Coal capacity to reach 933 GW by 2015
Based on a study regarding the country's optimal future energy structure, the guidelines for the development of power sources in China give top priority to hydropower development and outline ways to optimize the development of coal power. Alternative energy sources and nuclear power will also be actively developed.
During the 12th Five-Year Plan, China's plans for the coal-fired sector include: beginning construction of 300 gigawatts GW of coal-fired power units and putting 290 GW of coal-fired units into operation. The installed capacity of coal-fired units in China is expected to reach 933 GW by 2015, accounting for 67.2 of China's total power generation.
By the end of 2015, the average capacity of individual coal-fired power units will reach 145 megawatts MW, about 40 MW higher than the figure in 2010. Average coal consumption is expected to be 330 grams per kilowatt-hour, about 2.4 lower than the value in 2010.
To achieve this target, China will optimize its coal-fired power development in three ways:
• Large-scale coal-fired power plant construction will be accelerated in regions with rich coal resources, such as Shanxi, North Shaanxi, Ningdong, Junggar, Ordos, Xilin Gol, Huolinhuo, Baoqing, Hami, Zhundong, Yili, Huainan, Longdong and Guizhou.
• The development of combined heat and power projects will be encouraged.
• Clean-coal technology will be developed and promoted.
Related News

A new material made from carbon nanotubes can generate electricity by scavenging energy from its environment
NEW YORK - MIT engineers have discovered a new way of generating electricity using tiny carbon particles that can create a current simply by interacting with liquid surrounding them.
The liquid, an organic solvent, draws electrons out of the particles, generating a current that could be used to drive chemical reactions or to power micro- or nanoscale robots, the researchers say.
"This mechanism is new, and this way of generating energy is completely new," says Michael Strano, the Carbon P. Dubbs Professor of Chemical Engineering at MIT. "This technology is intriguing because all you have to do is flow a solvent through…