OPA program will help businesses in Elora and Fergus

By Electricity Forum


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Centre Wellington Hydro announced they will assist the industrial, commercial, business and institutional sectors of the township of Centre Wellington to conserve electricity, save money and benefit the environment through participation in the Electricity Retrofit Incentive Program (ERIP), a program supported by the Ontario Power Authority.

"We are excited to be a part of ERIP," said Doug Sherwood, President, who attended the breakfast seminar launch. "By taking advantage of ERIP, the commercial and industrial sector of Centre Wellington can play an important role in using electricity efficiently."

This year, both residential and commercial consumers are able to participate in the conservation initiative.

"These programs represent the largest coordinated effort Ontario has ever made to encourage consumers to use less electricity," said Paul Shervill, vice President of the Ontario Power Authority. "As Ontario moves toward re-building its electricity infrastructure, conservation efforts like the ERIP will enable residents and businesses to play a key role in enhancing the sustainability of our current power generation and distribution system."

The ERIP is for industrial, commercial, institutional and agriculture businesses that are planning changes to their lighting, HVAC systems, motors and over-all electrical systems of their commercial or industrial buildings. This program helps to reduce electricity costs and lessen the impact that traditional power generation can have on the environment.

"Everyone in Ontario needs to be concerned about electricity conservation," said Peter Love, Ontario's Chief Energy Conservation Officer. "I am pleased to see the continued expansion of programs that encourage Ontarians to take immediate action and reward them for doing so."

Related News

Enel kicks off 90MW Spanish wind build

Enel Green Power España Aragon wind farms advance Spain's renewable energy transition, with 90MW under construction in Teruel, Endesa investment of €88 million, 25-50MW turbines, and 2017 auction-backed capacity enhancing grid integration and clean power.

 

Key Points

They are three Teruel wind projects totaling 90MW, part of Endesa's 2017-awarded plan expanding Spain's clean energy.

✅ 90MW across Sierra Costera I, Allueva, and Sierra Pelarda

✅ €88m invested; 14+7+4 turbines; Endesa-led build in Teruel

✅ Part of 2017 tender: 540MW wind, 339MW solar, nationwide

 

Enel Green Power Espana, part of Enel's wind projects worldwide, has started constructing three wind farms in Aragon, north-east Spain, which are due online by the end of the year.

The projects, all situated in the Teruel province, are worth a total investment of €88 million.

The biggest of the facilities, Sierra Costera I, will have a 50MW and will feature 14 turbines.

The wind farm is spread across the municipalities of Mezquita de Jarque, Fuentes Calientes, Canada Vellida and Rillo.

The Allueva wind facility will feature seven turbines and will exceed 25MW.

Sierra Pelarda, in Fonfria, will have four turbines and a capacity of 15MW, as advances in offshore wind turbine technology continue to push scale elsewhere.

The projects bring the total number of wind farms that Enel Green Power Espana has started building in the Teruel province to six, equal to an overall capacity of 218MW.

Endesa chief executive Jose Bogas said: “These plants mark the acceleration on a new wave of growth in the renewable energy space that Endesa is committed to pursue in the next years, driving the energy transition in Spain.”

The six wind farms under construction in Teruel are part of the 540MW that Enel Green Power Espana was awarded in the Spanish government's renewable energy tender held in May 2017.

In Aragon, the company will invest around €434 million euros, reflecting broader European wind power investment trends in recent years, to build 13 wind farms with a total installed capacity of more than 380MW.

The remaining 160MW of wind capacity will be located in Andalusia, Castile-Leon, Castile La Mancha and Galicia, even as some Spanish turbine factories closed during pandemic restrictions.

Enel Green Power Espana was also awarded 339MW of solar capacity in the Spanish government's auction held in July 2017, while other Spanish developers advance CSP projects abroad in markets like Chile.

Once all wind and solar under the 2017 tender are complete they will boost the company’s capacity by around 52%.

 

Related News

View more

New fuel cell concept brings biological design to better electricity generation

Quinone-mediated fuel cell uses a bio-inspired organic shuttle to carry electrons and protons to a nearby cobalt catalyst, improving hydrogen conversion, cutting platinum dependence, and raising efficiency while lowering costs for clean electricity.

 

Key Points

An affordable, bio-inspired fuel cell using an organic quinone shuttle and cobalt catalyst to move electrons efficiently

✅ Organic quinone shuttles electrons to a separate cobalt catalyst

✅ Reduces platinum use, lowering cost of hydrogen power

✅ Bio-inspired design aims to boost efficiency and durability

 

Fuel cells have long been viewed as a promising power source. But most fuel cells are too expensive, inefficient, or both. In a new approach, inspired by biology, a team has designed a fuel cell using cheaper materials and an organic compound that shuttles electrons and protons.

Fuel cells have long been viewed as a promising power source. These devices, invented in the 1830s, generate electricity directly from chemicals, such as hydrogen and oxygen, and produce only water vapor as emissions. But most fuel cells are too expensive, inefficient, or both.

In a new approach, inspired by biology and published today (Oct. 3, 2018) in the journal Joule, a University of Wisconsin-Madison team has designed a fuel cell using cheaper materials and an organic compound that shuttles electrons and protons.

In a traditional fuel cell, the electrons and protons from hydrogen are transported from one electrode to another, where they combine with oxygen to produce water. This process converts chemical energy into electricity. To generate a meaningful amount of charge in a short enough amount of time, a catalyst is needed to accelerate the reactions.

Right now, the best catalyst on the market is platinum -- but it comes with a high price tag, and while advances like low-cost heat-to-electric materials show promise, they address different conversion pathways. This makes fuel cells expensive and is one reason why there are only a few thousand vehicles running on hydrogen fuel currently on U.S. roads.

Shannon Stahl, the UW-Madison professor of chemistry who led the study in collaboration with Thatcher Root, a professor of chemical and biological engineering, says less expensive metals can be used as catalysts in current fuel cells, but only if used in large quantities. "The problem is, when you attach too much of a catalyst to an electrode, the material becomes less effective," he says, "leading to a loss of energy efficiency."

The team's solution was to pack a lower-cost metal, cobalt, into a reactor nearby, where the larger quantity of material doesn't interfere with its performance. The team then devised a strategy to shuttle electrons and protons back and forth from this reactor to the fuel cell.

The right vehicle for this transport proved to be an organic compound, called a quinone, that can carry two electrons and protons at a time. In the team's design, a quinone picks up these particles at the fuel cell electrode, transports them to the nearby reactor filled with an inexpensive cobalt catalyst, and then returns to the fuel cell to pick up more "passengers."

Many quinones degrade into a tar-like substance after only a few round trips. Stahl's lab, however, designed an ultra-stable quinone derivative. By modifying its structure, the team drastically slowed down the deterioration of the quinone. In fact, the compounds they assembled last up to 5,000 hours -- a more than 100-fold increase in lifetime compared to previous quinone structures.

"While it isn't the final solution, our concept introduces a new approach to address the problems in this field," says Stahl. He notes that the energy output of his new design produces about 20 percent of what is possible in hydrogen fuel cells currently on the market. On the other hand, the system is about 100 times more effective than biofuel cells that use related organic shuttles.

The next step for Stahl and his team is to bump up the performance of the quinone mediators, allowing them to shuttle electrons more effectively and produce more power. This advance would allow their design to match the performance of conventional fuel cells, but with a lower price tag.

"The ultimate goal for this project is to give industry carbon-free options for creating electricity, including thermoelectric materials that harvest waste heat," says Colin Anson, a postdoctoral researcher in the Stahl lab and publication co-author. "The objective is to find out what industry needs and create a fuel cell that fills that hole."

This step in the development of a cheaper alternative could eventually be a boon for companies like Amazon and Home Depot that already use hydrogen fuel cells to drive forklifts in their warehouses.

"In spite of major obstacles, the hydrogen economy, with efforts such as storing electricity in pipelines in Europe, seems to be growing," adds Stahl, "one step at a time."

Financial support for this project was provided by the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, and by the Wisconsin Alumni Research Foundation (WARF) through the WARF Accelerator Program.

 

Related News

View more

Net-Zero Emissions Might Not Be Possible Without Nuclear Power

Nuclear Power for Net-Zero Grids anchors reliable baseload, integrating renewables with grid stability as solar, wind, and battery storage scale. Advanced reactors complement hydropower, curb natural gas reliance, and accelerate deep decarbonization of electricity systems.

 

Key Points

Uses nuclear baseload and advanced reactors to stabilize power grids and integrate higher shares of variable renewables.

✅ Provides firm, zero-carbon baseload for renewable-heavy grids

✅ Reduces natural gas dependence and peaker emissions

✅ Advanced reactors enhance safety, flexibility, and cost

 

Declining solar, wind, and battery technology costs are helping to grow the share of renewables in the world’s power mix to the point that governments are pledging net-zero emission electricity generation in two to three decades to fight global warming.

Yet, electricity grids will continue to require stable baseload to incorporate growing shares of renewable energy sources and ensure lights are on even when the sun doesn’t shine, or the wind doesn’t blow. Until battery technology evolves enough—and costs fall far enough—to allow massive storage and deployment of net-zero electricity to the grid, the systems will continue to need power from sources other than solar and wind.

And these will be natural gas and nuclear power, regardless of concerns about emissions from the fossil fuel natural gas and potential disasters at nuclear power facilities such as the ones in Chernobyl or Fukushima.

As natural gas is increasingly considered as just another fossil fuel, nuclear power generation provides carbon-free electricity to the countries that have it, even as debates over nuclear power’s outlook continue worldwide, and could be the key to ensuring a stable power grid capable of taking in growing shares of solar and wind power generation.

The United States, where nuclear energy currently provides more than half of the carbon-free electricity, is supporting the development of advanced nuclear reactors as part of the clean energy strategy.

But Europe, which has set a goal to reach carbon neutrality by 2050, could find itself with growing emissions from the power sector in a decade, as many nuclear reactors are slated for decommissioning and questions remain over whether its aging reactors can bridge the gap. The gap left by lost nuclear power is most easily filled by natural gas-powered electricity generation—and this, if it happens, could undermine the net-zero goals of the European Union (EU) and the bloc’s ambition to be a world leader in the fight against climate change.

 

U.S. Power Grid Will Need Nuclear For Net-Zero Emissions

A 2020 report from the University of California, Berkeley, said that rapidly declining solar, wind, and storage prices make it entirely feasible for the U.S. to meet 90 percent of its power needs from zero-emission energy sources by 2035 with zero increases in customer costs from today’s levels.

Still, natural gas-fired generation will be needed for 10 percent of America’s power needs. According to the report, in 2035 it would be possible that “during normal periods of generation and demand, wind, solar, and batteries provide 70% of annual generation, while hydropower and nuclear provide 20%.” Even with an exponential rise in renewable power generation, the U.S. grid will need nuclear power and hydropower to be stable with such a large share of solar and wind.

The U.S. Backs Advanced Nuclear Reactor Technology

The U.S. Department of Energy is funding programs of private companies under DOE’s new Advanced Reactor Demonstration Program (ARDP) to showcase next-gen nuclear designs for U.S. deployment.

“Taking leadership in advanced technology is so important to the country’s future because nuclear energy plays such a key role in our clean energy strategy,” U.S. Secretary of Energy Dan Brouillette said at the end of December when DOE announced it was financially backing five teams to develop and demonstrate advanced nuclear reactors in the United States.

“All of these projects will put the U.S. on an accelerated timeline to domestically and globally deploy advanced nuclear reactors that will enhance safety and be affordable to construct and operate,” Secretary Brouillette said.

According to Washington DC-based Nuclear Energy Institute (NEI), a policy organization of the nuclear technologies industry, nuclear energy provides nearly 55 percent of America’s carbon-free electricity. That is more than 2.5 times the amount generated by hydropower, nearly 3 times the amount generated by wind, and more than 12 times the amount generated by solar. Nuclear energy can help the United States to get to the deep carbonization needed to hit climate goals.

 

Europe Could See Rising Emissions Without Nuclear Power

While the United States is doubling down on efforts to develop advanced and cheaper nuclear reactors, including microreactors and such with new types of technology, Europe could be headed to growing emissions from the electricity sector as nuclear power facilities are scheduled to be decommissioned over the next decade and Europe is losing nuclear power just when it really needs energy, according to a Reuters analysis from last month.

In many cases, it will be natural gas that will come to the rescue to power grids to ensure grid stability and enough capacity during peak demand because solar and wind generation is variable and dependent on the weather.

For example, Germany, the biggest economy in Europe, is boosting its renewables targets, but it is also phasing out nuclear by next year, amid a nuclear option debate over climate strategy, while its deadline to phase out coal-fired generation is 2038—more than a decade later compared to phase-out plans in the UK and Italy, for example, where the deadline is the mid-2020s.

The UK, which left the EU last year, included support for nuclear power generation as one of the ten pillars in ‘The Ten Point Plan for a Green Industrial Revolution’ unveiled in November.

The UK’s National Grid has issued several warnings about tight supply since the fall of 2020, due to low renewable output amid high demand.

“National Grid’s announcement underscores the urgency of investing in new nuclear capacity, to secure reliable, always-on, emissions-free power, alongside other zero-carbon sources. Otherwise, we will continue to burn gas and coal as a fallback and fall short of our net zero ambitions,” Tom Greatrex, Chief Executive of the Nuclear Industry Association, said in response to one of those warnings.

But it’s in the UK that one major nuclear power plant project has notoriously seen a delay of nearly a decade—Hinkley Point C, originally planned in 2007 to help UK households to “cook their 2017 Christmas turkeys”, is now set for start-up in the middle of the 2020s.

Nuclear power development and plant construction is expensive, but it could save the plans for low-carbon emission power generation in many developed economies, including in the United States.

 

Related News

View more

Manitoba's electrical demand could double in next 20 years: report

Manitoba Hydro Integrated Resource Plan outlines electrification-driven demand growth, clean electricity needs, wind generation, energy efficiency, hydropower strengths, and net-zero policy impacts, guiding investments to expand capacity and decarbonize Manitoba's grid.

 

Key Points

Manitoba Hydro IRP forecasting 2.5x demand, clean power needs, and capacity additions via wind and energy efficiency.

✅ Projects electricity demand could more than double within 20 years.

✅ Leverages 97% hydro supply; adds wind generation and efficiency.

✅ Positions for net-zero, electrification, and new capacity by the 2030s.

 

Electrical demand in Manitoba could more than double in the next 20 years, a trend echoed by BC Hydro's call for power in response to electrification, according to a new report from Manitoba Hydro.

On Tuesday, the Crown corporation released its first-ever Integrated Resource Plan (IRP), which not only predicts a significant increase in electrical demand, but also that new sources of energy, and a potential need for new power generation, could be needed in the next decade.

“Right now, what [our customers] are telling us, with the climate change objectives, with federal policy, provincial policies, is they see using electricity much more in the future than they do today,” said president and CEO of Manitoba Hydro Jay Grewal.

“And our current, where we’re at now, our customers have told us through all this consultation and engagement over the last two years, they’re going to want and need more than 2.5 times the electricity than we have in the province today.”

The IRP indicates that the move towards low or no-carbon energy sources will accelerate the need for clean electricity, which will require significant investments, including new turbine investments to expand capacity. Some of the clean energy measures Hydro is looking at for the future include wind generation and energy efficiency.

The report also found that Manitoba is in a good position as it prepares for the future due to its hydroelectric system, which delivers around 97 per cent of the yearly electricity. However, the province’s existing supply is limited, and vulnerable to Western Canada drought impacts on hydropower, so other electrical energy sources will be needed.

“Something Manitobans may not realize is, we are in such a privileged province, because 97 per cent of the electricity produced in Manitoba today is clean energy and net zero,” Grewal said.

Manitoba also supplies power to neighbouring utilities, with a SaskPower purchase agreement to buy more electricity under an expanded deal.

The IRP is the result of a two-year development process that involved multiple rounds of engagement with customers and other interested parties. The IRP is not a development plan, but it arrives as Hydro warns it can't service new energy-intensive customers under current capacity, and it outlines how Manitoba Hydro will monitor, prepare and respond to the changes in the energy landscape.

“We spoke with over 15,000 of our customers, whether they’re residential, commercial, industrial, industry associations, regulators, government – across the board, we talked with our customers,” said Grewal.

“And what we did was through this work, we understood what our customers are anticipating using electricity for going forward.

 

Related News

View more

Crucial step towards completing nuclear plant achieved in Abu Dhabi

Barakah Unit 4 Cold Hydrostatic Testing validates reactor coolant system integrity at the Barakah Nuclear Energy Plant in Abu Dhabi, UAE, confirming safety, quality, and commissioning readiness under ENEC and KEPCO oversight.

 

Key Points

Pressure test of Unit 4's reactor coolant system, confirming integrity and safety for commissioning at Barakah.

✅ 25% above normal operating pressure verified.

✅ Welds, joints, and high-pressure components inspected.

✅ Supports safe, reliable, emissions-free baseload power.

 

The Emirates Nuclear Energy Corporation (ENEC) has successfully completed Cold Hydrostatic Testing (CHT) at Unit 4 of the Barakah Nuclear Energy Plant, the Arab world’s first nuclear energy plant being built in the Al Dhafra region of Abu Dhabi, UAE. The testing incorporated the lessons learned from the previous three units and is a crucial step towards the completion of Unit 4, the final unit of the Barakah plant.

As a part of CHT, the pressure inside Unit 4’s systems was increased to 25 per cent above what will be the normal operating pressure, demonstrating, as seen across global nuclear projects, the quality and robust nature of the Unit’s construction. Prior to the commencement of CHT, Unit 4’s Nuclear Steam Supply Systems were flushed with demineralised water, and the Reactor Pressure Vessel Head and Reactor Coolant Pump Seals were installed. During the Cold Hydrostatic Testing, the welds, joints, pipes and components of the reactor coolant system and associated high-pressure systems were verified.

Mohammed Al Hammadi, Chief Executive Officer of ENEC said: “I am proud of the continued progress being made at Barakah despite the circumstances we have all faced in relation to COVID-19. The UAE leadership’s decisive and proactive response to the pandemic supported us in taking timely, safety-led actions to protect the health and safety of our workforce and our plant. These actions, alongside the efforts of our talented and dedicated workforce, have enabled the successful completion of CHT at Unit 4, which was completed in adherence to the highest standards of safety, quality, and security.

“With this accomplishment, we move another step closer to achieving our goal of supplying up to a quarter of our nation’s electricity needs through the national grid and powering its future growth with safe, reliable, and emissions-free electricity,” he added.

By the end of 2019, ENEC and Korea Electric Power Corporation (KEPCO), working with Korea Hydro & Nuclear Power (KHNP) on the project, had successfully completed all major construction work including major concrete pouring, installation of the Turbine Generator, and the internal components of the Reactor Pressure Vessel (RPV) of Unit 4, which paved the way for the commencement of testing and commissioning.

The testing at Unit 4 represents a significant achievement in the development of the UAE Peaceful Nuclear Energy Program, following the successful completion of fuel assembly loading into Unit 1 in March 2020, confirming that the UAE has officially become a peaceful nuclear energy operating nation. Preparations are now in the final stages for the safe start-up of Unit 1, which subsequently reached 100% power ahead of commercial operations, in the coming months.

ENEC is currently in the final stages of construction of units 2, 3 and 4 of the Barakah Nuclear Energy Plant, as China’s nuclear program continues its steady development globally. The overall construction of the four units is more than 94% complete. Unit 4 is more than 84 per cent, Unit 3 is more than 92 per cent and Unit 2 is more than 95 per cent. The four units at Barakah will generate up to 25 per cent of the UAE’s electricity demand by producing 5,600 MW of clean baseload electricity, as projects such as new reactors in Georgia take shape, and preventing the release of 21 million tons of carbon emissions each year – the equivalent of removing 3.2 million cars off the roads annually.

 

Related News

View more

This kite could harness more of the world's wind energy

Autonomous Energy Kites harness offshore wind on floating platforms, using carbon fiber wings, tethers, and rotors to generate grid electricity; an airborne wind energy solution backed by Alphabet's Makani to cut turbine costs.

 

Key Points

Autonomous Energy Kites are tethered craft that capture winds with rotors, generating grid power from floating platforms.

✅ Flies circles on tethers; rotors drive generators to feed the grid.

✅ Operates over deep-sea winds where fixed turbines are impractical.

✅ Lighter, less visual impact, and lower installation costs offshore.

 

One company's self-flying energy kite may be the answer to increasing wind power around the world, alongside emerging wave power solutions as well.

California-based Makani -- which is owned by Google's parent company, Alphabet -- is using power from the strongest winds found out in the middle of the ocean, where the offshore wind sector has huge potential, typically in spots where it's a challenge to install traditional wind turbines. Makani hopes to create electricity to power communities across the world.

Despite a growing number of wind farms in the United States and the potential of this energy source, lessons from the U.K. underscore how to scale, yet only 6% of the world's electricity comes from wind due to the the difficulty of setting up and maintaining turbines, according to the World Wind Energy Association.

When the company's co-founders, who were fond of kiteboarding, realized deep-sea winds were largely untapped, they sought to make that energy more accessible. So they built an autonomous kite, which looks like an airplane tethered to a base, to install on a floating platform in water, as part of broader efforts to harness oceans and rivers for power across regions. Tests are currently underway off the coast of Norway.

"There are many areas around the world that really don't have a good resource for renewable power but do have offshore wind resources," Makani CEO Fort Felker told Rachel Crane, CNN's innovation correspondent. "Our lightweight kites create the possibility that we could tap that resource very economically and bring renewable power to hundreds of millions of people."

This technology is more cost-efficient than a traditional wind turbine, which is a lot more labor intensive and would require lots of machinery and installation.

The lightweight kite, which is made of carbon fiber, has an 85-foot wingspan. The kite launches from a base station and is constrained by a 1,400-foot tether as it flies autonomously in circles with guidance from computers. Crosswinds spin the kite's eight rotors to move a generator that produces electricity that's sent back to the grid through the tether.

The kites are still in the prototype phase and aren't flown constantly right now as researchers continue to develop the technology. But Makani hopes the kites will one day fly 24/7 all year round. When the wind is down, the kite will return to the platform and automatically pick back up when it resumes.

Chief engineer Dr. Paula Echeverri said the computer system is key for understanding the state of the kite in real time, from collecting data about how fast it's moving to charting its trajectory.

Echeverri said tests have been helpful in establishing what some of the challenges of the system are, and the team has made adjustments to get it ready for commercial use. Earlier this year, the team successfully completed a first round of autonomous flights.

Working in deeper water provides an additional benefit over traditional wind turbines, according to Felker. By being farther offshore, the technology is less visible from land, and the growth of offshore wind in the U.K. shows how coastal communities can adapt. Wind turbines can be obtrusive and impact natural life in the surrounding area. These kites may be more attractive to areas that wish to preserve their scenic coastlines and views.

It's also desirable for regions that face constraints related to installing conventional turbines -- such as island nations, where World Bank support is helping developing countries accelerate wind adoption, which have extremely high prices for electricity because they have to import expensive fossil fuels that they then burn to generate electricity.

Makani isn't alone in trying to bring novelty to wind energy. Several others companies such as Altaeros Energies and Vortex Bladeless are experimenting with kites of their own or other types of wind-capture methods, such as underwater kites that generate electricity, a huge oscillating pole that generates energy and a blimp tethered to the ground that gathers winds at higher altitudes.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified