Whooping cranes steer clear of wind turbines when selecting stopover sites


whooping cranes

NFPA 70e Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today

Whooping crane migration near wind turbines shows strong avoidance of stopover habitat within 5 km, reshaping Great Plains siting decisions, reducing collision risk, and altering routes across croplands, grasslands, and wetlands.

 

Key Points

It examines cranes avoiding stopovers within 5 km of turbines, reshaping habitat use and routing across the Great Plains.

✅ Cranes 20x likelier to rest >5 km from turbines.

✅ About 5% of high-quality stopover habitat is impacted.

✅ Findings guide wind farm siting across Great Plains wetlands.

 

As gatherings to observe whooping cranes join the ranks of online-only events this year, a new study offers insight into how the endangered bird is faring on a landscape increasingly dotted with wind turbines across regions. The paper, published this week in Ecological Applications, reports that whooping cranes migrating through the U.S. Great Plains avoid “rest stop” sites that are within 5 km of wind-energy infrastructure.

Avoidance of wind turbines can decrease collision mortality for birds, but can also make it more difficult and time-consuming for migrating flocks to find safe and suitable rest and refueling locations. The study’s insights into migratory behavior could improve future siting decisions as wind energy infrastructure continues to expand, despite pandemic-related investment risks for developers.

“In the past, federal agencies had thought of impacts related to wind energy primarily associated with collision risks,” said Aaron Pearse, the paper’s first author and a research wildlife biologist for the U.S. Geological Survey’s Northern Prairie Wildlife Research Center in Jamestown, N.D. “I think this research changes that paradigm to a greater focus on potential impacts to important migration habitats.”

Some policymakers have also rejected false health claims about wind turbines and cancer in public debate, underscoring the need for evidence-based decisions.

The study tracked whooping cranes migrating across the Great Plains, a region that encompasses a mosaic of croplands, grasslands and wetlands. The region has seen a rapid proliferation of wind energy infrastructure in recent years: in 2010, there were 2,215 wind towers within the whooping crane migration corridor that the study focused on; by 2016, when the study ended, there were 7,622 wind towers within the same area.

Pearse and his colleagues found that whooping cranes migrating across the study area in 2010 and 2016 were 20 times more likely to select “rest stop” locations at least 5 km away from wind turbines than those closer to turbines, a pattern with implications for developers as solar incentive changes reshape wind market dynamics according to industry analyses.

The authors estimated that 5% of high-quality stopover habitat in the study area was affected by presence of wind towers. Siting wind infrastructure outside of whooping cranes’ migration corridor would reduce the risk of further habitat loss not only for whooping cranes, but also for millions of other birds that use the same land for breeding, migration, and wintering habitat, and real-world siting controversies, such as an Alberta wind farm cancellation, illustrate how local factors shape outcomes for wildlife.

 

Related News

Related News

Ontario Making it Easier to Build Electric Vehicle Charging Stations

Ontario EV Charger Streamlining accelerates public charging connections with OEB-led standardized forms, firm timelines, and utility coordination, leveraging Ontario’s clean electricity grid to expand reliable infrastructure across urban, rural, and northern communities.

 

Key Points

An OEB-led, provincewide procedure that standardizes EV charger connections and accelerates public charging.

✅ Standardized forms, data, and responsibilities across 58 utilities

✅ Firm timelines for studies, approvals, and grid connection upgrades

✅ Supports rural, northern, highway, and community charging expansion

 

The Ontario government is making it easier to build and connect new public electric vehicle (EV) chargers to the province’s world-class clean electricity grid. Starting May 27, 2024, all local utilities will follow a streamlined process for EV charging connections that will make it easier to set up new charging stations and, as network progress to date shows, support the adoption of electric vehicles in Ontario.

“As the number of EV owners in Ontario continues to grow, our government is making it easier to put shovels in the ground to build the critical infrastructure needed for drivers to charge their vehicles where and when they need to,” said Todd Smith, Minister of Energy. “This is just another step we are taking to reduce red tape, increase EV adoption, and use our clean electricity supply to support the electrification of Ontario’s transportation sector.”

Today, each of Ontario’s 58 local electricity utilities have different procedures for connecting new public EV charging stations, with different timelines, information requirements and responsibilities for customers.

