Former nuclear safety chief quits

By Toronto Star


Arc Flash Training CSA Z462 - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
Former nuclear regulatory chief Linda Keen says the Conservative government dismissed her by parking her in a job that was an "artificial creation" and has formally stepped down from the Canadian Nuclear Safety Commission.

Keen wrote a letter to Prime Minister Stephen Harper, saying the move to demote her last year puts her and the agency in an "untenable position."

"I believe that actually sitting and making regulatory decisions, as a demoted commission member when the government questions my competence and claims to have lost confidence in me, and with my legal case pending against the Attorney General of Canada, would be inappropriate," she wrote in the letter she released this morning, "It really wasn't a real job," Keen said, in an interview.

Any party – industry, non-governmental organizations, or the government – would be able to challenge any decision she would have been involved in, leading to all kinds of uncertainty for investors, communities and employees that rely on jobs in the nuclear or regulated mining industries, she said.

In the 24 hours since the letter was hand-delivered to the Prime Minister's Office, Keen said, she got no response.

The Conservative government removed Keen late last year after the nuclear reactor that produces vital medical isotopes for Canada and the world was shut down for 27 days in late November.

The government kept her on as a full-time commission member, although there was no such position, only part-time ones, prior to her demotion. There was no job description for the job that kept her on at her old salary as president and CEO, despite her requests for one, she said.

Keen, who has been using up leave while she pursued a lawsuit to be reinstated, claims to still want to return to her old job.

But she said the timing of her move to step aside now, coming in the third week of a federal election campaign, was "completely coincidental."

"I said I was apolitical in December, and I'm apolitical now."

Through her lawyers, she learned her court case is not due to be heard by Federal Court until early 2009, her earned leave credits are almost up, and faced with returning to sit on panels, she didn't believe she could properly function.

"It really had nothing to do with the federal campaign; my leave credits are finished," she told the Star.

She added her case "has always been a public case since the prime minister named me in the House as a Liberal partisan" and the letter removing her from the top job was leaked.

But she said, "I really don't have a choice. Any decision I made could be open to challenge."

Keen intends to continue her own legal challenge of the government's decision, and seek to be reinstated as commission head on "principle."

"I believe administrative tribunals are meant to be independent. Safety regulators should be able to make decisions and not be overturned by the government. I believe somebody has to stand up, on behalf of the other 26 administrative tribunals. If it isn't me, who's next?"

Keen said she is still somewhat "in shock," over Harper's "unprecedented" removal of her as commission president, but received "hundreds and hundreds" of supportive emails and letters from across the country, including from mayors of communities whose industries are regulated by the commission.

Related News

Price Spikes in Ireland Fuel Concerns Over Dispatachable Power Shortages in Europe

ISEM Price Volatility reflects Ireland-Northern Ireland grid balancing pressures, driven by dispatchable power shortages, day-ahead market dynamics, renewable shortfalls, and interconnector constraints, affecting intraday trading, operational reserves, and cross-border electricity flows.

 

Key Points

ISEM price volatility is Irish power price swings from grid balancing stress and limited dispatchable capacity.

✅ One-off spike linked to plant outage and low renewables

✅ Day-ahead market settling; intraday trading integration pending

✅ Interconnectors and reserves vital to manage adequacy

 

Irish grid-balancing prices soared to €3,774 ($4,284) per megawatt-hour last month amid growing concerns over dispatchable power capacity across Europe.

The price spike, triggered by an alert regarding generation losses, came only four months after Ireland and Northern Ireland launched an Integrated Single Electricity Market (ISEM) designed to make trading more competitive and improve power distribution across the island.

Evie Doherty, senior consultant for Ireland at Cornwall Insight, a U.K.-based energy consultancy, said significant price volatility was to be expected while ISEM is still settling down, aligning with broader 2019 grid edge trends seen across markets.

When the U.K. introduced a single market for Great Britain, called British Electricity Trading and Transmission Arrangements, in 2005, it took at least six months for volatility to subside, Doherty said.

In the case of ISEM, “it will take more time to ascertain the exact drivers behind the high prices,” she said. “We are being told that the day-ahead market is functioning as expected, but it will take time to really be able to draw conclusions on efficiency.”

Ireland and Northern Ireland have been operating with a single market “very successfully” since 2007, said Doherty. Although each jurisdiction has its own regulatory authority, they make joint decisions regarding the single market.

