More stability for electricity consumers


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today

Alberta Bill 34 stabilizes electricity prices by empowering the Balancing Pool to borrow, smooth wholesale volatility, and extend PPA cost recovery, protecting consumers with rate stability, predictable power bills, and a reliable grid transition.

 

Key Points

Alberta Bill 34 allows Balancing Pool financing to smooth PPA costs and stabilize electricity prices for consumers.

✅ Loan access for Balancing Pool to manage obligations

✅ Spreads PPA costs to 2030 to reduce monthly charges

✅ Smooths wholesale volatility, stabilizing consumer power bills

 

Proposed legislation would further reduce price volatility in the electricity system and support the province’s made-in-Alberta transition to a stable and reliable system under new electricity rules that puts consumers first.

Bill 34, the Electric Utilities Amendment Act, would allow the Balancing Pool to borrow money from the province to manage its funding obligations. This change, in conjunction with Ministerial Orders that allow the Balancing Pool to smooth price volatility over a longer period of time, would support electricity costs remaining low and stable.

Currently, the average electricity consumer receives a Balancing Pool credit of $1.95 on their monthly bill.

Without the changes proposed in Bill 34, including electricity market changes in Alberta, the Balancing Pool would have to remove that credit and apply a charge of $8.40 per month (approximately $100 per year) starting Jan. 1, 2017, with similar charges applied until the end of 2020.

With the changes proposed in Bill 34 and with supporting regulations that give the Balancing Pool until 2030 to meet its net zero obligation, the charge would instead be 67 cents per month for the average consumer. That’s the equivalent of a
0.1 cent/KWh increase in electricity prices, and $7.73 less per month than if the government hadn’t acted. The amount will be reviewed annually and adjusted as necessary based on the wholesale price of electricity, amid Calgary retailer pushback over a broader market overhaul.

The changes – which allow the Balancing Pool to manage the cost of the power companies’ return of PPAs earlier this year – in conjunction with reaching a settlement with one of the PPA buyers and tentative settlements with two others, would protect consumers and provide price stability as the province transitions its electricity system and implements changes to production and payment across the market.

By extending the operations of the Balancing Pool, providing a loan and setting the initial consumer charge under a consumer price cap approach, the province is ensuring that consumers do not see an immediate and disproportionate increase to power bills from the companies returning their power contracts. These changes complement the government’s work with the companies to settle the PPA disputes. The government will continue to work with the Balancing Pool to understand what steps the Balancing Pool could take to further reduce the cost impact on consumers.

Additionally, Robert Bhatia has been appointed to chair the Balancing Pool’s Board of Directors. The appointment is effective November 29, 2016.

Mr. Bhatia brings a wealth of knowledge and experience to the Balancing Pool, particularly in the areas of financial and fiscal management, strategic leadership, policy and legislation, governance, and operations. During his more than 30 years working for the Government of Alberta, Mr. Bhatia worked in government ministries responsible for finance and revenue, most notably in deputy minister roles.

Source: Energy Alberta

 

Related News

Related News

California just made more clean energy than it needed

CAISO Net Negative Emissions signal moments when greenhouse gas intensity of serving ISO demand drops below zero, driven by high renewable generation, low load, strong solar exports, and imports accounting in the California grid.

 

Key Points

Moments when CAISO's CO2 to serve demand is below zero, driven by renewables, exports, and import accounting.

✅ Calculated using imports and exports to serve ISO demand

✅ Occur during high solar output, low weekend load

✅ Coincide with curtailment and record renewable penetration

 

We’re a long way from the land of milk and honey, but on Easter Sunday – for about an hour – we got a taste.

On Sunday, at 1:55 PM Pacific Time the California Independent Systems Operator (CAISO) reported that greenhouse gas emissions necessary to serve its demand (~80% of California’s electricity demand on an annual basis), was measured at a rate -16 metric tons of CO2 per hour. Five minutes later, the value was -2 mTCO2/h, before it crept back up to 40 mTCO2/h at 2:05 PM PST. At 2:10 PST though it fell back to -86 mTCO2/h and stayed negative until 3:05 PM PST, even as global CO2 emissions flatlined in 2019 according to the IEA.

