude to present an economically viable business opportunity. These days, technology is cheaper and more efficient, and making business prospects more feasible in the burgeoning sector of wind energy production, Lewis says.

Although some may consider the jump from oil to green power to be a quantum shift, Lewis says it essentially boils down to the same thing: energy. As a result, many of the skills he earned in Alberta are applicable in Ontario, and will help move the project along if it proves to be favorable.

“You’re still dealing with equipment, finances, and you’ve still got to get engineers and pass environmental factors that need to be addressed, so in a lot of ways, it does transfer over. It doesn’t seem like it should, but it does.”

Related News

U.S. power demand seen sliding 1% in 2023 on milder weather

EIA U.S. Power Outlook 2023-2024 forecasts lower electricity demand, softer wholesale prices, and faster renewable growth from solar and wind, with steady natural gas, reduced coal generation, slight nuclear gains, and ERCOT market moderation.

 

Key Points

An EIA forecast of a 2023 demand dip, 2024 rebound, lower prices, and a higher renewable share in the U.S. power mix.

✅ Demand dips to 4,000 billion kWh in 2023; rebounds in 2024.

✅ ERCOT on-peak prices average about $35/MWh versus $80/MWh in 2022.

✅ Renewables grow to 24% share; coal falls to 17%; nuclear edges up.

 

U.S. power consumption is expected to slip about 1% in 2023 from the previous year as milder weather slows usage from the record high hit in 2022, consistent with recent U.S. consumption trends observed over the past several years, the U.S. Energy Information Administration (EIA) said in its Short-Term Energy Outlook (STEO).

EIA projected that electricity demand is on track to slide to 4,000 billion kilowatt-hours (kWh) in 2023 from a historic high of 4,048 billion kilowatt-hours (kWh) in 2022, reflecting patterns seen during COVID-19 demand shifts in prior years, before rising to 4,062 billion kWh in 2024 as economic growth ramps up.

Less demand coupled with more electricity generation from cheap renewable power sources and lower natural gas prices is forecast to slash wholesale power prices this year, the EIA said.

The on-peak wholesale price at the North hub in Texas’ ERCOT power market is expected to average about $35 per megawatt-hour (MWh) in 2023 compared with an average of nearly $80/MWh in 2022 after the 2022 price surge in power markets.

As capacity for renewables like solar and wind ramp up and as natural gas prices ease amid the broader energy crisis pressures, the EIA said it expects coal-fired power generation to be 17% less in the spring of 2023 than in the spring of 2022.

Coal will provide an average of 17% of total U.S. generation this year, down from 20% last year, as utilities shift investments toward electricity delivery and away from new power production, the EIA said.

The share of total generation supplied by natural gas is seen remaining at about the same this year at 39%. The nuclear share of generation is seen rising slightly to 20% this year from 19% in 2022. Generation from renewable energy sources grows the most in the forecast, increasing to 24% this year from a share of 22% last year, even as residential electricity bills rose in 2022 across the U.S.

 

Related News

View more

Electricity Prices in France Turn Negative

Negative Electricity Prices in France signal oversupply from wind and solar, stressing the wholesale market and grid. Better storage, demand response, and interconnections help balance renewables and stabilize prices today.

 

Key Points

They occur when renewable output exceeds demand, pushing power prices below zero as excess energy strains the grid.

✅ Driven by wind and solar surges with low demand

✅ Challenges thermal plants; erodes margins at negative prices

✅ Needs storage, demand response, and cross-border interties

 

France has recently experienced an unusual and unprecedented situation in its electricity market: negative electricity prices. This development, driven by a significant influx of renewable energy sources, highlights the evolving dynamics of energy markets as countries increasingly rely on clean energy technologies. The phenomenon of negative pricing reflects both the opportunities and renewable curtailment challenges associated with the integration of renewable energy into national grids.

Negative electricity prices occur when the supply of electricity exceeds demand to such an extent that producers are willing to pay consumers to take the excess energy off their hands. This situation typically arises during periods of high renewable energy generation coupled with low energy demand. In France, this has been driven primarily by a surge in wind and solar power production, which has overwhelmed the grid and created an oversupply of electricity.

The recent surge in renewable energy generation can be attributed to a combination of favorable weather conditions and increased capacity from new renewable energy installations. France has been investing heavily in wind and solar energy as part of its commitment to reducing greenhouse gas emissions and transitioning towards a more sustainable energy system, in line with renewables surpassing fossil fuels in Europe in recent years. While these investments are essential for achieving long-term climate goals, they have also led to challenges in managing energy supply and demand in the short term.

