New transmission lines: Worth the high cost?

By Knight Ridder Tribune


CSA Z463 Electrical Maintenance -

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
Wires to West Texas windmills, wires to a southeast Texas electric company, wires to connect north and south - wires everywhere.

The state is in a headlong rush to extend its electric transmission system. But with an estimated cost of more than $10 billion - at least $500 for every man, woman and child served by the Texas power grid - some are questioning how much is too much.

"It's excessive," said Geoffrey Gay, a lawyer who represents Fort Worth and other North Texas cities in utility matters. "We need additional transmission... but $10 billion over the next few years is excessive by any stretch of reasoning. There needs to be a much more thoughtful analysis as to how much the consumer ought to bear."

Proposals are now before regulators and transmission planners to add $1 billion in transmission lines so a South Texas electric company can connect to the state's principal power grid, at least $3.5 billion in lines to get access to more wind power and about $6 billion to reduce congestion on the expanding grid.

Not all that construction is certain. Some is in the planning stage, some could be canceled depending on regulatory action, and some is merely contemplated. But all told, it could double the part of the home electric bill associated with transmission lines, which can reach about $8.50 per month.

The contemplated construction also appears to have created a gold rush in the transmission market, with several new companies vying for a piece of the business. Instead of building in isolated service territories - the traditional model for transmission construction - the new companies are seeking permission to build throughout the state and across service territories.

Supporters say some of the new construction is inevitable. Texas is growing, and the public and policymakers have gotten behind renewable energy. But how much expansion is too much? What level of investment is necessary to ensure a reliable system and encourage economic growth? And will the costly new transmission lines be another burden on ratepayers already socked with higher bills as the state has deregulated electricity?

"The thinking generally is that it's more likely to have a competitive market if you have a more robust transmission system," said Michigan State University Senior Fellow Kenneth Rose.

He has produced annual reports showing that the price of electricity in Texas and other deregulated states has increased faster than in regulated states. "The idea is that as you make power available through access, the more likely you'll have competition in a given area," but that hasn't meant lower prices in Texas, he aid. "Transmission is expensive - it always has been," Rose said.

"There are right-of-way issues in the construction. It's possible that you have a higher cost, but the thinking is that the higher cost would be offset by the competitive benefits, and the jury is still out on that." The Electric Reliability Council of Texas, the operator of the Texas transmission grid, has proposed building about $6.1 billion worth of transmission lines over the next 10 years to reduce congestion.

Some of these lines are necessary because of the market change, and some might have been constructed without the move to deregulation - after all, the state is growing and needs more infrastructure. Under the old system, electricity typically moved within service territories, and transmission planning was coordinated by regulators and unified utilities. Now, electricity is transported across the state.

Additionally, owners of new generating plants have greater freedom to build them anywhere, and ERCOT generally is obligated to hook these sometimes far-flung plants to the grid. But Bill Bojorquez, vice president of system planning at ERCOT, says the construction of new lines in the deregulated market also will mean that power from more cost-efficient power plants can get piped to more places in Texas.

Power from the new plants can replace power generated by older, more expensive to operate plants, and the savings can help offset the new transmission costs. He said recent findings by ERCOT indicated that potential ratepayer costs associated with power line congestion declined from $400 million in 2003 to $250 million in 2005 - largely because of improvements in infrastructure.

"Also, transmission still remains a small percentage of the overall cost of doing business," he said. "And what do you get? You get to connect to newer and more efficient plants in the state. You get to serve growth."

Hooking up the growing number of wind power projects also can be especially expensive, with some estimates putting the price tag at $3.5 billion or more.

Skeptics have said that because wind power is inherently undependable, more thought should be given to shielding ratepayers from those costs. Otherwise, "we're creating obligations for ratepayers that will endure for years to come," said Gay, the utility lawyer.

But ERCOT's Bojorquez says that the use of wind power can also lead to savings by replacing power from more expensive generators. He said the organization had not yet completed an analysis as to whether such savings could offset the construction costs contemplated by recent Public Utility Commission decisions. The PUC is also mulling a plan by Entergy Gulf States to tie into the state grid that would result in about $1 billion in transmission lines being built.