This information was brought to the attention of pv magazine via tweet from eagle eye Jon Pa after CAISO’s site first noted the negative values:

The region was still generating CO2 though, as natural gas, biogas, biomass, geothermal and even coal plants were running and pumping out emissions, even as potent greenhouse gases declined in the US under control efforts. CAISO’s Greenhouse Gas Emission Tracking Methodology, December 28, 2016 (pdf) notes the below calculations to create the value what it terms, “Total GHG emissions to serve ISO demand”:

Of importance to note is that to get to the net negative value, CAISO considered all electricity imports and exports, a reminder that climate policy shapes grid operations across North America. And as can be noted in the image below the CO2 intensity of imports during the day rapidly declined as the sun came up, first going negative around 9:05 AM PST, and mostly staying so until just before 6 PM PST.

During this same weekend, other records were noted (reiterating that we’re in record setting season and as the state pursues its 100% carbon-free mandate now in law) such as a new electricity export record of greater than 2 GW and total renewable electricity as part of total demand at greater than 70%.

At the peak negative moment of 2:15 PM PST, -112 mTCO2/h seen below, the total amount of clean instantaneous generation being used in the power grid region was 17 GW, a far cry from heat-driven reliability strains like rolling blackout warnings that arise during extreme demand, with renewables giving 76% of the total, hydro 14%, nuclear 13% and imports of -12% countering the CO2 coming from just over 1.4 GW of gas generation.

Also of importance are a few layers of nuance in the electricity demand charts. First off we’re in the shoulder seasons  of California – nice cool weather before the warmth of summer drives air conditioning demand. Additional the weekend electricity demand is always lower, as well, Easter Sunday might have had an affect, whereas in colder regions Calgary’s electricity use can soar during frigid snaps.

Lastly to note was the amount of electricity from solar and wind generation being curtailed. And while the Sunday numbers weren’t available yet, the below image noted Saturday with 10 GWh in total being curtailed (pdf) – peaking at over 3.2 GW of instantaneous mostly solar power even as solar is now the cheapest electricity according to the IEA, in the hours of 2 and 3 PM PST. On an annualized basis, less than 2% of total potential solar electricity was curtailed in 2018.

 

 

Related News

View more

US Government Condemns Russia for Power Grid Hacking

Russian Cyberattacks on U.S. Critical Infrastructure target energy grids, nuclear plants, water systems, and aviation, DHS and FBI warn, using spear phishing, malware, and ICS/SCADA intrusion to gain footholds for potential sabotage and disruption.

 

Key Points

State-backed hacks targeting U.S. energy, nuclear, water and aviation via phishing and ICS access for sabotage.

✅ DHS and FBI detail multi-stage intrusion since 2016

✅ Targets include energy, nuclear, water, aviation, manufacturing

✅ TTPs: spear phishing, lateral movement, ICS reconnaissance

 

Russia is attacking the U.S. energy grid, with reported power plant breaches unfolding alongside attacks on nuclear facilities, water processing plants, aviation systems, and other critical infrastructure that millions of Americans rely on, according to a new joint analysis by the FBI and the Department of Homeland Security.

In an unprecedented alert, the US Department of Homeland Security (DHS) and FBI have warned of persistent attacks by Russian government hackers on critical US government sectors, including energy, nuclear, commercial facilities, water, aviation and manufacturing.

The alert details numerous attempts extending back to March 2016 when Russian cyber operatives targeted US government and infrastructure.

The DHS and FBI said: “DHS and FBI characterise this activity as a multi-stage intrusion campaign by Russian government cyber-actors who targeted small commercial facilities’ networks, where they staged malware, conducted spear phishing and gained remote access into energy sector networks.

“After obtaining access, the Russian government cyber-actors conducted network reconnaissance, moved laterally and collected information pertaining to industrial control systems.”

The Trump administration has accused Russia of engineering a series of cyberattacks that targeted American and European nuclear power plants and water and electric systems, and could have sabotaged or shut power plants off at will.

#google#

United States officials and private security firms saw the attacks as a signal by Moscow that it could disrupt the West’s critical facilities in the event of a conflict.