ISEM, launched in October 2018, was designed to help include Ireland and Northern Ireland day-ahead electricity prices in a market pricing system called the European Union Pan-European Hybrid Electricity Market Integration Algorithm.

In time, ISEM should also allow the Irish grids to participate in European intraday markets, and recent examples like Ukraine's grid connection underline the pace of integration efforts across Europe. At present, they are only able to do so with Great Britain. “The idea was to...integrate energy use and create more efficient flows between jurisdictions,” Doherty said.

EirGrid, the Irish transmission system operator, has reported that flows on its interconnector with Northern Ireland are more efficient than before, she said.

The price spike happened when the System Operator for Northern Ireland issued an alert for an unplanned plant outage at a time of low renewable output and constraints on the north-south tie-line with Ireland, according to a Cornwall Insight analysis.

 

Not an isolated event

Although it appears to have been a one-off event, there are increasing worries that a shortage of dispatchable power could lead to similar situations elsewhere across Europe, as seen in Nordic grid constraints recently.

Last month, newspaper Frankfurter Allgemeine Zeitung (FAZ) reported that German industrial concerns had been forced to curtail more than a gigawatt of power consumption to maintain operational reserves on the grid in December, after renewable production fell short of expectations and harsh weather impacts strained systems elsewhere.

Paul-Frederik Bach, a Danish energy consultant, has collected data showing that this was not an isolated incident. The FAZ report said German aluminum smelters had been forced to cut back on energy use 78 times in 2018, he noted.

Energy availability was also a concern last year in Belgium, where six out of seven nuclear reactors had been closed for maintenance. The closures forced Belgium to import 23 percent of its electricity from neighboring countries, Bach reported.

In a separate note, Bach revealed that 11 European countries that were net importers of energy had boosted their imports by 26 percent between 2017 and 2018. It is important to note that electricity imports do not necessarily imply a shortage of power, he stated.

However, it is also true that many European grid operators are girding themselves for a future in which dispatchable power is scarcer than today.

EirGrid, for example, expects dispatchable generation and interconnection capacity to drop from 10.6 gigawatts in 2018 to 9 gigawatts in 2027.

The Swedish transmission system operator Svenska Kraftnät, meanwhile, is forecasting winter peak power deficits could rise from 400 megawatts currently to 2.5 gigawatts in 2020-21.

Research conducted by the European Network of Transmission System Operators for Electricity, suggests power adequacy will fall across most of Europe up to 2025, although perhaps not to a critical degree.

The continent’s ability to deal with the problem will be helped by having more efficient trading systems, Bach told GTM. That means developments such as ISEM could be a step in the right direction, despite initial price volatility.

In the long run, however, Europe will need to make sure market improvements are accompanied by investments in HVDC technology and interconnectors and reserve capacity. “Somewhere there must be a production of electricity, even when there is no wind,” said Bach. 

 

Related News

View more

Canada's First Commercial Electric Flight

Canada's First Commercial Electric Flight accelerates sustainable aviation, showcasing electric aircraft, pilot training, battery propulsion, and noise reduction, aligning with net-zero goals and e-aviation innovation across commercial, regional, and training operations.

 

Key Points

Canada's electric flight advances sustainable aviation, proving e-aircraft viability and pilot training readiness.

✅ Battery-electric propulsion cuts emissions and noise

✅ New curricula prepare pilots for electric systems and procedures

✅ Supports net-zero goals through green aviation infrastructure

 

Canada, renowned for its vast landscapes and pioneering spirit, has achieved a significant milestone in aviation history with its first commercial electric flight. This groundbreaking achievement marks a pivotal moment in the transition towards sustainable aviation and an aviation revolution for the sector, highlighting Canada's commitment to reducing carbon emissions and embracing innovative technologies.

The inaugural commercial electric flight in Canada not only showcases the capabilities of electric aircraft, with examples like Harbour Air's prototype flight demonstrating feasibility, but also underscores the importance of pilot training in advancing e-aviation. As the aviation industry explores cleaner and greener alternatives to traditional fossil fuel-powered aircraft, pilot training plays a crucial role in preparing aviation professionals for the future of sustainable flight.

Electric aircraft, powered by batteries instead of conventional jet fuel, offer numerous environmental benefits, including lower greenhouse gas emissions and reduced noise pollution, though Canada's 2019 electricity mix still included some fossil generation that can affect lifecycle impacts. These advantages align with Canada's ambitious climate goals and commitment to achieving net-zero emissions by 2050. By investing in e-aviation, Canada aims to lead by example in the global effort to decarbonize the aviation sector and mitigate the impacts of climate change.

The success of Canada's first commercial electric flight is a testament to collaborative efforts between industry stakeholders, government support, and technological innovation. Electric aircraft manufacturers have made significant strides in developing reliable and efficient electric propulsion systems, with research investment helping advance prototypes and certification, paving the way for broader adoption of e-aviation across commercial and private sectors.

Pilot training programs tailored for electric aircraft are crucial in ensuring the safe and effective operation of these advanced technologies, as operators target first electric passenger flights across regional routes. Canadian aviation schools and training institutions are at the forefront of integrating e-aviation into their curriculum, equipping future pilots with the skills and knowledge needed to navigate electric aircraft systems and procedures.

Moreover, the introduction of commercial electric flights in Canada opens new opportunities for aviation enthusiasts, environmental advocates, and stakeholders interested in sustainable transportation solutions. The shift towards e-aviation represents a paradigm shift in how air travel is perceived and executed, emphasizing efficiency, environmental stewardship, and technological innovation.

Looking ahead, Canada's role in advancing e-aviation extends beyond pilot training to include research and development, infrastructure investment, and policy support. Collaborative initiatives with industry partners and international counterparts, including Canada-U.S. collaboration on electrification, will be essential in accelerating the adoption of electric aircraft and establishing a robust framework for sustainable aviation practices.

In conclusion, Canada's first commercial electric flight marks a significant milestone in the journey towards sustainable aviation. By pioneering e-aviation through pilot training and technological innovation, Canada sets a precedent for global leadership in reducing carbon emissions and shaping the future of air transportation. As electric aircraft become more prevalent in the skies, Canada's commitment to sustainability and ambitious EV goals at the national level will continue to drive progress towards a cleaner, greener future for aviation worldwide.

 

Related News

View more

Tesla updates Supercharger billing to add cost of electricity use for other than charging

Tesla Supercharger Billing Update details kWh-based pricing that now includes HVAC, battery thermal management, and other HV loads during charging sessions, improving cost transparency across pay-per-use markets and extreme climate scenarios.

 

Key Points

Tesla's update bills for kWh used by HVAC, battery heating, and HV loads during charging, reflecting true energy costs.

✅ kWh charges now include HVAC and battery thermal management

✅ Expect 10-25 kWh increases in extreme climates during sessions

✅ Some regions still bill per minute due to regulations

 

Tesla has updated its Supercharger billing policy to add the cost of electricity use for things other than charging, like HVAC, battery thermal management, etc, while charging at a Supercharger station, a shift that impacts overall EV charging costs for drivers. 

For a long time, Tesla’s Superchargers were free to use, or rather the use was included in the price of its vehicles. But the automaker has been moving to a pay-to-use model over the last two years in order to finance the growth of the charging network amid the Biden-era charging expansion in the United States.

Not charging owners for the electricity enabled Tesla to wait on developing a payment system for its Supercharger network.

It didn’t need one for the first five years of the network, and now the automaker has been fine-tuning its approach to charge owners for the electricity they consume as part of building better charging networks across markets.

At first, it meant fluctuating prices, and now Tesla is also adjusting how it calculates the total power consumption.

Last weekend, Tesla sent a memo to its staff to inform them that they are updating the calculation used to bill Supercharging sessions in order to take into account all the electricity used:

The calculation used to bill for Supercharging has been updated. Owners will also be billed for kWhs consumed by the car going toward the HVAC system, battery heater, and other HV loads during the session. Previously, owners were only billed for the energy used to charge the battery during the charging session.

Tesla says that the new method should more “accurately reflect the value delivered to the customer and the cost incurred by Tesla,” which mirrors recent moves in its solar and home battery pricing strategy as well.

The automaker says that customers in “extreme climates” could see a difference of 10 to 25 kWh for the energy consumed during a charging session:

Owners may see a noticeable increase in billed kWh if they are using energy-consuming features while charging, e.g., air conditioning, heating etc. This is more likely in extreme climates and could be a 10-25 kWh difference from what a customer experienced previously, as states like California explore grid-stability uses for EVs during peak events.

Of course, this is applicable where Tesla is able to charge by the kWh for charging sessions. In some markets, regulations push Tesla to charge by the minute amid ongoing fights over charging control between utilities and private operators.

Electrek’s Take
It actually looks like an oversight from Tesla in the first place. It’s fair to charge for the total electricity used during a session, and not just what was used to charge your battery pack, since Tesla is paying for both, even as some states add EV ownership fees like the Texas EV fee that further shape costs.

However, I wish Tesla would have a clearer way to break down the charging sessions and their costs.

There have been some complaints about Tesla wrongly billing owners for charging sessions, and this is bound to create more confusion if people see a difference between the kWhs gained during charging and what is shown on the bill.

 

Related News

View more

TTC Bans Lithium-Ion-Powered E-Bikes and Scooters During Winter Months for Safety

TTC Winter E-Bike and E-Scooter Ban addresses lithium-ion battery safety, mitigating fire risk on Toronto public transit during cold weather across buses, subways, and streetcars, while balancing micro-mobility access, infrastructure gaps, and evolving regulations.

 

Key Points

A seasonal TTC policy limiting lithium-ion e-bikes and scooters on transit in winter to cut battery fire risk.

✅ Targets lithium-ion fire hazards in confined transit spaces

✅ Applies Nov-Mar across buses, subways, and streetcars

✅ Sparks debate on equity, accessibility, and policy alternatives

 

The Toronto Transit Commission (TTC) Board recently voted to implement a ban on lithium-ion-powered electric bikes (e-bikes) and electric scooters during the winter months, a decision that reflects growing safety concerns. This new policy has generated significant debate within the city, particularly regarding the role of these transportation modes in the lives of Torontonians, and the potential risks posed by the technology during cold weather.

A Growing Safety Concern

The move to ban lithium-ion-powered e-bikes and scooters from TTC services during the winter months stems from increasing safety concerns related to battery fires. Lithium-ion batteries, commonly used in e-bikes and scooters, are known to pose a fire risk, especially in colder temperatures, and as systems like Metro Vancouver's battery-electric buses expand, robust safety practices are paramount. In recent years, Toronto has experienced several high-profile incidents involving fires caused by these batteries. In some cases, these fires have occurred on TTC property, including on buses and subway cars, raising alarm among transit officials.

The TTC Board's decision was largely driven by the fear that the cold temperatures during winter months could make lithium-ion batteries more prone to malfunction, leading to potential fires. These batteries are particularly vulnerable to damage when exposed to low temperatures, which can cause them to overheat or fail during charging or use. Since public transit systems are densely populated and rely on close quarters, the risk of a battery fire in a confined space such as a bus or subway is considered too high.

The New Ban

The new rule, which is expected to take effect in the coming months, will prohibit e-bikes and scooters powered by lithium-ion batteries from being brought onto TTC vehicles, including buses, streetcars, and subway trains, even as the agency rolls out battery electric buses across its fleet, during the winter months. While the TTC had previously allowed passengers to bring these devices on board, it had issued warnings regarding their safety. The policy change reflects a more cautious approach to mitigating risk in light of growing concerns.

The winter months, typically from November to March, are when these batteries are at their most vulnerable. In addition to environmental factors, the challenges posed by winter weather—such as snow, ice, and the damp conditions—can exacerbate the potential for damage to these devices. The TTC Board hopes the new ban will prevent further incidents and keep transit riders safe.

Pushback and Debate

Not everyone agrees with the TTC Board's decision. Some residents and advocacy groups have expressed concern that this ban unfairly targets individuals who rely on e-bikes and scooters as an affordable and sustainable mode of transportation, while international examples like Paris's e-scooter vote illustrate how contentious rental devices can be elsewhere, adding fuel to the debate. E-bikes, in particular, have become a popular choice among commuters who want an eco-friendly alternative to driving, especially in a city like Toronto, where traffic congestion can be severe.

Advocates argue that instead of an outright ban, the TTC should invest in safer infrastructure, such as designated storage areas for e-bikes and scooters, or offer guidelines on how to safely store and transport these devices during winter, and, in assessing climate impacts, consider Canada's electricity mix alongside local safety measures. They also point out that other forms of electric transportation, such as electric wheelchairs and mobility scooters, are not subject to the same restrictions, raising questions about the fairness of the new policy.

In response to these concerns, the TTC has assured the public that it remains committed to finding alternative solutions that balance safety with accessibility. Transit officials have stated that they will continue to monitor the situation and consider adjustments to the policy if necessary.

Broader Implications for Transportation in Toronto

The TTC’s decision to ban lithium-ion-powered e-bikes and scooters is part of a broader conversation about the future of transportation in urban centers like Toronto. The rise of electric micro-mobility devices has been seen as a step toward reducing carbon emissions and addressing the city’s growing congestion issues, aligning with Canada's EV goals that push for widespread adoption. However, as more people turn to e-bikes and scooters for daily commuting, concerns about safety and infrastructure have become more pronounced.

The city of Toronto has yet to roll out comprehensive regulations for electric scooters and bikes, and this issue is further complicated by the ongoing push for sustainable urban mobility and pilots like driverless electric shuttles that test new models. While transit authorities grapple with safety risks, the public is increasingly looking for ways to integrate these devices into a broader, more holistic transportation system that prioritizes both convenience and safety.

The TTC’s decision to ban lithium-ion-powered e-bikes and scooters during the winter months is a necessary step to address growing safety concerns in Toronto's public transit system. Although the decision has been met with some resistance, it highlights the ongoing challenges in managing the growing use of electric transportation in urban environments, where initiatives like TTC's electric bus fleet offer lessons on scaling safely. With winter weather exacerbating the risks associated with lithium-ion batteries, the policy seeks to reduce the chances of fires and ensure the safety of all transit users. As the city moves forward, it will need to find ways to balance innovation with public safety to create a more sustainable and safe urban transportation network.

 

Related News

View more

Battery-electric buses hit the roads in Metro Vancouver

TransLink Electric Bus Pilot launches zero-emission service in Metro Vancouver, cutting greenhouse gas emissions with fast-charging stations on Route 100, supporting renewable energy goals alongside trolley buses, CNG, and hybrid fleets.

 

Key Points

TransLink's Metro Vancouver program deploying charging, zero-emission buses on Route 100 to cut emissions and fuel costs.

✅ Cuts ~100 tonnes GHG and saves $40k per bus annually

✅ Five-minute on-route charging at terminals on Route 100

✅ Pilot data to guide zero-emission fleet transition by 2050

 

TransLink's first battery-electric buses are taking to the roads in Metro Vancouver as part of a pilot project to reduce emissions, joining other initiatives like electric school buses in B.C. that aim to cut pollution in transportation.

The first four zero-emission buses picked up commuters in Vancouver, Burnaby and  New Westminster on Wednesday. Six more are expected to be brought in, and similar launches like Edmonton's first electric bus are underway across Canada.

"With so many people taking transit in Vancouver today, electric buses will make a real difference," said Merran Smith, executive director of Clean Energy Canada, a think tank at Simon Fraser University, in a release.

According to TransLink, each bus is expected to reduce 100 tonnes of greenhouse gas emissions and save $40,000 in fuel costs per year compared to a conventional diesel bus.

"Buses already help tackle climate change by getting people out of cars, and Vancouver is ahead of the game with its electric trolleys," Smith said.

She added there is still more work to be done to get every bus off diesel, as seen with the TTC's battery-electric buses rollout in Toronto.

The buses will run along the No. 100 route connecting Vancouver and New Westminster. They recharge — it takes about five minutes — at new charging stations installed at both ends of the route while passengers load and unload or while the driver has a short break. 

Right now, more than half of TransLink's fleet currently operates with clean technology, offering insights alongside Toronto's large battery-electric fleet for other cities. 

In addition to the four new battery-electric buses, the fleet also includes hundreds of zero-emission electric trolley buses, compressed natural gas buses and hybrid diesel-electric buses, while cities like Montreal's first STM electric buses continue to expand adoption.

"Our iconic trolley buses have been running on electricity since 1948 and we're proud to integrate the first battery-electric buses to our fleet," said TransLink CEO Kevin Desmond in a press release.

TransLink has made it a goal to operate its fleet with 100 per cent renewable energy in all operations by 2050. Desmond says, the new buses are one step closer to meeting that goal.

The new battery-electric buses are part of a two-and-a-half year pilot project that looks at the performance, maintenance, and customer experience of making the switch to electric, complementing BC Hydro's vehicle-to-grid pilot initiative underway in the province.

 

Related News

View more

British Columbia Accelerates Clean Energy Shift

BC Hydro Grid Modernization accelerates clean energy and electrification, upgrading transmission lines, substations, and hydro dams to deliver renewable power for EVs and heat pumps, strengthen grid reliability, and enable industrial decarbonization in British Columbia.

 

Key Points

A $36B, 10-year plan to expand and upgrade B.C.'s clean grid for electrification, reliability, and industrial growth.

✅ $36B for lines, substations, and hydro dam upgrades

✅ Enables EV charging, heat pumps, and smart demand response

✅ Prioritizes industrial electrification and Indigenous partnerships

 

In a significant move towards a clean energy transition, British Columbia has announced a substantial $36-billion investment to enlarge and upgrade its electricity grid over the next ten years. The announcement last Tuesday from BC Hydro indicates a substantial 50 percent increase from its prior capital plan. A major portion of this investment is directed towards new consumer connections and improving current infrastructure, including substations, transmission lines, and hydro dams for more efficient power generation.

The catalyst behind this major investment is the escalating demand for clean energy across residential, commercial, and industrial sectors in British Columbia. Projections show a 15 percent rise in electricity demand by 2030. According to the Canadian Climate Institute's models, achieving Canada’s climate goals will require extensive electrification across various sectors, raising questions about a net-zero grid by 2050 nationwide.

BC Hydro is planning substantial upgrades to the electrical grid to meet the needs of a growing population, decreasing industry carbon emissions, and the shift towards clean technology. This is vital, especially as the province works towards improving housing affordability and as households face escalating costs from the impacts of climate change and increasing exposure to harsh weather events. Affordable, reliable power and access to clean technologies such as electric vehicles and heat pumps are becoming increasingly important for households.

British Columbia is witnessing a significant shift from fossil fuels to clean electricity in powering homes, vehicles, and workplaces. Electric vehicle usage in B.C. has increased twentyfold in the past six years. Last year, one in every five new light-duty passenger vehicles sold in B.C. was electric – the highest rate in Canada. Additionally, over 200,000 B.C. homes are now equipped with heat pumps, indicating a growing preference for the province’s 98 percent renewable electricity.

The investment also targets reducing industrial emissions and attracting industrial investment. For instance, the demand for transmission along the North Coastline, from Prince George to Terrace, is expected to double this decade, especially from sectors like mining. Mining companies are increasingly looking for locations with access to clean power to reduce their carbon footprint.

This grid enhancement plan in B.C. is reflective of similar initiatives in provinces like Quebec and the legacy of Manitoba hydro history in building provincial systems. Hydro-Québec announced a substantial $155 to $185 billion investment in its 2035 Action Plan last year, aimed at supporting decarbonization and economic growth. By 2050, Hydro-Québec predicts a doubling of electricity demand in the province.

Both utilities’ strategies focus on constructing new facilities and enhancing existing assets, like upgrading dams and transmission lines. Hydro-Québec, for instance, includes energy efficiency goals in its plan to double customer savings and potentially save over 3,500 megawatts of power.

However, with this level of investment, provinces need to engage in dialogue about priorities and the optimal use of clean electricity resources, with concepts like macrogrids offering potential benefits. Quebec, for instance, has shifted from a first-come, first-served basis to a strategic review process for significant new industrial power requests.

B.C. is also moving towards strategic prioritization in its energy strategy, evident in its recent moratorium on new connections for virtual currency mining due to their high energy consumption.

Indigenous partnership and leadership are also key in this massive grid expansion. B.C.’s forthcoming Call for Power and Quebec’s financial partnerships with Indigenous communities indicate a commitment to collaborative approaches. British Columbia has also allocated $140 million to support Indigenous-led power projects.

Regarding the rest of Canada, electricity planning varies in provinces with deregulated markets like Ontario and Alberta. However, these provinces are adapting too, and the federal government has funded an Atlantic grid study to improve regional planning efforts. Ontario, for example, has provided clear guidance to its system operator, mirroring the ambition in B.C. and Quebec.

Utilities are rapidly working to not only expand and modernize energy grids but also to make them more resilient, affordable, and smarter, as demonstrated by recent California grid upgrades funding announcements across the sector. Hydro-Québec focuses on grid reliability and affordability, while B.C. experiments with smart-grid technologies.

Both Ontario and B.C. have programs encouraging consumers to reduce consumption in real-time, demonstrating the potential of demand-side management. A recent instance in Alberta showed how customer participation could prevent rolling blackouts by reducing demand by 150 megawatts.

This is a crucial time for all Canadian provinces to develop larger, smarter energy grids, including a coordinated western Canadian electricity grid approach for a sustainable future. Utilities are making significant strides towards this goal.
 

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.