Consumer groups generally oppose the plan, saying it will be another burden on ratepayers and will result in higher electric prices for everyone. But an Entergy spokesman said that it could mean about $100 million in savings each year due to increased efficiencies and that it would help bring more stability to the power grid.

BY THE NUMBERS

$6.1 billion: The cost of building new transmission lines over the next 10 years to reduce congestion on the state's power grid and to keep up with growth. About 3,295 circuit miles of lines would be built over the next five years.

$3.5 billion: The potential investment needed to connect contemplated wind power projects to the state grid, according to some estimates.

$1 billion: The cost of connecting customers of a southeast Texas power grid to the state's main power grid.

$8.50: The amount homeowners may pay each month to finance the state's transmission system. According to some projections, that charge could double as a consequence of the contemplated transmission projects.

Related News

How the dirtiest power station in western Europe switched to renewable energy

Drax Biomass Conversion accelerates renewable energy by replacing coal with wood pellets, sustainable forestry feedstock, and piloting carbon capture and storage, supporting the UK grid, emissions cuts, and a net-zero pathway.

 

Key Points

Drax Biomass Conversion is Drax's shift from coal to biomass with CCS pilots to cut emissions and aid UK's net-zero.

✅ Coal units converted to biomass wood pellets

✅ Sourced from sustainable forestry residues

✅ CCS pilots target lifecycle emissions cuts

 

A power station that used to be the biggest polluter in western Europe has made a near-complete switch to renewable energy, mirroring broader shifts as Denmark's largest energy company plans to end coal by 2023.

The Drax Power Station in Yorkshire, England, used to spew out millions of tons of carbon dioxide a year by burning coal. But over the past eight years, it has overhauled its operations by converting four of its six coal-fired units to biomass. The plant's owners say it now generates 15% of the country's renewable power, as Britain recently went a full week without coal power for the first time.

The change means that just 6% of the utility's power now comes from coal, as the wider UK coal share hits record lows across the national electricity system. The ultimate goal is to stop using coal altogether.

"We've probably reduced our emissions more than any other utility in the world by transforming the way we generate power," Will Gardner, CEO of the Drax Group, told CNN Business.

Subsidies have helped finance the switch to biomass, which consists of plant and agricultural matter and is viewed as a promising substitute for coal, and utilities such as Nova Scotia Power are also increasing biomass use. Last year, Drax received £789 million ($1 billion) in government support.

 

Is biomass good for the environment?

While scientists disagree over the extent to which biomass as a fuel is environmentally friendly, and some environmentalists urge reducing biomass use amid concerns about lifecycle emissions, Drax highlights that its supplies come from from sustainably managed and growing forests.

Most of the biomass used by Drax consists of low-grade wood, sawmill residue and trees with little commercial value from the United States. The material is compressed into sawdust pellets.

Gardner says that by purchasing bits of wood not used for construction or furniture, Drax makes it more financially viable for forests to be replanted. And planting new trees helps offset biomass emissions.

Forests "absorb carbon as they're growing, once they reach maturity, they stop absorbing carbon," said Raphael Slade, a senior research fellow at Imperial College London.

But John Sterman, a professor at MIT's Sloan School of Management, says that in the short term burning wood pellets adds more carbon to the atmosphere than burning coal.

That carbon can be absorbed by new trees, but Sterman says the process can take decades.

"If you're looking at five years, [biomass is] not very good ... If you're looking at a century-long time scale, which is the sort of time scale that many foresters plan, then [biomass] can be a lot more beneficial," says Slade.

 

Carbon capture

Enter carbon capture and storage technology, which seeks to prevent CO2 emissions from entering the atmosphere and has been touted as a possible solution to the climate crisis.

Drax, for example, is developing a system to capture the carbon it produces from burning biomass. But that could be 10 years away.