They said the strikes accelerated in late 2015, at the same time the Russian interference in the American election was underway. The attackers had compromised some operators in North America and Europe by spring 2017, after President Trump was inaugurated.

In the following months, according to the DHS/FBI report, Russian hackers made their way to machines with access to utility control rooms and critical control systems at power plants that were not identified. The hackers never went so far as to sabotage or shut down the computer systems that guide the operations of the plants.

Still, new computer screenshots released by the Department of Homeland Security have made clear that Russian state hackers had the foothold they would have needed to manipulate or shut down power plants.

“We now have evidence they’re sitting on the machines, connected to industrial control infrastructure, that allow them to effectively turn the power off or effect sabotage,” said Eric Chien, a security technology director at Symantec, a digital security firm.

“From what we can see, they were there. They have the ability to shut the power off. All that’s missing is some political motivation,” Mr. Chien said.

American intelligence agencies were aware of the attacks for the past year and a half, and the Department of Homeland Security and the F.B.I. first issued urgent warnings to utility companies in June, 2017. Both DHS/FBI have now offered new details as the Trump administration imposed sanctions against Russian individuals and organizations it accused of election meddling and “malicious cyberattacks.”

It was the first time the administration officially named Russia as the perpetrator of the assaults. And it marked the third time in recent months that the White House, departing from its usual reluctance to publicly reveal intelligence, blamed foreign government forces for attacks on infrastructure in the United States.

In December, the White House said North Korea had carried out the so-called WannaCry attack that in May paralyzed the British health system and placed ransomware in computers in schools, businesses and homes across the world. Last month, it accused Russia of being behind the NotPetya attack against Ukraine last June, the largest in a series of cyberattacks on Ukraine to date, paralyzing the country’s government agencies and financial systems.

But the penalties have been light. So far, President Trump has said little to nothing about the Russian role in those attacks.

The groups that conducted the energy attacks, which are linked to Russian intelligence agencies, appear to be different from the two hacking groups that were involved in the election interference.

That would suggest that at least three separate Russian cyberoperations were underway simultaneously. One focused on stealing documents from the Democratic National Committee and other political groups. Another, by a St. Petersburg “troll farm” known as the Internet Research Agency, used social media to sow discord and division. A third effort sought to burrow into the infrastructure of American and European nations.

For years, American intelligence officials tracked a number of Russian state-sponsored hacking units as they successfully penetrated the computer networks of critical infrastructure operators across North America and Europe, including in Ukraine.

Some of the units worked inside Russia’s Federal Security Service, the K.G.B. successor known by its Russian acronym, F.S.B.; others were embedded in the Russian military intelligence agency, known as the G.R.U. Still others were made up of Russian contractors working at the behest of Moscow.

Russian cyberattacks surged last year, starting three months after Mr. Trump took office.

American officials and private cybersecurity experts uncovered a series of Russian attacks aimed at the energy, water and aviation sectors and critical manufacturing, including nuclear plants, in the United States and Europe. In its urgent report in June, the Department of Homeland Security and the F.B.I. notified operators about the attacks but stopped short of identifying Russia as the culprit.

By then, Russian spies had compromised the business networks of several American energy, water and nuclear plants, mapping out their corporate structures and computer networks.

They included that of the Wolf Creek Nuclear Operating Corporation, which runs a nuclear plant near Burlington, Kan. But in that case, and those of other nuclear operators, Russian hackers had not leapt from the company’s business networks into the nuclear plant controls.

Forensic analysis suggested that Russian spies were looking for inroads — although it was not clear whether the goal was to conduct espionage or sabotage, or to trigger an explosion of some kind.

In a report made public in October, Symantec noted that a Russian hacking unit “appears to be interested in both learning how energy facilities operate and also gaining access to operational systems themselves, to the extent that the group now potentially has the ability to sabotage or gain control of these systems should it decide to do so.”

The United States sometimes does the same thing. It bored deeply into Iran’s infrastructure before the 2015 nuclear accord, placing digital “implants” in systems that would enable it to bring down power grids, command-and-control systems and other infrastructure in case a conflict broke out. The operation was code-named “Nitro Zeus,” and its revelation made clear that getting into the critical infrastructure of adversaries is now a standard element of preparing for possible conflict.

 


Reconstructed screenshot fragments of a Human Machine Interface that the threat actors accessed, according to DHS


Sanctions Announced

The US treasury department has imposed sanctions on 19 Russian people and five groups, including Moscow’s intelligence services, for meddling in the US 2016 presidential election and other malicious cyberattacks.

Russia, for its part, has vowed to retaliate against the new sanctions.

The new sanctions focus on five Russian groups, including the Russian Federal Security Service, the country’s military intelligence apparatus, and the digital propaganda outfit called the Internet Research Agency, as well as 19 people, some of them named in the indictment related to election meddling released by special counsel Robert Mueller last month.

In announcing the sanctions, which will generally ban U.S. people and financial institutions from doing business with those people and groups, the Treasury Department pointed to alleged Russian election meddling, involvement in the infrastructure hacks, and the NotPetya malware, which the Treasury Department called “the most destructive and costly cyberattack in history.”

The new sanctions come amid ongoing criticism of the Trump administration’s reluctance to punish Russia for cyber and election meddling. Sen. Mark Warner (D-Va.) said that, ahead of the 2018 mid-term elections, the administration’s decision was long overdue but not enough. “Nearly all of the entities and individuals who were sanctioned today were either previously under sanction during the Obama Administration, or had already been charged with federal crimes by the Special Counsel,” Warner said.

 

Warning: The Russians Are Coming

In an updated warning to utility companies, DHS/FBI officials included a screenshot taken by Russian operatives that proved they could now gain access to their victims’ critical controls, prompting a renewed focus on protecting the U.S. power grid among operators.

American officials and security firms, including Symantec and CrowdStrike, believe that Russian attacks on the Ukrainian power grid in 2015 and 2016 that left more than 200,000 citizens there in the dark are an ominous sign of what the Russian cyberstrikes may portend in the United States and Europe in the event of escalating hostilities.

Private security firms have tracked the Russian government assaults on Western power and energy operators — conducted alternately by groups under the names Dragonfly campaigns alongside Energetic Bear and Berserk Bear — since 2011, when they first started targeting defense and aviation companies in the United States and Canada.

By 2013, researchers had tied the Russian hackers to hundreds of attacks on the U.S. power grid and oil and gas pipeline operators in the United States and Europe. Initially, the strikes appeared to be motivated by industrial espionage — a natural conclusion at the time, researchers said, given the importance of Russia’s oil and gas industry.

But by December 2015, the Russian hacks had taken an aggressive turn. The attacks were no longer aimed at intelligence gathering, but at potentially sabotaging or shutting down plant operations.

At Symantec, researchers discovered that Russian hackers had begun taking screenshots of the machinery used in energy and nuclear plants, and stealing detailed descriptions of how they operated — suggesting they were conducting reconnaissance for a future attack.

Eventhough the US government enacted sanctions, cybersecurity experts are still questioning where the Russian attacks could lead, given that the United States was sure to respond in kind.

“Russia certainly has the technical capability to do damage, as it demonstrated in the Ukraine,” said Eric Cornelius, a cybersecurity expert at Cylance, a private security firm, who previously assessed critical infrastructure threats for the Department of Homeland Security during the Obama administration.

“It is unclear what their perceived benefit would be from causing damage on U.S. soil, especially given the retaliation it would provoke,” Mr. Cornelius said.

Though a major step toward deterrence, publicly naming countries accused of cyberattacks still is unlikely to shame them into stopping. The United States is struggling to come up with proportionate responses to the wide variety of cyberespionage, vandalism and outright attacks.

Lt. Gen. Paul Nakasone, who has been nominated as director of the National Security Agency and commander of United States Cyber Command, the military’s cyberunit, said during his recent Senate confirmation hearing, that countries attacking the United States so far have little to worry about.

“I would say right now they do not think much will happen to them,” General Nakasone said. He later added, “They don’t fear us.”

 

 

Related News

View more

A Snapshot of the US Market for Smart Solar Inverters

Smart solar inverters anchor DER communications and control, meeting IEEE 1547 and California Rule 21 for volt/VAR, reactive power, and ride-through, expanding hosting capacity and enabling grid services via secure real-time telemetry and commands.

 

Key Points

Smart solar inverters use IEEE 1547, volt/VAR and reactive power to stabilize circuits and integrate DER safely.

✅ Meet IEEE 1547, Rule 21 ride-through and volt/VAR functions

✅ Support reactive power to manage voltage and hosting capacity

✅ Enable utility communications, telemetry, and grid services

 

Advanced solar inverters could be one of the biggest distributed energy resource communications and control points out there someday. With California now requiring at least early-stage “smart” capabilities from all new solar projects — and a standards road map for next-stage efforts like real-time communications and active controls — this future now has a template.

There are still a lot of unanswered questions about how smart inverters will be used.

That was the consensus at Intersolar this week, where experts discussed the latest developments on the U.S. smart solar inverter front. After years of pilot projects, multi-stakeholder technical working groups, and slow and steady standards development, solar smart inverters are finally starting to hit the market en masse — even if it’s not yet clear just what will be done with them once they’re installed.

“From the technical perspective, the standards are firm,” Roger Salas, distribution engineering manager for Southern California Edison, said. In September of last year, his utility started requiring that all new solar installations come with “Phase 1" advanced inverter functionality, as defined under the state’s Rule 21.

Later this month, it’s going to start requiring “reactive power priority” for these inverters, and in February 2019, it’s going to start requiring that inverters support the communications capabilities described in “Phase 2,” as well as some more advanced “Phase 3” capabilities.

 

Increasing hosting capacity: A win-win for solar and utilities

Each of these phases aligns with a different value proposition for smart inverters. The first phase is largely preventative, aimed at solving the kinds of problems that have forced costly upgrades to how inverters operate in solar-heavy Germany and Hawaii.

The key standard in question in the U.S. is IEEE 1547, which sets the rules for what grid-connected DERs must do to stay safe, such as trip offline when the grid goes down, or avoid overloading local transformers or circuits.

The old version of the standard, however, had a lot of restrictive rules on tripping off during relatively common voltage excursions, which could cause real problems on circuits with a lot of solar dropping off all at once.

Phase 1 implementation of IEEE 1547 is all about removing these barriers, Salas said. “They need to be stable, they need to be connected, they need to be able to support the grid.”

This should increase hosting capacity on circuits that would have otherwise been constrained by these unwelcome behaviors, he said.

 

Reactive power: Where utility and solar imperatives collide

The old versions of IEEE 1547 also didn’t provide rules for how inverters could use one of their more flexible capabilities: the ability to inject or absorb reactive power to mitigate voltage fluctuations, including those that may be caused by the PV itself. The new version opens up this capability, which could allow for an active application of reactive power to further increase hosting capacity, as well as solve other grid edge challenges for utilities.

But where utilities see opportunity, the solar industry sees a threat. Every unit of reactive power comes at the cost of a reduction in the real power output of solar inverters — and almost every solar installation out there is paid based on the real power it produces.

“If you’re tasked to do things that rob your energy sales, that will reduce compensation,” noted Ric O'Connell, executive director of the Oakland, Calif.-based GridLab. “And a lot of systems have third-party owners — the Sunruns, the Teslas — with growing Powerwall fleets — that have contracts, performance guarantees, and they want to get those financed. It’s harder to do that if there’s uncertainty in the future with curtailment."

“That’s the bottleneck right now,” said Daniel Munoz-Alvarez, a GTM Research grid edge analyst. “As we develop markets on the retail end for ...volt/VAR control to be compensated on the grid edge and that is compensated back to the customer, then the customer will be more willing to allow the utility to control their smart inverters or to allow some automation.”

But first, he said, “We need some agreed-upon functions.”

 

The future: Communications, controls and DER integration

The next stage of smart inverter functionality is establishing communications with the utility. After that, utilities will be able use them to monitor key DER data, or issue disconnect and reconnect commands in emergencies, as well as actively orchestrate other utility devices and systems through emerging virtual power plant strategies across their service areas.

This last area is where Salas sees the greatest opportunity to putting mass-market smart solar inverters to use. “If you want to maximize the DERs and what they can do, the need information from the grid. And DERs provide operational and capability information to the utility.”

Inverter makers have already been forced by California to enable the latest IEEE 1547 capabilities into their existing controls systems — but they are clearly embracing the role that their devices can play on the grid as well. Microinverter maker Enphase leveraged its work in Hawaii into a grid services business, seeking to provide data to utilities where they already had a significant number of installations. While Enphase has since scaled back dramatically, its main rival SolarEdge has taken up the same challenge, launching its own grid services arm earlier this summer.

Inverters have been technically capable of doing most of these things for a long time. But utilities and regulators have been waiting for the completion of IEEE 1547 to move forward decisively. Patrick Dalton, senior engineer for Xcel Energy, said his company’s utilities in Colorado and Minnesota are still several years away from mandating advanced inverter capabilities and are waiting for California’s energy transition example in order to choose a path forward.

In the meantime, it’s possible that Xcel's front-of-meter volt/VAR optimization investments in Colorado, including grid edge devices from startup Varentec, could solve many of the issues that have been addressed by smart inverter efforts in Hawaii and California, he noted.

The broader landscape for rolling out smart inverters for solar installations hasn’t changed much, with Hawaii and California still out ahead of the pack, while territories such as Puerto Rico microgrid rules evolve to support resilience. Arizona is the next most important state, with a high penetration of distributed solar, a contentious policy climate surrounding its proper treatment in future years, and a big smart inverter pilot from utility Arizona Public Service to inform stakeholders.

All told, eight separate smart inverter pilots are underway across eight states at present, according to GTM Research: Pacific Gas & Electric and San Diego Gas & Electric in California; APS and Salt River Project in Arizona; Hawaiian Electric in Hawaii; Duke Energy in North Carolina; Con Edison in New York; and a three-state pilot funded by the Department of Energy’s SunShot program and led by the Electric Power Research Institute.

 

Related News

View more

Why Is Georgia Importing So Much Electricity?

Georgia Electricity Imports October 2017 surged as hydropower output fell and thermal power plants underperformed; ESCO balanced demand via low-cost imports, mainly from Azerbaijan, amid rising tariffs, kWh consumption growth, and a widening generation-consumption gap.

 

Key Points

They mark a record import surge due to costly local generation, lower hydropower, ESCO balancing costs, and rising demand.

✅ Imports rose 832% YoY to 157 mln kWh, mainly from Azerbaijan

✅ TPP output fell despite capacity; only low-tariff plants ran

✅ Balancing price 13.8 tetri/kWh signaled costly domestic PPAs

 

In October 2017, Georgian power plants generated 828 mln. KWh of electricity, marginally up (+0.79%) compared to September. Following the traditional seasonal pattern and amid European concerns over dispatchable power shortages affecting markets, the share of electricity produced by renewable sources declined to 71% of total generation (87% in September), while thermal power generation’s share increased, accounting for 29% of total generation (compared to 13% in September). When we compare last October’s total generation with the total generation of October 2016, however, we observe an 8.7% decrease in total generation (in October 2016, total generation was 907 mln. kWh). The overall decline in generation with respect to the previous year is due to a simultaneous decline in both thermal power and hydro power generation. 

Consumption of electricity on the local market in the same period was 949 mln. kWh (+7% compared to October 2016, and +3% with respect to September 2017), and reflected global trends such as India's electricity growth in recent years. The gap between consumption and generation increased to 121 mln. kWh (15% of the amount generated in October), up from 100 mln. kWh in September. Even more importantly, the situation was radically different with respect to the prior year, when generation exceeded consumption.

The import figure for October was by far the highest from the last 12 years (since ESCO was established), occurring as Ukraine electricity exports resumed regionally, highlighting wider cross-border dynamics. In October 2017, Georgia imported 157 mln. kWh of electricity (for 5.2 ¢/kWh – 13 tetri/kWh). This constituted an 832% increase compared to October 2016, and is about 50% larger than the second largest import figure (104.2 mln. kWh in October 2014). Most of the October 2017 imports (99.6%) came from Azerbaijan, with the remaining 0.04% coming from Russia.

The main question that comes to mind when observing these statistics is: why did Georgia import so much? One might argue that this is just the result of a bad year for hydropower generation and increased demand. This argument, however, is not fully convincing. While it is true that hydropower generation declined and demand increased, the country’s excess demand could have been easily satisfied by its existing thermal power plants, even as imported coal volumes rose in regional markets. Instead of increasing, however, the electricity coming from thermal power plants declined as well. Therefore, that cannot be the reason, and another must be found. The first that comes to mind is that importing electricity may have been cheaper than buying it from local TPPs, or from other generators selling electricity to ESCO under power purchase agreements (PPAs). We can test the first part of this hypothesis by comparing the average price of imported electricity to the price ceiling on the tariff that TPPs can charge for the electricity they sell. Looking at the trade statistics from Geostat, the average price for imported electricity in October 2017 remained stable with respect to the same month of the previous year, at 5.2 ¢ (13 tetri) per kWh. Only two thermal power plants (Gardabani and Mtkvari) had a price ceiling below 13 tetri per kWh. Observing the electricity balance of Georgia, we see that indeed more than 98% of the electricity generated by TPPs in October 2017 was generated by those two power plants.

What about other potential sources of electricity amid Central Asia's power shortages at the time? To answer this question, we can use the information derived from the weighted average price of balancing electricity. Why balancing electricity? Because it allows us to reconstruct the costs the market operator (ESCO) faced during the month of October to make sure demand and supply were balanced, and it allows us to gain an insight about the price of electricity sold through PPAs.

ESCO reports that the weighted average price of balancing electricity in October 2017 was 13.8 tetri/kWh, (25% higher than in October 2016, when it was below the average weighted cost of imports – 11 vs. 13 – and when the quantity of imported electricity was substantially smaller). Knowing that in October 2017, 61% of balancing electricity came from imports, while 39% came from hydropower and wind power plants selling electricity to ESCO under their PPAs, we can deduce that in this case, internal generation was (on average) also substantially more expensive than imports. Therefore, the high cost of internally generated electricity, rather than the technical impossibility of generating enough electricity to satisfy electricity demand, indeed appears to be one the main reasons why electricity imports spiked in October 2017.

 

Related News

View more

Coal CEO blasts federal agency's decision on power grid

FERC Rejects Trump Coal Plan, denying subsidies for coal-fired and nuclear plants as energy policy shifts toward natural gas and renewables, citing no grid reliability threat and warning about electricity prices and market impacts.

 

Key Points

FERC unanimously rejected subsidies for coal and nuclear plants, finding no grid reliability risk from retirements.

✅ Unanimous FERC vote rejects coal and nuclear compensation

✅ Cites no threat to grid reliability from plant retirements

✅ Opponents warned subsidies would distort power markets and prices

 

A decision by an independent energy agency to reject the Trump administration’s electricity pricing plan to bolster the coal industry could lead to more closures of coal-fired power plants and the loss of thousands of jobs, a top coal executive said Tuesday.

Robert Murray, CEO of Ohio-based Murray Energy Corp., called the action by the Federal Energy Regulatory Commission “a bureaucratic cop-out” that will raise the cost of electricity and jeopardize the reliability and security of the nation’s electric grid.

“While FERC commissioners sit on their hands and refuse to take the action directed by Energy Secretary Rick Perry and President Donald Trump, the decommissioning of more coal-fired and nuclear plants could result, further jeopardizing the reliability, resiliency and security of America’s electric power grids,” Murray said. “It will also raise the cost of electricity for all Americans.”

The five-member energy commission voted unanimously Monday to reject Trump’s plan to reward nuclear and coal-fired power plants for adding reliability to the nation’s power grid. The plan would have made the plants eligible for billions of dollars in government subsidies and help reverse a tide of bankruptcies and loss of market share suffered by the once-dominant coal industry as utilities' shift to natural gas and renewable energy continues.

The Republican-controlled commission said there’s no evidence that any past or planned retirements of coal-fired power plants pose a threat to reliability of the nation’s electric grid.

Murray disputed that and said the recent cold snap that hit the East Coast showed coal’s value, as power users in the Southeast were asked to cut back on electricity usage because of a shortage of natural gas. “If it were not for the electricity generated by our nation’s coal-fired and nuclear power plants, we would be experiencing massive brownouts risk and blackouts in this country,” he said.

Murray Energy is the largest privately owned coal company in the United States, with mining operations in Ohio, Illinois, Kentucky, Utah and West Virginia. Robert Murray, a Trump friend and political supporter, has been pushing hard for federal assistance for his industry. The Associated Press reported last year that Murray asked the Trump administration to issue an emergency order protecting coal-fired power plants from closing. Murray warned that failure to act could cause thousands of coal miners to be laid off and force his largest customer, Ohio-based FirstEnergy Solutions, into bankruptcy.

Perry ultimately rejected Murray’s request, but later asked energy regulators to boost coal and nuclear plants as the administration moved to replace the Clean Power Plan with a more limited approach.

The plan drew widespread opposition from business and environmental groups that frequently disagree with each other, even as some coal and business interests backed the EPA's Affordable Clean Energy rule in court.

Jack Gerard, president and CEO of the American Petroleum Institute, said Tuesday that the Trump plan was “far too narrow” in its focus on power sources that maintain a 90-day fuel supply.

API, the largest lobbying group for oil and gas industry, supports coal and other energy sources, Gerard said, “but we should not put our eggs in an individual basket defined as a 90-day fuel supply (while) unnecessarily intervening in private markets.”

 

Related News

View more

How Synchrophasors are Bringing the Grid into the 21st Century

Synchrophasors deliver PMU-based, real-time monitoring for the smart grid, helping NYISO prevent blackouts, cut costs, and integrate renewables, with DOE-backed deployments boosting reliability, situational awareness, and data sharing across regional partners.

 

Key Points

Synchrophasors, or PMUs, are grid sensors that measure synced voltage, current, and frequency to enhance reliability.

✅ Real-time grid visibility and situational awareness

✅ Early fault detection to prevent cascading outages

✅ Supports renewable integration and lowers operating costs

 

Have you ever heard of a synchrophasor? It may sound like a word out of science fiction, but these mailbox-sized devices are already changing the electrical grid as we know it.

The grid was born over a century ago, at a time when our needs were simpler and our demand much lower. More complex needs are putting a heavy strain on the aging infrastructure, which is why we need to innovate and update our grid with investments in a smarter electricity infrastructure so it’s ready for the demands of today.

That’s where synchrophasors come in.

A synchrophasor is a sophisticated monitoring device that can measure the instantaneous voltage, current and frequency at specific locations on the grid. This gives operators a near-real-time picture of what is happening on the system, including insights into power grid vulnerabilities that allow them to make decisions to prevent power outages.

Just yesterday I attended the dedication of the New York Independent System Operator's smart grid control center, a $75 million project that will use these devices to locate grid problems at an early stage and share these data with their regional partners. This should mean fewer blackouts for the State of New York. I would like to congratulate NYISO for being a technology leader.

And not only will these synchrophasors help prevent outages, but they also save money. By providing more accurate and timely data on system limits, synchrophasors make the grid more reliable and efficient, thereby reducing planning and operations costs and addressing grid modernization affordability concerns for utilities.

The Department has worked with utilities across the country to increase the number of synchrophasors five-fold -- from less than 200 in 2009 to over 1,700 today. And this is just a part of our commitment to making a smarter, more resilient grid a reality, reinforced by grid improvement funding from DOE.

In September 2013, the US Department of Energy announced up to $9 million in funding to facilitate rapid response to unusual grid conditions. As a result, utilities will be able to better detect and head off potential blackouts, while improving day-to-day grid reliability and helping with the integration of solar into the grid and other clean renewable sources.

If you’d like to learn more about our investments in the smart grid and how they are improving our electrical infrastructure, please visit the Office of Electricity Delivery and Energy Reliability’s www.smartgrid.gov.

Patricia Hoffman is Assistant Secretary, Office of Electricity Delivery & Energy Reliability

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.