One of the key factors contributing to the negative prices is the variability of renewable energy sources. Wind and solar power are intermittent by nature, meaning their output can fluctuate significantly depending on weather conditions, with solar reshaping price patterns in Northern Europe as deployment grows. During times of high wind or intense sunshine, the electricity generated can far exceed the immediate demand, leading to an oversupply. When the grid is unable to store or export this excess energy, prices can drop below zero as producers seek to offload the surplus.

The impact of negative prices on the energy market is multifaceted. For consumers, negative prices can lead to lower energy costs as wholesale electricity prices fall during oversupply, and even potential credits or payments from energy providers. This can be a welcome relief for households and businesses facing high energy bills. However, negative prices can also create financial challenges for energy producers, particularly those relying on conventional power generation methods. Fossil fuel and nuclear power plants, which have higher operating costs, may struggle to compete when prices are negative, potentially affecting their profitability and operational stability.

The phenomenon also underscores the need for enhanced energy storage and grid management solutions. Excess energy generated from renewable sources needs to be stored or redirected to maintain grid stability and avoid negative pricing situations. Advances in battery storage technology, such as France's largest battery storage platform, and improvements in grid infrastructure are essential to addressing these challenges and optimizing the integration of renewable energy into the grid. By developing more efficient storage solutions and expanding grid capacity, France can better manage fluctuations in renewable energy production and reduce the likelihood of negative prices.

France's experience with negative electricity prices is part of a broader trend observed in other countries with high levels of renewable energy penetration. Similar situations have occurred in Germany, where solar plus storage is now cheaper than conventional power, the United States, and other regions where renewable energy capacity is rapidly expanding. These instances highlight the growing pains associated with transitioning to a cleaner energy system and the need for innovative solutions to balance supply and demand.

The French government and energy regulators are closely monitoring the situation and exploring measures to mitigate the impact of negative prices. Policy adjustments, market reforms, and investments in energy infrastructure are all potential strategies to address the challenges posed by high renewable energy generation. Additionally, encouraging the development of flexible demand response programs and enhancing grid interconnections with neighboring countries can help manage excess energy and stabilize prices.

In the long term, the rise of renewable energy and the occurrence of negative prices represent a positive development for the energy transition. They indicate progress towards cleaner energy sources and a more sustainable energy system. However, managing the associated challenges is crucial for ensuring that the transition is smooth and economically viable for all stakeholders involved.

In conclusion, the recent instance of negative electricity prices in France highlights the complexities of integrating renewable energy into the national grid. While the phenomenon reflects the success of France’s efforts to expand its renewable energy capacity, it also underscores the need for advanced grid management and storage solutions. As the country continues to navigate the transition to a more sustainable energy system, addressing these challenges will be essential for maintaining a stable and efficient energy market. The experience serves as a valuable lesson for other nations undergoing similar transitions and reinforces the importance of innovation and adaptability in the evolving energy landscape.

 

Related News

View more

BC Hydro rates going up 3 per cent

BC Hydro Rate Freeze Rejection details the BCUC decision enabling a 3% rate increase, citing revenue requirements, debt, and capital costs, affecting electricity bills, with NDP government proposing lifeline rates and low-income relief.

 

Key Points

It is the BCUC ruling allowing a 3% BC Hydro rate hike, citing cost recovery, debt, and capital needs.

✅ BCUC rejects freeze; 3% increase proceeds April 1, 2018

✅ Rationale: cost recovery, debt, capital expenditures

✅ Relief: lifeline rate, $600 grants, winter payment plan

 

The B.C. Utilities Commission has rejected a request by the provincial government to freeze rates at BC Hydro for the coming year, meaning a pending rate increase of three percent will come into effect as higher BC Hydro rates on April 1, 2018.

BC Hydro had asked for the three per cent increase, aligning with a rate increase proposal that would add about $2 a month, but, last year, Energy Minister Michelle Mungall directed the Crown corporation to resubmit its request in order to meet an NDP election promise.

"After years of escalating electricity costs, British Columbians deserve a break on their bills," she said at the time.

However, the utilities commission found there was "insufficient regulatory justification to approve the zero per cent rate increase."

"Even these increases do not fully recover B.C. Hydro's forecast revenue requirement, which includes items such as operating costs, new capital expenditures and carrying costs on capital expenditures," the commission wrote in a news release.

Mungall said she was disappointed by the decision.

"We were always clear we were going to the BCUC. We need to respect the role the BCUC has here for the ratepayers and for the public. I'm very disappointed obviously with their decision."

Mungall blamed the previous government for leaving BC Hydro in a financial state where a rate freeze was ultimately not possible.

Last month, Moody's Investors Service calculated BC Hydro's total debt at $22 billion and said it was one of the province's two credit challenges going forward.

"There's quite a financial mess that is a B.C. Liberal legacy after 16 years of government. We have the responsibility as a new government to clean that up."

B.C. Liberal leader Andrew Wilkinson said it was an example of the new government not living up to its campaign promises.

"British Columbians, particularly those on fixed incomes, believed the B.C. NDP when they promised a freeze on hydro bills. They planned accordingly and are now left in the lurch and face higher expenses. This is a government that stumbles into messes that cost all of us because they put rhetoric ahead of planning," he said.

 

Help on the way?

With the freeze being rejected, Mungall said the government would be going forward on other initiatives to help low-income ratepayers, as advocates' call for change after a fund surplus, including:

Legislating a "lifeline rate" program, allowing people with "demonstrated need" to apply for a lower rate for electricity.

Starting in May, providing an emergency grant of $600 for customers who have an outstanding BC Hydro bill.

Hydro's annual winter payment plan also allows people the chance to spread the payment of bills from December to February out over six months, and, with a two-year rate increase on the horizon, a new pilot program to help people paying their bills begins in July.

Mungall couldn't say whether the government would apply for rate freezes in the future.

"I don't have a crystal ball, and can't predict what might happen in two or three years from now, but we need to act swiftly now," she said.

"I appreciate the [BCUC's] rationale, I understand it, and we'll be moving forward with other alternatives for making life more affordable."

 

Related News

View more

Improve US national security, step away from fossil fuels

American Green Energy Independence accelerates electrification and renewable energy, leveraging solar, wind, and EVs to boost energy security, cut emissions, create jobs, and reduce reliance on volatile oil and natural gas markets influenced by geopolitics.

 

Key Points

American Green Energy Independence is a strategy to electrify, expand renewables, and enhance energy security.

✅ Electrifies vehicles, appliances, and infrastructure

✅ Expands solar, wind, and storage to stabilize grids

✅ Cuts oil dependence, strengthens energy security and jobs

 

As Putin's heavy hand uses Russia's power over oil and natural gas as a weapon against Europe, which is facing an energy nightmare across its markets, and the people of Ukraine, it's impossible not to wonder how we can mitigate the damages he's causing. Simultaneously, it's a devastating reminder of the freedom we so often take for granted and a warning to increase our energy independence as a nation. There are many ways we can, but one of the best is to follow the lead of the European Union and quicken our transition to green and renewable energies.

We've known it for a long time: our reliance on fossil fuels is a national security risk. Volatile prices coupled with our extreme demand mean that concerns over fossil fuel access have driven foreign policy decisions. We've seen it happen countless times — most notably during the wars in Iraq and Afghanistan — and it's played out again in Ukraine, which has leaned on imports to keep the lights on during the crisis. Concerned by Russia's power over the oil and natural gas market, the US and Europe were quite reluctant to impose the harshest, most recent sanctions because doing so will hurt their citizens' pocketbooks.

As homeowners, we know how much decisions like these can hurt, especially with gas prices being historically high even as an energy crisis isn't spurring a green shift for many consumers. However, the solution to this problem isn't to drill more, as some well-funded oil and gas interest groups have claimed. Doing so likely won't even provide a short-term solution to the problem as it takes six months to a year at minimum to build a new well with all its associated infrastructure.

The best long-term solution is to declare our independence from the global oil market amid a global energy war that is driving price hikes and invest in American-made clean energy. We need to electrify our vehicles, appliances, and infrastructure, and make America fully energy independent. This will save families thousands of dollars a year, make our country more self-sufficient, and provide hundreds of thousands of quality jobs here in the Midwest.

Already, over 600,000 Midwesterners are employed in clean-energy professions, and they make 25 percent more than the national median wage. Nationally, clean energy is the biggest job creator in our country's energy sector, employing almost three times as many workers as the fossil fuel industry.

As we employ our own citizens, we will defund Putin's Russia, which has long been funded by his powerful oil and gas industry. Instead of diversifying his economy during the oil boom of the 2010s, Putin doubled down on petroleum. We should exploit his weakness by leading a global movement to abandon the very resource that funds his warmongering. Doing so will further destabilize his economy and protect the citizens of Ukraine, especially as they prepare for winter amid energy challenges today.

We can start doing this as everyday consumers by seeking electric options like stoves, cars, or other appliances. Congress should help Americans afford these changes by providing tax credits for everyday Americans and innovators in electric vehicle and green energy industries. Doing so will spur innovation in the industry, further reducing the cost to consumers. We should also ensure that our semiconductors, solar panels, wind turbines, and other technology needed for a green future are manufactured and assembled in America. This will ensure that our energy industry is safe from price or supply shocks and reduce brownout risks linked to disruptions caused by an international crisis like the invasion of Ukraine.

In many ways, our next steps as a country can define world history for generations to come. Will we continue our reliance on oil and its tacit support of Putin's economy? Or will we intensify our shift to green energies and make our country more self-sufficient and secure? The global spotlight is on us once again to lead. We hope our country will honor the lives of its veterans and the soldiers fighting in Ukraine by strengthening energy security support and transitioning towards green energy.

 

Related News

View more

Can Canada actually produce enough clean electricity to power a net-zero grid by 2050?

Canada Clean Electricity drives a net-zero grid by 2035, scaling renewables like wind, solar, and hydro, with storage, smart grids, interprovincial transmission, and electrification of vehicles, buildings, and industry to cut emissions and costs.

 

Key Points

Canada Clean Electricity is a shift to a net-zero grid by 2035 using renewables, storage, and smart grids to decarbonize

✅ Doubles non-emitting generation for electrified transport and heating

✅ Expands wind, solar, hydro with storage and smart-grid balancing

✅ Builds interprovincial lines and faster permitting with Indigenous partners

 

By Merran Smith and Mark Zacharias

Canada is an electricity heavyweight. In addition to being the world’s sixth-largest electricity producer and third-largest electricity exporter in the global electricity market today, Canada can boast an electricity grid that is now 83 per cent emission-free, not to mention residential electricity rates that are the cheapest in the Group of Seven countries.

Indeed, on the face of it, the country’s clean electricity system appears poised for success. With an abundance of sunshine and blustery plains, Alberta and Saskatchewan, the Prairie provinces most often cited for wind and solar, have wind- and solar-power potential that rivals the best on the continent. Meanwhile, British Columbia, Manitoba, Quebec, and Newfoundland and Labrador have long excelled at generating low-cost hydro power.

So it would only be natural to assume that Canada, with this solid head start and its generous geography, is already positioned to provide enough affordable clean electricity to power our much-touted net-zero and economic ambitions.

But the reality is that Canada, like most countries, is not yet prepared for a world increasingly committed to carbon neutrality, in part because demand for solar electricity has lagged, even as overall momentum grows.

The federal government’s forthcoming Clean Electricity Standard – a policy promised by the governing Liberals during the most recent election campaign and restated for an international audience by Prime Minister Justin Trudeau at the United Nations’ COP26 climate summit – would require all electricity in the country to be net zero by 2035 nationwide, setting a new benchmark. But while that’s an encouraging start, it is by no means the end goal. Electrification – that is, hooking up our vehicles, heating systems and industry to a clean electricity grid – will require Canada to produce roughly twice as much non-emitting electricity as it does today in just under three decades.

This massive ramp-up in clean electricity will require significant investment from governments and utilities, along with their co-operation on measures and projects such as interprovincial power lines to build an electric, connected and clean system that can deliver benefits nationwide. It will require energy storage solutions, smart grids to balance supply and demand, and energy-efficient buildings and appliances to cut energy waste.

While Canada has mostly relied on large-scale hydroelectric and nuclear power in the past, newer sources of electricity such as solar, wind, geothermal, and biomass with carbon capture and storage will, in many cases, be the superior option going forward, thanks to the rapidly falling costs of such technology and shorter construction times. And yet Canada added less solar and wind generation in the past five years than all but three G20 countries – Indonesia, Russia and Saudi Arabia, with some experts calling it a solar power laggard in recent years. That will need to change, quickly.

In addition, Canada’s Constitution places electricity policy under provincial jurisdiction, which has produced a patchwork of electricity systems across the country that use different energy sources, regulatory models, and approaches to trade and collaboration. While this model has worked to date, given our low consumer rates and high power reliability, collaborative action and a cohesive vision will be needed – not just for a 100-per-cent clean grid by 2035, but for a net-zero-enabling one by 2050.

Right now, it takes too long to move a clean power project from the proposal stage to operation – and far too long if we hope to attain a clean grid by 2035 and a net-zero-enabling one by 2050. This means that federal, provincial, territorial and Indigenous governments must work with rural communities and industry stakeholders to accelerate the approvals, financing and construction of clean energy projects and provide investor certainty.

In doing so, Canada can set a course to carbon neutrality while driving job creation and economic competitiveness, a transition many analyses deem practical and profitable in the long run. Our closest trading partners and many of the world’s largest companies and investors are demanding cleaner goods. A clean grid underpins clean production, just as it underpins our climate goals.

The International Energy Agency estimates that, for the world to reach net zero by 2050, clean electricity generation worldwide must increase by more than 2.5 times between today and 2050. Countries are already plotting their energy pathways, and there is much to learn from each other.

Consider South Australia. The state currently gets 62 per cent of its electricity from wind and solar and, combined with grid-scale battery storage, has not lost a single hour of electricity in the past five years. South Australia expects 100 per cent of its electricity to come from renewable sources before 2030. An added bonus given today’s high energy prices: Annual household electricity costs have declined there by 303 Australian dollars ($276) since 2018.

The transition to clean energy is not about sacrificing our way of life – it’s about improving it. But we’ll need the power to make it happen. That work needs to start now.

Merran Smith is the executive director of Clean Energy Canada, a program at the Morris J. Wosk Centre for Dialogue at Simon Fraser University in Vancouver. Mark Zacharias is a special adviser at Clean Energy Canada and visiting professor at the Simon Fraser University School of Public Policy.

 

Related News

View more

Quebec authorizes nearly 1,000 megawatts of electricity for 11 industrial projects

Quebec Large-Scale Power Connections allocate 956 MW via Hydro-Québec to battery, bioenergy, and green hydrogen projects, including Northvolt and data centers, advancing grid capacity, industrial electrification, and Quebec's energy transition.

 

Key Points

Allocations of 956 MW via Hydro-Québec to projects in batteries, bioenergy, and green hydrogen across Quebec.

✅ 11 projects approved, totaling 956 MW across Quebec

✅ Focus: batteries, bioenergy, green hydrogen, data centers

✅ Selection weighed grid impact, economics, environmental criteria

 

The Quebec government has unveiled the list of 11 companies whose projects were given the go-ahead for large-scale power connections of 5 megawatts or more, for a total of 956 MW, even as planned exports to New York continue to factor into supply.

Five of the selected projects relate to the battery sector, reflecting EV battery investments by Canada and Quebec, and two to the bioenergy sector.

TES Canada's plan to build a green hydrogen production plant in Shawinigan, announced on Friday, is on the list.

Hydro-Québec will also supply 5 MW or more to the future Northvolt battery plant at its facilities in Saint-Basile-le-Grand and McMasterville.

Other industrial projects selected are those of Air Liquide Canada, Ford-Ecopro CAM Canada S.E.C, Nouveau monde Graphite and Volta Energy Solutions Canada.

Bioenergy projects include Greenfield Global Québec, in Varennes, and WM Québec, in Sainte-Sophie.

There's also Duravit Canada's manufacturing project in Matane, Quebec Iron Ore's green steel project in Fermont, Côte-Nord, and Vantage Data Centers CanadaQC4's data center project in Pointe-Claire.

All projects were selected las August "according to defined analysis criteria, such as technical connection capacities and impact on the Quebec power grid operations, economic and regional development spinoffs, environmental and social impact, as well as consistency with government orientations," states the press release from the office of Pierre Fitzgibbon, Quebec's Economy, Innovation and Energy Minister.

"With energy balances tightening and the electrification of our economy on the rise, we need to choose the most promising projects and allocate available electricity wisely," said Fitzgibbon.

Cross-border capacity expansions, including the Maine transmission corridor now approved, are also shaping regional power flows.

"These 11 projects will accelerate the energy transition, while creating significant economic spinoffs throughout Quebec."

The government is continuing its analysis of other energy-intensive industrial projects to help make the transition to a greener economy, even as experts question Quebec's EV strategy in policy circles, until March 31.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.