In response to Minister Smith’s Letter of Direction, which called on the Ontario Energy Board (OEB) to take steps to facilitate the efficient integration of EV’s into the provincial electricity system, including vehicle-to-building charging applications, the OEB issued provincewide, streamlined procedures that all local utilities must follow for installing and connecting new EV charging infrastructure. This new procedure includes the implementation of standardized forms, timelines, and information requirements which will make it easier for EV charging providers to deploy chargers in all regions of the province.

“Our government is paving the way to an electric future by building the EV charging infrastructure drivers need, where they need it,” said Prabmeet Sarkaria, Minister of Transportation. “By increasing the accessibility of public EV charging stations across the province, including for rural and northern communities, we are providing more sustainable and convenient travel options for drivers.”

“Having attracted over $28 billion in automotive investments in the last three years, our province is a leading jurisdiction in the global production and development of EVs,” said Vic Fedeli, Minister of Economic Development, Job Creation and Trade. “By making it easier to build public charging infrastructure, our government is supporting Ontario’s growing end-to-end EV supply chain and ensuring EV drivers can confidently and conveniently power their journeys.”

This initiative is part of the government’s larger plan to support the adoption of electric vehicles and make EV charging infrastructure more accessible, which includes:

  • The EV ChargeON program – a $91 million investment to support the installation of public EV chargers, including emerging V1G chargers to support grid-friendly deployment, outside of Ontario’s large urban centres, including at community hubs, Ontario’s highway rest areas, carpool parking lots, and Ontario Parks.
  • The new Ultra-Low Overnight price plan which allows customers who use more electricity at night, including those charging their EV, to save up to $90 per year by shifting demand to the ultra-low overnight rate period when provincewide electricity demand is lower and to participate in programs that let them sell electricity back to the grid when appropriate.
  • Making it more convenient for electric vehicle (EV) owners to travel the province with EV fast chargers now installed at all 20 renovated ONroute stations along the province’s busiest highways, the 400 and 401.

The initiative also builds on the government’s Driving Prosperity: The Future of Ontario’s Automotive Sector plan which aims to create a domestic EV battery ecosystem in the province, expand energy storage capacity, and position Ontario as a North American automotive innovation hub by working to support the continued transition to electric, low carbon, connected and autonomous vehicles.

 

Related News

View more

German steel powerhouse turns to 'green' hydrogen produced using huge wind turbines

Green Hydrogen for Steelmaking enables decarbonization in Germany by powering electrolyzers with wind turbines at Salzgitter. Partners Vestas, Avacon, and Linde support renewable hydrogen for iron ore reduction, cutting CO2 in heavy industry.

 

Key Points

Hydrogen from renewable-powered electrolysis replacing coal in iron ore reduction, cutting CO2 emissions from steelmaking

✅ 30 MW Vestas wind farm powers 2x1.25 MW electrolyzers.

✅ Salzgitter, Avacon, Linde link sectors to replace fossil fuels.

✅ Targets CO2 cuts in iron ore reduction and steel smelting.

 

A major green hydrogen facility in Germany has started operations, with those behind the project hoping it will help to decarbonize the energy-intensive steel industry in the years ahead. 

The "WindH2" project involves German steel giant Salzgitter, E.ON subsidiary Avacon and Linde, a firm specializing in engineering and industrial gases, and aligns with calls for hydrogen-ready power plants in Germany today.

Hydrogen can be produced in a number of ways. One method includes using electrolysis, with an electric current splitting water into oxygen and hydrogen, and advances in PEM hydrogen technology continue to improve efficiency worldwide.

If the electricity used in the process comes from a renewable source such as wind or solar, as underscored by recent German renewables gains, then it's termed "green" or "renewable" hydrogen.

The development in Germany is centered around seven new wind turbines operated by Avacon and two 1.25 megawatt (MW) electrolyzer units installed by Salzgitter Flachstahl, which is part of the wider Salzgitter Group. The facilities were presented to the public this week. 

The turbines, from Vestas, have a hub height of 169 meters and a combined capacity of 30 MW. All are located on premises of the Salzgitter Group, with three situated on the site of a steel mill in the city of Salzgitter, Lower Saxony, northwest Germany, where grid expansion woes can affect project timelines.

The hydrogen produced using renewables will be utilized in processes connected to the smelting of iron ore. Total costs for the project come to roughly 50 million euros (around $59.67 million), with the building of the electrolyzers subsidized by state-owned KfW, while a national net-zero roadmap could reduce electricity costs over time.

"Green gases have the wherewithal to become 'staple foodstuff' for the transition to alternative energies and make a considerable contribution to decarbonizing industry, mobility and heat," E.ON's CEO, Johannes Teyssen, said in a statement issued Thursday.

"The jointly realized project symbolizes a milestone on the path to virtually CO2 free production and demonstrates that fossil fuels can be replaced by intelligent cross-sector linking," he added.

According to the International Energy Agency, the iron and steel sector is responsible for 2.6 gigatonnes of direct carbon dioxide emissions each year, a figure that, in 2019, was greater than the direct emissions from sectors such as cement and chemicals. 

It adds that the steel sector is "the largest industrial consumer of coal, which provides around 75% of its energy demand."

The project in Germany is not unique in focusing on the role green hydrogen could play in steel manufacturing.

Across Europe, projects are also exploring natural gas pipe storage to balance intermittent renewables and enable sector coupling.

H2 Green Steel, a Swedish firm backed by investors including Spotify founder Daniel Ek, plans to build a steel production facility in the north of the country that will be powered by what it describes as "the world's largest green hydrogen plant."

In an announcement last month the company said steel production would start in 2024 and be based in Sweden's Norrbotten region.

Other energy-intensive industries are also looking into the potential of green hydrogen, and examples such as Schott's green power shift show parallel decarbonization. A subsidiary of multinational building materials firm HeidelbergCement has, for example, worked with researchers from Swansea University to install and operate a green hydrogen demonstration unit at a site in the U.K.

 

Related News

View more

GM Canada announces tentative deal for $1 billion electric vehicle plant in Ontario

GM Canada-Unifor EV Deal outlines a $1B plan to transform the CAMI plant in Ingersoll, Ontario, building BrightDrop EV600 delivery vans, boosting EV manufacturing, creating jobs, and securing future production with government-backed investment.

 

Key Points

A tentative $1B deal to retool CAMI for BrightDrop EV600 production, creating jobs and securing Canada's EV manufacturing.

✅ $1B to transform CAMI, Ingersoll, for BrightDrop EV600 vans

✅ Ratification vote set; Unifor Local 88 to review details

✅ Supports EV manufacturing, delivery logistics, and new jobs

 

GM Canada says it has reached a tentative deal with Unifor that if ratified will see it invest $1 billion to transform its CAMI plant in Ingersoll, Ont., to make commercial electric vehicles, aligning with GM's EV hiring plans across North America.

Unifor National President Jerry Dias says along with the significant investment the agreement will mean new products, new jobs amid Ontario's EV jobs boom and job security for workers.

Dias says in a statement that more details of the tentative deal will be presented to Unifor Local 88 members at an online ratification meeting scheduled for Sunday.

He says the results of the ratification vote are scheduled to be released on Monday.

Details of the agreement were not released Friday night.

A GM spokeswoman says in a statement that the plan is to build BrightDrop EV 600s -- an all-new GM business announced this week at the Consumer Electronics Show and part of EV assembly deals that put Canada in the race -- that will offer a cleaner way for delivery and logistics companies to move goods more efficiently.

Unifor said the contract, if ratified, will bring total investment negotiated by the union to nearly $6 billion after new agreements were ratified with General Motors, Ford, including Ford EV production plans, and Fiat Chrysler in 2020 that included support from the federal and Ontario governments, and parallel investments such as a Niagara Region battery plant bolstering the supply chain.

It said the Ford deal reached in September included $1.95 billion to bring battery electric vehicle production to Oakville via the Oakville EV deal and a new engine derivative to Windsor and the Fiat Chrysler agreement included more than $1.5 billion to build plug-in hybrid vehicles and battery electric vehicles.

Unifor said in November, General Motors agreed to a $1.3 billion dollar investment to bring 1,700 jobs to Oshawa, as Honda's Ontario battery investment signals wider sector momentum, plus more than $109 million to in-source new transmission work for the Corvette and support continued V8 engine production in St. Catharines.

 

Related News

View more

BC's Kootenay Region makes electric cars a priority

Accelerate Kootenays EV charging stations expand along Highway 3, adding DC fast charging and Level 2 plugs to cut range anxiety for electric vehicles in B.C., linking communities like Castlegar, Greenwood, and the Alberta border.

 

Key Points

A regional network of DC fast and Level 2 chargers along B.C.'s Highway 3 to reduce range anxiety and boost EV adoption.

✅ 13 DC fast chargers plus 40 Level 2 stations across key hubs

✅ 20-minute charging stops reduce range anxiety on Highway 3

✅ Backed by BC Hydro, FortisBC, and regional districts

 

The Kootenays are B.C.'s electric powerhouse, and as part of B.C.'s EV push the region is making significant advances to put electric cars on the road.

The region's dams generate more than half of the province's electricity needs, but some say residents in the region have not taken to electric cars, for instance.

Trish Dehnel is a spokesperson for Accelerate Kootenays, a multi-million dollar coalition involving the regional districts of East Kootenay, Central Kootenay and Kootenay Boundary, along with a number of corporate partners including Fortis B.C. and BC Hydro.

She says one of the major problems in the region — in addition to the mountainous terrain and winter driving conditions — is "range anxiety."

That's when you're not sure your electric vehicle will be able to make it to your destination without running out of power, she explained.

Now, Accelerate Kootenays is hoping a set of new electric charging stations, part of the B.C. Electric Highway project expanding along Highway 3, will make a difference.

 

No more 'range anxiety'

The expansion includes 40 Level 2 stations and 13 DC Quick Charging stations, mirroring BC Hydro's expansion across southern B.C. strategically located within the region to give people more opportunities to charge up along their travel routes, Dehnel said.

"We will have DC fast-charging stations in all of the major communities along Highway 3 from Greenwood to the Alberta border. You will be able to stop at a fast-charging station and, thanks to faster EV charging technology, charge your vehicle within 20 minutes," she said.

Castlegar car salesman Terry Klapper — who sells the 2017 Chevy Bolt electric vehicle — says it's a great step for the region as sites like Nelson's new fast-charging station come online.

"I guarantee that you'll be seeing electric cars around the Kootenays," he said.

"The interest the public has shown … [I mean] as soon as people found out we had these Bolts on the lot, we've had people coming in every single day to take a look at them and say when can I finally purchase it."

The charging stations are set to open by the end of next year.

 

Related News

View more

Wind power is Competitive on Reliability and Resilience Says AWEA CEO

Wind farm reliability services now compete in wholesale markets, as FERC and NERC endorse market-based solutions that reward performance, bolster grid resilience, and compensate ancillary services like frequency regulation, voltage support, and spinning reserve.

 

Key Points

Grid support from wind plants, including frequency, voltage, ramping, and inertial response via advanced controls.

✅ Enabled by advanced controls and inverter-based technology

✅ Compete in market-based mechanisms for ancillary services

✅ Support frequency, voltage, reserves; enhance grid resilience

 

 

American Wind Energy Association CEO Tom Kiernan has explained to a congressional testimony that wind farms can now compete, as renewables approach market majority, to provide essential electric reliability services. 

Mr Kiernan appeared before the US Congress House Energy and Commerce Committee where he said that, thanks to technological advances, wind farms are now competitive with other energy technologies with regard to reliability and resiliency. He added that grid reliability and resilience are goals that everyone can support and that efforts underway at the Federal Energy Regulatory Commission (FERC) and by market operators are rightly focused on market-based solutions to better compensate generators for providing those essential services.

AWEA strongly agreed with other witnesses on the panel who endorsed market-based solutions in their submitted testimony, including the American Petroleum Institute, Solar Energy Industries Association, Energy Storage Association, Natural Resources Defence Council, National Hydropower Association, and others. However, AWEA is concerned that the Department of Energy’s recent proposal to provide payments to specific resources based on arbitrary requirements is anti-competitive, and threatens to undermine electricity markets that are bolstering reliability and saving consumers billions of dollars per year.

“We support the objective of maintaining a reliable and resilient grid which is best achieved through free and open markets, with a focus on needed reliability services – not sources – and a programme to promote transmission infrastructure.”

Kiernan outlined several major policy recommendations in his testimony, including reliance on competitive markets that reward performance to ensure affordable and reliable electricity, a focus on reliability needs rather than generation sources and the promotion of transmission infrastructure investment to improve resilience and allow consumers greater access to all low-cost forms of energy.

The CEO of the North American Electric Reliability Corporation (NERC) has recently testified that the state of reliability in North America remains strong and the trend line shows continuing improvement year over year. Technological advances and innovation by over 100,000 US wind workers enable wind farms today to provide the grid reliability services traditionally provided by conventional power plants. NERC’s CEO emphasised in its testimony at last month’s hearing that “variable resources significantly diversify the generation portfolio and can contribute to reliability and resilience in important ways.”

 

Related News

View more

Rhode Island issues its plan to achieve 100% renewable electricity by 2030

Rhode Island 100% Renewable Electricity by 2030 outlines pathways via offshore wind, retail solar, RECs, and policy reforms, balancing decarbonization, grid reliability, economics, and equity to close a 4,600 GWh supply gap affordably.

 

Key Points

A statewide plan to meet all electricity demand with renewables by 2030 via offshore wind, solar, and REC policies.

✅ Up to 600 MW offshore wind could add 2,700 GWh annually

✅ Retail solar programs may supply around 1,500 GWh per year

✅ Amend RES to retain RECs and align supply with real-time demand

 

A year ago, Executive Order 20-01 cemented in a place Rhode Island’s goal to meet 100% of the state’s electricity demand with renewable energy by 2030, aligning with the road to 100% renewables seen across states. The Rhode Island Office of Energy Resources (OER) worked through the year on an economic and energy market analysis, and developed policy and programmatic pathways to meet the goal.

In the most recent development, OER and The Brattle Group co-authored a report detailing how this goal will be achieved, The Road to 100% Renewable Electricity – The Pathways to 100%.

The report includes economic analysis of the key factors that will guide Rhode Island as it accelerates adoption of carbon-free renewable resources, complementing efforts that are tracking progress on 100% clean energy targets nationwide.

The pathway rests on three principles: decarbonization, economics and policy implementation, goals echoed in Maine’s 100% renewable electricity target planning.

The report says the state needs to address the gap between projected electricity demand in 2030 and projected renewable generation capacity. The report predicts a need for 4,600 GWh of additional renewable energy to close the gap. Deploying that much capacity represents a 150% increase in the amount of renewable energy the state has procured to date. The final figure could as much as 600-700 GWh higher or lower.

Addressing the gap
The state is making progress to close the gap.

Rhode Island recently announced plans to solicit proposals for up to 600 MW of additional offshore wind resources. A draft request for proposals (RFP) is expected to be filed for regulatory review in the coming months, aligning with forecasts that one-fourth of U.S. electricity will soon be supplied by renewables as markets mature. Assuming the procurement is authorized and the full 600 MW is acquired, new offshore wind would add about 2,700 GWh per year, or about 35% of 2030 electricity demand.

Beyond this offshore wind procurement, development of retail solar through existing programs could add another 1,500 GWh per year. That leaves a smaller–though still sizable–gap of around 400 GWh per year of renewable electricity.

All this capacity will come with a hefty price. The report finds that rate impacts would likely boost e a typical 2030 monthly residential bill by about $11 to $14 with utility-scale renewables, or by as much as $30 if the entire gap were to be filled with retail solar.

The upside is that if the renewable resources are developed in-state, the local economic activity would boost Rhode Island’s gross domestic product and local jobs, especially when compared to procuring out-of-state resources or buying Renewable Energy Credits (RECs), and comes as U.S. renewable electricity surpassed coal in 2022 across the national grid.

Policy recommendations
One policy item that has to be addressed is the state’s Renewable Energy Standard (RES), which currently calls for meeting 38.5% of electricity deliveries with renewables by 2035, even as the federal 2035 clean electricity goal sets a broader benchmark for decarbonization. For example, RES compliance at present does not require the physical procurement of power produced by renewable energy facilities. Instead, electricity providers meet their requirements by purchasing RECs.

The report recommends amending the state’s RES to seek methods by which Rhode Island can retain all of the RECs procured through existing policy and program channels, along with RECs resulting from ratepayer investment in net metered projects, while Nevada’s 50% by 2030 RPS provides a useful interim comparison.

The report also recognizes that the RES alone is unlikely to drive sufficient investment renewable generation and should be paired with programs and policies to ensure sufficient renewable generation to meet the 100% goal. The state also needs to address the RECs created by behind-the-meter systems that add mechanisms to better match the timing of renewable energy generation with real-time demand. The policy would have the 100% RES remain in effect beyond 2030 and also match shifts in energy demand, particularly as other parts of the economy electrify.

Fostering equity
The state also is putting a high priority on making sure the transition to renewables is an equitable one.

The report recommends partnering with and listening to frontline communities about their needs and goals in the clean energy transition. This will include providing traditionally underserved communities with expert consultation to help guide decision making. The report also recommends holding listening sessions to increase accessibility to and understanding of energy system basics.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.