 

The Coal King is racing to avoid bankruptcy

The power station is currently capturing just 1 metric ton of CO2 emissions per day. Gardner says it hopes to increase this to 10,000 metric tons per day by the mid to late 2020s.

"The technology works but scaling it up and rolling it out, and financing it, are going to be significant challenges," says Slade.

The Intergovernmental Panel on Climate Change shares this view. The group said in a 2018 report that while the potential for CO2 capture and storage was considerable, its importance in the fight against climate change would depend on financial incentives for deployment, and whether the risks of storage could be successfully managed. These include a potential CO2 pipeline break.

In the United Kingdom, the government believes that carbon capture and storage will be crucial to reaching its goal of achieving net-zero greenhouse gas emissions by 2050, even as low-carbon generation stalled in 2019 according to industry analysis.

It has committed to consulting on a market-based industrial carbon capture framework and in June awarded £26 million ($33 million) in funding for nine carbon capture, usage and storage projects, amid record coal-free generation on the British grid.

 

Related News

View more

Cost, safety drive line-burying decisions at Tucson Electric Power

TEP Undergrounding Policy prioritizes selective underground power lines to manage wildfire risk, engineering costs, and ratepayer impacts, balancing transmission and distribution reliability with right-of-way, safety, and vegetation management per Arizona regulators.

 

Key Points

A selective TEP approach to bury lines where safety, engineering, and cost justify undergrounding.

✅ Selective undergrounding for feeders near substations

✅ Balances wildfire mitigation, reliability, and ratepayer costs

✅ Follows ACC rules, BLM and USFS vegetation management

 

Though wildfires in California caused by power lines have prompted calls for more underground lines, Tucson Electric Power Co. plans to keep to its policy of burying lines selectively for safety.

Like many other utilities, TEP typically doesn’t install its long-range, high-voltage transmission lines, such as the TransWest Express project, and distribution equipment underground because of higher costs that would be passed on to ratepayers, TEP spokesman Joe Barrios said.

But the company will sometimes bury lower-voltage lines and equipment where it is cost-effective or needed for safety as utilities adapt to climate change across North America, or if customers or developers are willing to pay the higher installation costs

Underground installations generally include additional engineering expenses, right-of-way acquisition for projects like the New England Clean Power Link in other regions, and added labor and materials, Barrios said.

“This practice avoids passing along unnecessary costs to customers through their rates, so that all customers are not asked to subsidize a discretionary expenditure that primarily benefits residents or property owners in one small area of our service territory,” he said, adding that the Arizona Corporation Commission has supported the company’s policy.

Even so, TEP will place equipment underground in some circumstances if engineering or safety concerns, including electrical safety tips that utilities promote during storm season, justify the additional cost of underground installation, Barrios said.

In fact, lower-voltage “feeder” lines emerging from distribution substations are typically installed underground until the lines reach a point where they can be safely brought above ground, he added.

While in California PG&E has shut off power during windy weather to avoid wildfires in forested areas traversed by its power lines after events like the Drum Fire last June, TEP doesn’t face the same kind of wildfire risk, Barrios said.

Most of TEP’s 5,000 miles of transmission and distribution lines aren’t located in heavily forested areas that would raise fire concerns, though large urban systems have seen outages after station fires in Los Angeles, he said.

However, TEP has an active program of monitoring transmission lines and trimming vegetation to maintain a fire-safety buffer zone and address risks from vandalism such as copper theft where applicable, in compliance with federal regulations and in cooperation with the U.S. Bureau of Land Management and the U.S. Forest Service.

 

Related News

View more

Washington State's Electric Vehicle Rebate Program

Washington EV Rebate Program drives EV adoption with incentives, funding, and clean energy goals, cutting greenhouse gas emissions. Residents embrace electric vehicles as charging infrastructure expands, supporting sustainable transportation and state climate targets.

 

Key Points

Washington EV Rebate Program provides incentives to cut EV costs, accelerate adoption, and support clean energy targets.

✅ Over half of allocated funding already utilized statewide.

✅ Incentives lower upfront costs and spur EV demand.

✅ Charging infrastructure expansion remains a key priority.

 

Washington State has reached a significant milestone in its electric vehicle (EV) rebate program, with more than half of the allocated funding already utilized. This rapid uptake highlights the growing interest in electric vehicles as residents seek more sustainable transportation options. As the state continues to prioritize environmental initiatives, this development showcases both the successes and challenges of promoting electric vehicle adoption.

A Growing Demand for Electric Vehicles

The substantial drawdown of rebate funds indicates a robust demand for electric vehicles in Washington. As consumers become increasingly aware of the environmental benefits associated with EVs—such as reduced greenhouse gas emissions and improved air quality—more individuals are making the switch from traditional gasoline-powered vehicles. Additionally, rising fuel prices and advancements in EV technology, alongside zero-emission incentives are further incentivizing this shift.

Washington's rebate program, which offers financial incentives to residents who purchase or lease eligible electric vehicles, plays a critical role in making EVs more accessible. The program helps to lower the upfront costs associated with purchasing electric vehicles, and similar approaches like New Brunswick EV rebates illustrate how regional incentives can boost adoption, thus encouraging more drivers to consider these greener alternatives. As the state moves toward its goal of a more sustainable transportation system, the popularity of the rebate program is a promising sign.

The Impact of Funding Utilization

With over half of the rebate funding already used, the program's popularity raises questions about the sustainability of its financial support and the readiness of state power grids to accommodate rising EV demand. Originally designed to spur adoption and reduce barriers to entry for potential EV buyers, the rapid depletion of funds could lead to future challenges in maintaining the program’s momentum.

The Washington State Department of Ecology, which oversees the rebate program, will need to assess the current funding levels and consider future allocations to meet the ongoing demand. If the funds run dry, it could slow down the adoption of electric vehicles, potentially impacting the state’s broader climate goals. Ensuring a consistent flow of funding will be essential for keeping the program viable and continuing to promote EV usage.

Environmental Benefits and Climate Goals

The increasing adoption of electric vehicles aligns with Washington’s ambitious climate goals, including a commitment to reduce carbon emissions significantly by 2030. The state aims to transition to a clean energy economy and has set a target for all new vehicles sold by 2035 to be electric, and initiatives such as the hybrid-electric ferry upgrade demonstrate progress across the transportation sector. The success of the rebate program is a crucial step in achieving these objectives.

As more residents switch to EVs, the overall impact on air quality and carbon emissions can be profound. Electric vehicles produce zero tailpipe emissions, which contributes to improved air quality, particularly in urban areas that struggle with pollution. The transition to electric vehicles can also help to reduce dependence on fossil fuels, further enhancing the state’s sustainability efforts.

Challenges Ahead

While the current uptake of the rebate program is encouraging, there are challenges that need to be addressed. One significant issue is the availability of EV models. Although the market is expanding, not all consumers have equal access to a variety of electric vehicle options. Affordability remains a barrier for many potential buyers, especially in lower-income communities, but targeted supports like EV charger rebates in B.C. can ease costs for households. Ensuring that all residents can access EVs and the associated incentives is vital for equitable participation in the transition to electric mobility.

Additionally, there are concerns about charging infrastructure. For many potential EV owners, the lack of accessible charging stations can deter them from making the switch. Expanding charging networks, particularly in underserved areas, is essential for supporting the growing number of electric vehicles on the road, and B.C. EV charging expansion offers a regional model for scaling access.

Looking to the Future

As Washington continues to advance its electric vehicle initiatives, the success of the rebate program is a promising indication of changing consumer attitudes toward sustainable transportation. With more than half of the funding already used, the focus will need to shift to sustaining the program and ensuring that it meets the needs of all residents, while complementary incentives like home and workplace charging rebates can amplify its impact.

Ultimately, Washington’s commitment to electric vehicles is not just about rebates; it’s about fostering a comprehensive ecosystem that supports clean energy, infrastructure, and equitable access. By addressing these challenges head-on, the state can continue to lead the way in the transition to electric mobility, benefiting both the environment and its residents in the long run.

 

Related News

View more

IEA warns fall in global energy investment may lead to shortages

Global Energy Investment Decline risks future oil and electricity supply, says the IEA, as spending on upstream, coal plants, and grids falls while renewables, storage, and flexible generation lag in the energy transition.

 

Key Points

Multi-year cuts to oil, power, and grid spending that increase risks of future supply shortages and market tightness.

✅ IEA warns underinvestment risks oil supply squeeze

✅ China and India slow coal plant additions; renewables rise

✅ Batteries aid flexibility but cannot replace seasonal storage

 

An almost 20 per cent fall in global energy investment over the past three years could lead to oil and electricity shortages, as surging electricity demand persists, and there are concerns about whether current business models will encourage sufficient levels of spending in the future, according a new report.

The International Energy Agency’s second annual IEA benchmark analysis of energy investment found that while the world spent $US1.7 trillion ($2.2 trillion) on fossil-fuel exploration, new power plants and upgrades to electricity grids last year, with electricity investment surpassing oil and gas even as global energy investment was down 12 per cent from a year earlier and 17 per cent lower than 2014.

While the IEA said continued oversupply of oil and electricity globally would prevent any imminent shock, falling investment “points to a risk of market tightness and undercapacity at some point down the line’’.

The low crude oil price drove a 44 per cent drop in oil and gas investment between 2014 and 2016. It fell 26 per cent last year. It was due to falls in upstream activity and a slowdown in the sanctioning of conventional oilfields to the lowest level in more than 70 years.

“Given the depletion of existing fields, the pace of investment in conventional fields will need to rise to avoid a supply squeeze, even on optimistic assumptions about technology and the impact of climate policies on oil demand,’’ the IEA warned in its report released yesterday evening. “The energy transition has barely begun in several key sectors, such as transport and industry, which will continue to rely heavily on oil, gas and coal for the foreseeable future.’’

The fall in global energy spending also reflected declining investment in power generation, particularly from coal plants.

While 21 per cent of global ­energy investment was made by China in 2016, the world’s fastest growing economy had a 25 per cent decline in the commissioning of new coal-fired power plants, due largely to air pollution issues and investment in renewables.

Investment in new coal-fired plants also fell in India.

“India and China have slammed the brakes on coal-fired generation. That is the big change we have seen globally,’’ said ­Bruce Mountain a director at CME Australia.

“What it confirms is the ­pressures and the changes we are seeing in Australia, the restructuring of our energy supply, is just part of a global trend. We are facing the pressures more sharply in Australia because our power prices are very high. But that same shift in energy source in Australia are being mirrored internationally.’’ The IEA — a Paris-based adviser to the OECD on energy policy — also highlighted Australia’s reduced power reserves in its report and called for regulatory change to encourage greater use of renewables.

“Australia has one of the highest proportions of households with PV systems on their roof of any country in the world, and its ­electricity use in its National ­Electricity Market is spread out over a huge and weakly connected network,’’ the report said.

“It appears that a series of accompanying investments and regulatory changes are needed, including a plan to avoid supply threats, to use Australia’s abundant wind and solar potential: changing system operation methods and reliability procedures as well as investment into network capacity, flexible generation and storage.’’ The report found that in Australia there had been an increase in grid-scale installations mostly associated with large-scale solar PV plants.

Last month the Turnbull ­government revealed it was prepared to back the construction of new coal-fired power stations to prevent further shortfalls in electricity supplies, while the PM ruled out taxpayer-funded plants and declared it was open to using “clean coal” technology to replace existing generators.

He also pledged “immediate” ­action to boost the supply of gas by forcing exporters to divert ­production into the domestic ­market.

Since then technology billionaire Elon Musk has promised to solve South Australia’s energy ­issues by building the world’s largest lithium-ion battery in the state.

But the IEA report said batteries were unlikely to become a “one size fits all” single solution to ­electricity security and flexibility provision.

“While batteries are well-suited to frequency control and shifting hourly load, they cannot provide seasonal storage or substitute the full range of technical services that conventional plants provide to stabilise the system,’’ the report said.

“In the absence of a major technological breakthrough, it is most likely that batteries will complement rather than substitute ­conventional means of providing system flexibility. While conventional plants continue to provide essential system services, their business model is increasingly being called into question in ­unbundled systems.’’

 

Related News

View more

Why Fort Frances wants to build an integrated microgrid to deliver its electricity

Fort Frances Microgrid aims to boost reliability in Ontario with grid-connected and island modes, Siemens feasibility study, renewable energy integration, EV charging expansion, and resilience modeled after First Nations projects and regional biomass initiatives.

 

Key Points

A community microgrid in Fort Frances enabling grid and island modes to improve reliability and integrate renewables.

✅ Siemens-led feasibility via FedNor funding

✅ Grid-connected or islanded for outage resilience

✅ Integrates renewables, EV charging, and industry growth

 

When the power goes out in Fort Frances, Ont., the community may be left in the dark for hours.

The hydro system's unreliability — caused by its location on the provincial power grid — has prompted the town to seek a creative solution: its own self-contained electricity grid with its own source of power, known as a microgrid. 

Located more than 340 kilometres west of Thunder Bay, Ont., on the border of Minnesota, near the Great Northern Transmission Line corridor, Fort Frances gets its power from a single supply point on Ontario's grid. 

"Sometimes, it's inevitable that we have to have like a six- to eight-hour power outage while equipment is being worked on, and that is no longer acceptable to many of our customers," said Joerg Ruppenstein, president and chief executive officer of Fort Frances Power Corporation.

While Ontario's electrical grid serves the entire province, and national efforts explore macrogrids, a microgrid is contained within a community. Fort Frances hopes to develop an integrated, community-based electric microgrid system that can operate in two modes:

  • Grid-connected mode, which means it's connected to the provincial grid and informed by western grid planning approaches
  • Island mode, which means it's disconnected from the provincial grid and operates independently

The ability to switch between modes allows flexibility. If a storm knocks down a line, the community will still have power.

The town has been given grant funding from the Federal Economic Development Agency for Northern Ontario (FedNor), echoing smart grid funding in Sault Ste. Marie initiatives, for the project. On Monday night, council voted to grant a request for proposal to Siemens Canada Limited to conduct a feasibility study into a microgrid system.

The study, anticipated to be completed by the end of 2023 or early 2024, will assess what an integrated community-based microgrid system could look like in the town of just over 7,000 people, said Faisal Anwar, chief administrative officer of Fort Frances. A timeline for construction will be determined after that. 

The community is still reeling from the closure of the Resolute Forest Products pulp and paper mill in 2014 and faces a declining population, said Ruppenstein. It's hoped the microgrid system will help attract new industry to replace those lost workers and jobs, drawing on Manitoba's hydro experience as a model.

This gives the town a competitive advantage.

"If we were conceivably to attract a larger industrial player that would consume a considerable amount of energy, it would result in reduced rates for everyone…we're the only utility really in Ontario that can offer that model," Ruppenstein said.

The project can also incorporate renewable energy like solar or wind power, as seen in B.C.'s clean energy shift efforts, into the microgrid system, and support the growth of electric vehicles, he said. Many residents fill their gas tanks in Minnesota because it's cheaper, but Fort Frances has the potential to become a hub for electric vehicle charging.

A few remote First Nations have recently switched to microgrid systems fuelled by green energy, including Gull Bay First Nation and Fort Severn First Nation. These are communities that have historically relied on diesel fuel either flown in, which is incredibly expensive, or transported via ice roads, which are seeing shorter seasons each year.

Natural Resources Minister Jonathan Wilkinson was in Thunder Bay, Ont., to announce $35 million for a biomass generation facility in Whitesand First Nation, complementing federal funding for the Manitoba-Saskatchewan transmission line elsewhere in the region.

 

Related News

View more

Ontario Launches Peak Perks Program

Ontario Peak Perks Program boosts energy efficiency with smart thermostats, demand response, and incentives, reducing peak demand, electricity costs, and emissions while supporting grid reliability and Save on Energy initiatives across Ontario businesses and homes.

 

Key Points

A demand response initiative offering incentives via smart thermostats to cut peak electricity use and lower costs

✅ $75 sign-up, $20 yearly enrollment incentive

✅ Up to 10 summer temperature events; opt-out anytime

✅ Expanded retrofits, greenhouse support, grid savings

 

The Ontario government is launching the new Peak Perks program to help families save money by conserving energy, building on bill support during COVID-19 initiatives as part of the government’s $342 million expansion of Ontario’s energy-efficiency programs that will reduce demands on the provincial grid. The government is also launching three new and enhanced programs for businesses, municipalities, and other institutions, including targeted support for greenhouse growers in Southwest Ontario.

“Our government is giving families more ways to lower their energy bills with new energy-efficiency programs like Peak Perks and ultra-low overnight rates available to consumers, which will provide families a $75 financial incentive this year in exchange for lowering their energy use at peak times during the summer,” said Todd Smith, Minister of Energy. “The new programs launched today will also help meet the province’s emerging electricity system needs by providing annual electricity savings equivalent to powering approximately 130,000 homes every year and, alongside electricity cost allocation discussions, reduce costs for consumers by over $650 million by 2025.”

The new Peak Perks program provides a financial incentive for residential customers who are willing to conserve energy and reduce their air conditioning at peak times and have an eligible smart thermostat connected to a central air conditioning system or heat pump unit. Participants will receive $75 for enrolling this year, as well as $20 for each year they stay enrolled in the program starting in 2024.

Residential customers can participate in Peak Perks by enrolling and giving their thermostat manufacturer secure access to their thermostat. Participants will be notified when one of the maximum 10 annual temperature change events occurs directly by their thermostat manufacturer on their mobile app and on their thermostat. Peak Perks has been designed to ensure participants are always in control and customers can opt-out of any temperature change event without impacting their incentive.

The Peak Perks program will be available starting in June. Interested customers can visit SaveOnEnergy.ca/PeakPerks today to sign-up for the program waitlist and receive an email notice with information on how to enroll.

In addition to the financial incentive provided by Peak Perks, reducing electricity use during peak demand hours in the summer months helps customers to lower their monthly electricity bills, and measures such as a temporary off-peak rate freeze have complemented these efforts, as these periods tend to be associated with the highest costs for power. Lowering demand during peak periods also allows the province to reduce electricity sector emissions, by reducing the need for electricity generation facilities that only run at times of peak demand such as natural gas.

Ontario has also launched three new and enhanced programs, including an expanded custom Retrofit program for business, municipalities and other institutions, and industrial electricity rate relief initiatives, targeted support for greenhouse growers in Southwest Ontario, as well enhancements to the existing Local Initiatives Program. The expanded Retrofit program alone will feature over $200 million in dedicated funding to support the new custom energy-efficiency retrofit project stream, that will cover up to 50 percent of the cost of approved projects.

These new and expanded energy-efficiency programs are expected to have a strong impact in Southwest Ontario, with regional peak demand savings of 225 megawatts (MW). This, together with the Ontario-Quebec energy swap agreement, will provide additional capacity for the region and support growing economic development. The overall savings from this energy-efficiency programming will result in an estimated three million tonnes of greenhouse gas emission reductions over its lifetime - the equivalent to taking more than 600,000 vehicles off the road for one year.

“Thanks to energy efficiency efforts over the past 15 years, demand for electricity is today about 12 per cent lower than it otherwise would be,” said Lesley Gallinger, President and CEO, of the Independent Electricity System Operator, Ontario’s grid operator and provider of Save on Energy programs to home and business consumers. “Conservation is a valuable and cost-effective resource that supports system reliability and helps drive economic development as we strive towards compliance with clean electricity regulations for a decarbonized electricity grid.”

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified