More stability for electricity consumers


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today

Alberta Bill 34 stabilizes electricity prices by empowering the Balancing Pool to borrow, smooth wholesale volatility, and extend PPA cost recovery, protecting consumers with rate stability, predictable power bills, and a reliable grid transition.

 

Key Points

Alberta Bill 34 allows Balancing Pool financing to smooth PPA costs and stabilize electricity prices for consumers.

✅ Loan access for Balancing Pool to manage obligations

✅ Spreads PPA costs to 2030 to reduce monthly charges

✅ Smooths wholesale volatility, stabilizing consumer power bills

 

Proposed legislation would further reduce price volatility in the electricity system and support the province’s made-in-Alberta transition to a stable and reliable system under new electricity rules that puts consumers first.

Bill 34, the Electric Utilities Amendment Act, would allow the Balancing Pool to borrow money from the province to manage its funding obligations. This change, in conjunction with Ministerial Orders that allow the Balancing Pool to smooth price volatility over a longer period of time, would support electricity costs remaining low and stable.

Currently, the average electricity consumer receives a Balancing Pool credit of $1.95 on their monthly bill.

Without the changes proposed in Bill 34, including electricity market changes in Alberta, the Balancing Pool would have to remove that credit and apply a charge of $8.40 per month (approximately $100 per year) starting Jan. 1, 2017, with similar charges applied until the end of 2020.

With the changes proposed in Bill 34 and with supporting regulations that give the Balancing Pool until 2030 to meet its net zero obligation, the charge would instead be 67 cents per month for the average consumer. That’s the equivalent of a
0.1 cent/KWh increase in electricity prices, and $7.73 less per month than if the government hadn’t acted. The amount will be reviewed annually and adjusted as necessary based on the wholesale price of electricity, amid Calgary retailer pushback over a broader market overhaul.

The changes – which allow the Balancing Pool to manage the cost of the power companies’ return of PPAs earlier this year – in conjunction with reaching a settlement with one of the PPA buyers and tentative settlements with two others, would protect consumers and provide price stability as the province transitions its electricity system and implements changes to production and payment across the market.

By extending the operations of the Balancing Pool, providing a loan and setting the initial consumer charge under a consumer price cap approach, the province is ensuring that consumers do not see an immediate and disproportionate increase to power bills from the companies returning their power contracts. These changes complement the government’s work with the companies to settle the PPA disputes. The government will continue to work with the Balancing Pool to understand what steps the Balancing Pool could take to further reduce the cost impact on consumers.

Additionally, Robert Bhatia has been appointed to chair the Balancing Pool’s Board of Directors. The appointment is effective November 29, 2016.

Mr. Bhatia brings a wealth of knowledge and experience to the Balancing Pool, particularly in the areas of financial and fiscal management, strategic leadership, policy and legislation, governance, and operations. During his more than 30 years working for the Government of Alberta, Mr. Bhatia worked in government ministries responsible for finance and revenue, most notably in deputy minister roles.

Source: Energy Alberta

 

Related News

Related News

Russia to Ban Bitcoin Mining Amid Electricity Deficit

Russia Bitcoin Mining Ban highlights electricity deficits, grid stability concerns, and sustainability challenges, prompting stricter cryptocurrency regulation as mining operations in Siberia face shutdowns, relocations, and renewed focus on energy efficiency and resource allocation.

 

Key Points

Policy halting Bitcoin mining in key regions to ease electricity deficits, stabilize the grid, and prioritize energy.

✅ Targets high-load regions like Siberia facing electricity deficits

✅ Protects residential and industrial energy security, limits outages

✅ Prompts miner relocations, regulation, and potential renewables

 

In a significant shift in its stance on cryptocurrency, Russia has announced plans to ban Bitcoin mining in several key regions, primarily due to rising electricity deficits. This move highlights the ongoing tensions between energy management and the growing demand for cryptocurrency mining, which has sparked a robust debate about sustainability and resource allocation in the country.

Background on Bitcoin Mining in Russia

Russia has long been a major player in the global cryptocurrency landscape, particularly in Bitcoin mining. The country’s vast and diverse geography offers ample opportunities for mining, with several regions boasting low electricity costs and cooler climates that are conducive to operating the high-powered computers used for mining, similar to Iceland's mining boom in cold regions.

However, the boom in mining activities has put a strain on local electricity grids, as seen with BC Hydro suspensions in Canada, particularly as demand for energy continues to rise. This situation has become increasingly untenable, leading government officials to reconsider the viability of allowing large-scale mining operations.

Reasons for the Ban

The decision to ban Bitcoin mining in certain regions stems from a growing electricity deficit that has been exacerbated by both rising temperatures and increased energy consumption. Reports indicate that some regions are struggling to meet domestic energy needs, and jurisdictions like Manitoba's pause on crypto connections reflect similar grid concerns, particularly during peak consumption periods. Officials have expressed concern that continuing to support cryptocurrency mining could lead to blackouts and further strain on the electrical infrastructure.

Additionally, this ban is seen as a measure to redirect energy resources toward more critical sectors, including residential heating and industrial needs. By curbing Bitcoin mining, the government aims to prioritize the energy security of its citizens and maintain stability within its energy markets and the wider global electricity market dynamics.

Regional Impact

The regions targeted by the ban include areas that have seen a significant influx of mining operations, often attracted by the low costs of electricity. For instance, Siberia, known for its abundant natural resources and inexpensive power, has become a major center for miners. The ban is likely to have profound implications for local economies that have come to rely on the influx of investments from cryptocurrency companies.

Many miners are expected to be affected financially as they may have to halt operations or relocate to regions with more favorable regulations. This could lead to job losses and a decline in local business activities that have sprung up around the mining industry, such as hardware suppliers and tech services.

Broader Implications for Cryptocurrency in Russia

This ban reflects a broader trend within Russia’s approach to cryptocurrencies. While the government has been cautious about outright banning digital currencies, it has simultaneously sought to regulate the industry more stringently. Recent legislation has aimed to establish a legal framework for cryptocurrencies, focusing on taxation and oversight while navigating the balance between innovation and regulation.

As other countries around the world grapple with the implications of cryptocurrency mining, Russia’s decision adds to the narrative of the challenges associated with energy consumption in this sector. The international community is increasingly aware of the environmental impact of Bitcoin mining, which has come under fire for its significant energy use and carbon footprint.

Future of Mining in Russia

Looking ahead, the future of Bitcoin mining in Russia remains uncertain. While some regions may implement strict bans, others could potentially embrace a more regulated approach to mining, provided it aligns with energy availability and environmental considerations. The country’s vast landscape offers opportunities for innovative solutions, such as utilizing renewable energy sources, even as India's solar growth slows amid rising coal generation, to power mining operations.

As global attitudes toward cryptocurrency evolve, Russia will likely continue to adapt its policies in response to both domestic energy needs and international pressures, including Europe's shift away from Russian energy that influence policy choices. The balance between fostering a competitive cryptocurrency market and ensuring energy sustainability will be a key challenge for Russian policymakers moving forward.

Russia’s decision to ban Bitcoin mining in key regions marks a pivotal moment in the intersection of cryptocurrency and energy management. As the nation navigates its energy deficits, the implications for the mining industry and the broader cryptocurrency landscape will be significant. This move not only underscores the need for responsible energy consumption in the digital age but also reflects the complexities of integrating emerging technologies within existing frameworks of governance and infrastructure. As the situation unfolds, all eyes will be on how Russia balances innovation with sustainability in its approach to cryptocurrency.

 

Related News

View more

Coal CEO blasts federal agency's decision on power grid

FERC Rejects Trump Coal Plan, denying subsidies for coal-fired and nuclear plants as energy policy shifts toward natural gas and renewables, citing no grid reliability threat and warning about electricity prices and market impacts.

 

Key Points

FERC unanimously rejected subsidies for coal and nuclear plants, finding no grid reliability risk from retirements.

✅ Unanimous FERC vote rejects coal and nuclear compensation

✅ Cites no threat to grid reliability from plant retirements

✅ Opponents warned subsidies would distort power markets and prices

 

A decision by an independent energy agency to reject the Trump administration’s electricity pricing plan to bolster the coal industry could lead to more closures of coal-fired power plants and the loss of thousands of jobs, a top coal executive said Tuesday.

Robert Murray, CEO of Ohio-based Murray Energy Corp., called the action by the Federal Energy Regulatory Commission “a bureaucratic cop-out” that will raise the cost of electricity and jeopardize the reliability and security of the nation’s electric grid.

“While FERC commissioners sit on their hands and refuse to take the action directed by Energy Secretary Rick Perry and President Donald Trump, the decommissioning of more coal-fired and nuclear plants could result, further jeopardizing the reliability, resiliency and security of America’s electric power grids,” Murray said. “It will also raise the cost of electricity for all Americans.”

The five-member energy commission voted unanimously Monday to reject Trump’s plan to reward nuclear and coal-fired power plants for adding reliability to the nation’s power grid. The plan would have made the plants eligible for billions of dollars in government subsidies and help reverse a tide of bankruptcies and loss of market share suffered by the once-dominant coal industry as utilities' shift to natural gas and renewable energy continues.

The Republican-controlled commission said there’s no evidence that any past or planned retirements of coal-fired power plants pose a threat to reliability of the nation’s electric grid.

Murray disputed that and said the recent cold snap that hit the East Coast showed coal’s value, as power users in the Southeast were asked to cut back on electricity usage because of a shortage of natural gas. “If it were not for the electricity generated by our nation’s coal-fired and nuclear power plants, we would be experiencing massive brownouts risk and blackouts in this country,” he said.

Murray Energy is the largest privately owned coal company in the United States, with mining operations in Ohio, Illinois, Kentucky, Utah and West Virginia. Robert Murray, a Trump friend and political supporter, has been pushing hard for federal assistance for his industry. The Associated Press reported last year that Murray asked the Trump administration to issue an emergency order protecting coal-fired power plants from closing. Murray warned that failure to act could cause thousands of coal miners to be laid off and force his largest customer, Ohio-based FirstEnergy Solutions, into bankruptcy.

Perry ultimately rejected Murray’s request, but later asked energy regulators to boost coal and nuclear plants as the administration moved to replace the Clean Power Plan with a more limited approach.

The plan drew widespread opposition from business and environmental groups that frequently disagree with each other, even as some coal and business interests backed the EPA's Affordable Clean Energy rule in court.

Jack Gerard, president and CEO of the American Petroleum Institute, said Tuesday that the Trump plan was “far too narrow” in its focus on power sources that maintain a 90-day fuel supply.

API, the largest lobbying group for oil and gas industry, supports coal and other energy sources, Gerard said, “but we should not put our eggs in an individual basket defined as a 90-day fuel supply (while) unnecessarily intervening in private markets.”

 

Related News

View more

Energy Efficiency and Demand Response Can Nearly Level Southeast Electricity Demand for More than a Decade

Southeast Electricity Demand Forecast examines how energy efficiency, photovoltaics, electric vehicles, heat pumps, and demand response shape grid needs, stabilize load through 2030, shift peaks, and inform utility planning across the region.

 

Key Points

An outlook of load shaped by efficiency, solar, EVs, with demand response keeping usage steady through 2030.

✅ Stabilizes regional demand through 2030 under accelerated adoption

✅ Energy efficiency and demand response are primary levers

✅ EVs and heat pumps drive growth post 2030; shift winter peaks

 

Electricity markets in the Southeast are facing many changes on the customer side of the meter. In a new report released today, we look at how energy efficiency, photovoltaics (solar electricity), electric vehicles, heat pumps, and demand response (shifting loads from periods of high demand) might affect electricity needs in the Southeast.

We find that if all of these resources are pursued on an accelerated basis, electricity demand in the region can be stabilized until about 2030.

After that, demand will likely grow in the following decade because of increased market penetration of electric vehicles and heat pumps, but energy planners will have time to deal with this growth if these projections are borne out. We also find that energy efficiency and demand response can be vital for managing electricity supply and demand in the region and that these resources can help contain energy demand growth, reducing the impact of expensive new generation on consumer wallets.

 

National trends

This is the second ACEEE report looking at regional electricity demand. In 2016, we published a study on electricity consumption in New England, finding an even more pronounced effect. For New England, with even more aggressive pursuit of energy efficiency and these other resources, consumption was projected to decline through about 2030, before rebounding in the following decade.

These regional trends fit into a broader national pattern. In the United States, electricity consumption has been characterized by flat electricity demand for the past decade. Increased energy efficiency efforts have contributed to this lack of consumption growth, even as the US economy has grown since the Great Recession. Recently, the US Energy Information Administration (EIA – a branch of the US Department of Energy) released data on US electricity consumption in 2016, finding that 2016 consumption was 0.3% below 2015 consumption, and other analysts reported a 1% slide in 2023 on milder weather.

 

Five scenarios for the Southeast

ACEEE’s new study focuses on the Southeast because it is very different from New England, with warmer weather, more economic growth, and less-aggressive energy efficiency and distributed energy policies than the Northeast. For the Southeast, we examined five scenarios: a business-as-usual scenario; two alternative scenarios with progressively higher levels of energy efficiency, photovoltaics informed by a solar strategy for the South that is emerging regionally, electric vehicles, heat pumps, and demand response; and two scenarios combining high numbers of electric vehicles and heat pumps with more modest levels of the other resources. This figure presents electricity demand for each of these scenarios:

Over the 2016-2040 period, we project that average annual growth will range from 0.1% to 1.0%, depending on the scenario, much slower than historic growth in the region. Energy efficiency is generally the biggest contributor to changes in projected 2040 electricity consumption relative to the business-as-usual scenario, as shown in the figure below, which presents our accelerated scenario that is based on levels of energy efficiency and other resources now targeted by leading states and utilities in the Southeast.

To date, Entergy Arkansas has achieved the annual efficiency savings as a percent of sales shown in the accelerated scenario and Progress Energy (a division of Duke Energy) has nearly achieved those savings in both North and South Carolina. Sixteen states outside the Southeast have also achieved these savings statewide.

The efficiency savings shown in the aggressive scenario have been proposed by the Arkansas PSC. This level of savings has already been achieved by Arizona as well as six other states. Likewise, the demand response savings we model have been achieved by more than 10 utilities, including four in the Southeast. The levels of photovoltaic, electric vehicle, and heat pump penetration are more speculative and are subject to significant uncertainty.

We also examined trends in summer and winter peak demand. Most utilities in the Southeast have historically had peak demand in the summer, often seeing heatwave-driven surges that stress operations across the Eastern U.S., but our analysis shows that winter peaks will be more likely in the region as photovoltaics and demand response reduce summer peaks and heat pumps increase winter peaks.

 

Why it’s vital to plan broadly

Our analysis illustrates the importance of incorporating energy efficiency, demand response, and photovoltaics into utility planning forecasts as utility trends to watch continue to evolve. Failing to include these resources leads to much higher forecasts, resulting in excess utility system investments, unnecessarily increasing customer electricity rates. Our analysis also illustrates the importance of including electric vehicles and heat pumps in long-term forecasts. While these technologies will have moderate impacts over the next 10 years, they could become increasingly important in the long run.

We are entering a dynamic period of substantial uncertainty for long-term electricity sales and system peaks, highlighted by COVID-19 demand shifts that upended typical patterns. We need to carefully observe and analyze developments in energy efficiency, photovoltaics, electric vehicles, heat pumps, and demand response over the next few years. As these technologies advance, we can create policies to reduce energy bills, system costs, and harmful emissions, drawing on grid reliability strategies tested in Texas, while growing the Southeast’s economy. Resource planners should be sure to incorporate these emerging trends and policies into their long-term forecasts and planning.

 

Related News

View more

After rising for 100 years, electricity demand is flat. Utilities are freaking out.

US Electricity Demand Stagnation reflects decoupling from GDP as TVA's IRP revises outlook, with energy efficiency, distributed generation, renewables, and cheap natural gas undercutting coal, reshaping utility business models and accelerating grid modernization.

 

Key Points

US electricity demand stagnation is flat load growth driven by efficiency, DG, and decoupling from GDP.

✅ Flat sales pressure IOU profits and legacy baseload investments.

✅ Efficiency and rooftop solar reduce load growth and capacity needs.

✅ Utilities must pivot to services, DER orchestration, and grid software.

 

The US electricity sector is in a period of unprecedented change and turmoil, with emerging utility trends reshaping strategies across the industry today. Renewable energy prices are falling like crazy. Natural gas production continues its extraordinary surge. Coal, the golden child of the current administration, is headed down the tubes.

In all that bedlam, it’s easy to lose sight of an equally important (if less sexy) trend: Demand for electricity is stagnant.

Thanks to a combination of greater energy efficiency, outsourcing of heavy industry, and customers generating their own power on site, demand for utility power has been flat for 10 years, with COVID-19 electricity demand underscoring recent variability and long-run stagnation, and most forecasts expect it to stay that way. The die was cast around 1998, when GDP growth and electricity demand growth became “decoupled”:


 

This historic shift has wreaked havoc in the utility industry in ways large and small, visible and obscure. Some of that havoc is high-profile and headline-making, as in the recent requests from utilities (and attempts by the Trump administration) to bail out large coal and nuclear plants amid coal and nuclear industry disruptions affecting power markets and reliability.

Some of it, however, is unfolding in more obscure quarters. A great example recently popped up in Tennessee, where one utility is finding its 20-year forecasts rendered archaic almost as soon as they are released.

 

Falling demand has TVA moving up its planning process

Every five years, the Tennessee Valley Authority (TVA) — the federally owned regional planning agency that, among other things, supplies electricity to Tennessee and parts of surrounding states — develops an Integrated Resource Plan (IRP) meant to assess what it requires to meet customer needs for the next 20 years.

The last IRP, completed in 2015, anticipated that there would be no need for major new investment in baseload (coal, nuclear, and hydro) power plants; it foresaw that energy efficiency and distributed (customer-owned) energy generation would hold down demand.

Even so, TVA underestimated. Just three years later, the Times Free Press reports, “TVA now expects to sell 13 percent less power in 2027 than it did two decades earlier — the first sustained reversal in the growth of electricity usage in the 85-year history of TVA.”

TVA will sell less electricity in 10 years than it did 10 years ago. That is bonkers.

This startling shift in prospects has prompted the company to accelerate its schedule. It will now develop its next IRP a year early, in 2019.

Think for a moment about why a big utility like TVA (serving 9 million customers in seven states, with more than $11 billion in revenue) sets out to plan 20 years ahead. It is investing in extremely large and capital-intensive infrastructure like power plants and transmission lines, which cost billions of dollars and last for decades. These are not decisions to make lightly; the utility wants to be sure that they will still be needed, and will still pay off, for many years to come.

Now think for a moment about what it means for the electricity sector to be changing so fast that TVA’s projections are out of date three years after its last IRP, so much so that it needs to plunge back into the multimillion-dollar, year-long process of developing a new plan.

TVA wanted a plan for 20 years; the plan lasted three.

 

The utility business model is headed for a reckoning

TVA, as a government-owned, fully regulated utility, has only the goals of “low cost, informed risk, environmental responsibility, reliability, diversity of power and flexibility to meet changing market conditions,” as its planning manager told the Times Free Press. (Yes, that’s already a lot of goals!)

But investor-owned utilities (IOUs), which administer electricity for well over half of Americans, face another imperative: to make money for investors. They can’t make money selling electricity; monopoly regulations forbid it, raising questions about utility revenue models as marginal energy costs fall. Instead, they make money by earning a rate of return on investments in electrical power plants and infrastructure.

The problem is, with demand stagnant, there’s not much need for new hardware. And a drop in investment means a drop in profit. Unable to continue the steady growth that their investors have always counted on, IOUs are treading water, watching as revenues dry up

Utilities have been frantically adjusting to this new normal. The generation utilities that sell into wholesale electricity markets (also under pressure from falling power prices; thanks to natural gas and renewables, wholesale power prices are down 70 percent from 2007) have reacted by cutting costs and merging. The regulated utilities that administer local distribution grids have responded by increasing investments in those grids, including efforts to improve electricity reliability and resilience at lower cost.

But these are temporary, limited responses, not enough to stay in business in the face of long-term decline in demand. Ultimately, deeper reforms will be necessary.

As I have explained at length, the US utility sector was built around the presumption of perpetual growth. Utilities were envisioned as entities that would build the electricity infrastructure to safely and affordably meet ever-rising demand, which was seen as a fixed, external factor, outside utility control.

But demand is no longer rising. What the US needs now are utilities that can manage and accelerate that decline in demand, increasing efficiency as they shift to cleaner generation. The new electricity paradigm is to match flexible, diverse, low-carbon supply with (increasingly controllable) demand, through sophisticated real-time sensing and software.

That’s simply a different model than current utilities are designed for. To adapt, the utility business model must change. Utilities need newly defined responsibilities and new ways to make money, through services rather than new hardware. That kind of reform will require regulators, politicians, and risky experiments. Very few states — New York, California, Massachusetts, a few others — have consciously set off down that path.

 

Flat or declining demand is going to force the issue

Even if natural gas and renewables weren’t roiling the sector, the end of demand growth would eventually force utility reform.

To be clear: For both economic and environmental reasons, it is good that US power demand has decoupled from GDP growth. As long as we’re getting the energy services we need, we want overall demand to decline. It saves money, reduces pollution, and avoids the need for expensive infrastructure.

But the way we’ve set up utilities, they must fight that trend. Every time they are forced to invest in energy efficiency or make some allowance for distributed generation (and they must always be forced), demand for their product declines, and with it their justification to make new investments.

Only when the utility model fundamentally changes — when utilities begin to see themselves primarily as architects and managers of high-efficiency, low-emissions, multidirectional electricity systems rather than just investors in infrastructure growth — can utilities turn in earnest to the kind planning they need to be doing.

In a climate-aligned world, utilities would view the decoupling of power demand from GDP growth as cause for celebration, a sign of success. They would throw themselves into accelerating the trend.

Instead, utilities find themselves constantly surprised, caught flat-footed again and again by a trend they desperately want to believe is temporary. Unless we can collectively reorient utilities to pursue rather than fear current trends in electricity, they are headed for a grim reckoning.

 

Related News

View more

New Rules for a Future Puerto Rico Microgrid Landscape

Puerto Rico Microgrid Regulations outline renewable energy, CHP, and storage standards, enabling islanded systems, PREPA interconnection, excess energy sales, and IRP alignment to boost resilience, distributed resources, and community power across the recovering grid.

 

Key Points

Rules defining microgrids, requiring 75 percent renewables or CHP, and setting interconnection and PREPA fee frameworks.

✅ 75 percent renewables or CHP; hybrids allowed

✅ Registration, engineer inspection, and annual generation reports

✅ PREPA interconnection fees; excess energy sales permitted

 

The Puerto Rico Energy Commission unveiled 29 pages of proposed regulations last week for future microgrid installations on the island.

The regulations, which are now open for 30 days of public comment, synthesized pages of responses received after a November 10 call for recommendations. Commission chair José Román Morales said it’s the most interest the not-yet four-year-old commission has received during a public rulemaking process.

The goal was to sketch a clearer outline for a tricky-to-define concept -- the term "microgrid" can refer to many types of generation islanded from the central grid -- as climate pressures on the U.S. grid mount and more developers eye installations on the recovering island.

“There’s not a standard definition of what a microgrid is, not even on the mainland,” said Román Morales.

According to the commission's regulation, “a microgrid shall consist, at a minimum, of generation assets, loads and distribution infrastructure. Microgrids shall include sufficient generation, storage assets and advanced distribution technologies, including advanced inverters, to serve load under normal operating and usage conditions.”

All microgrids must be renewable (with at least 75 percent of power from clean energy), combined heat and power (CHP) or hybrid CHP-and-renewable systems. The regulation applies to microgrids controlled and owned by individuals, customer cooperatives, nonprofit and for-profit companies, and cities, but not those owned by the Puerto Rico Electric Power Authority (PREPA). Owners must submit a registration application for approval, including a certification of inspection from a licensed electric engineer, and an annual fuel, generation and sales report that details generation and fuel source, as well as any change in the number of customers served.

Microgrids, like the SDG&E microgrid in Ramona in California, can interconnect with the PREPA system, but if a microgrid will use PREPA infrastructure, owners will incur a monthly fee. That amounts to $25 per customer up to a cap of $250 per month for small cooperative microgrids. The cost for larger systems is calculated using a separate, more complex equation. Operators can also sell excess energy back to PREPA.

 

Big goals for the island's future grid

In total, 53 groups and companies, including Sunnova, AES, the Puerto Rico Solar Energy Industries Association (PR-SEIA), the Advanced Energy Management Alliance (AEMA), and the New York Smart Grid Consortium, submitted their thoughts about microgrids or, in many cases, broader goals for the island’s future energy system. It was a quick turnaround: The Puerto Rico Energy Commission offered a window of just 10 days to submit advice, although the commission continued to accept comments after the deadline.

“PREC wanted the input as fast as possible because of the urgency,” said AES CEO Chris Shelton.

AES’ plan includes a network of “mini-grids” that could range in size from several megawatts to one large enough to service the entire city of San Juan.

“The idea is, you connect those to each other with transmission so they can have a co-optimized portfolio effect and lower the overall cost,” said Shelton. “But they would be largely autonomous in a situation where the tie-lines between them were broken.”

According to estimates provided in AES’ filing, utility-scale solar installations over 50 megawatts on the island could cost between $40 and $50 per megawatt-hour. Those prices make solar located near load centers an economic alternative to the island’s fossil-fuel generating plants. The utility’s analysis showed that a 10,000-megawatt solar system could replace 12,000 gigawatt-hours of fossil generation, with 25 gigawatt-hours of battery storage leveling out load throughout the day. Puerto Rico’s peak load is 3,000 megawatts.

In other filings, PR-SEIA urged a restructuring of FEMA funds so they’re available for microgrid development. GridWise Alliance wrote that plans should consider cybersecurity, and AEMA recommended the commission develop an integrated resource plan (IRP) that includes distributed energy resources, microgrids and non-wires alternatives.

 

An air of optimism, though 1.5 million are still without power

After the commission completes the microgrid rulemaking, a new IRP is next on the commission’s to-do list. PREPA must file that plan in July, and regulators are working furiously to make sure it incorporates the recent flood of rebuilding recommendations from the energy industry.

Though the commission has the final say when it comes to approval of the plan, PREPA will lead the IRP process. The utility’s newly formed Transformation Advisory Council (TAC), a group of 11 energy experts, will contribute.

With that group, along with New York’s Resiliency Working Group, lessons from California's grid transition, the Energy Commission, the utility itself, and the dozens of other clean energy experts and entrepreneurs who want to offer their two cents, the energy planning process has a lot of moving parts. But according to Julia Hamm, CEO of the Smart Electric Power Alliance and a member of both the Energy Resiliency Working Group and the TAC, those working to establish standards for Puerto Rico’s future are hitting their stride.

“Certainly over the past three months, it has been a bit of a challenge to ensure that everybody has been coordinating efforts. Just over the past couple of weeks, we’ve seen some good progress on that front. We’re starting to see a lot more communication,” she said, adding that an air of optimism has settled on the process. “The key stakeholders all have a very common vision for Puerto Rico when it comes to the power sector.”

Nisha Desai, a PREPA board member who is liaising with the TAC, affirmed that collaborators are on the same page. “Everyone is violently in agreement that the future of Puerto Rico involves renewables, microgrids and distributed generation,” she said.

The TAC will hold its first in-person meeting in mid-January, and has already consulted with the utility on its formal fiscal plan submission, due January 10.

Though many taking part in the process feel the once-harried recovery is beginning to adopt a more organized approach, Desai acknowledges that “there are a lot of people in Puerto Rico who feel forgotten.”

Puerto Rico’s current generation sits at just 72.6 percent, in a nation facing longer, more frequent outages due to extreme weather. The government recently offered its first estimate that about half the island, 1.5 million residents, remains without power.

In late December and into January, 1,500 more crewmembers from 18 utilities in states as far flung as Minnesota, Missouri and Arizona will land on the island to aid further restoration through mutual aid agreements.

“The system is getting up to speed, getting to 100 percent, but there’s still some instability,” said Román Morales. “Right now it’s a matter of time.”

 

Related News

View more

Dewa in China to woo renewable energy firms

Dewa-China Renewable Energy Partnership advances solar, clean energy, smart grid, 5G, cloud, and Big Data, linking Dewa with Hanergy and Huawei for R&D, smart meters, demand management, and resilient network infrastructure.

 

Key Points

A Dewa collaboration with Hanergy and Huawei to co-develop solar, smart grid, 5G, cloud, and resilient utility networks.

✅ MoU expands solar PV and distributed generation in Dubai and China

✅ Smart grid R&D: smart meters, demand response, self-healing networks

✅ 5G, cloud, and Big Data enable secure, scalable smart city services

 

A high-level delegation from Dubai Electricity and Water Authority (Dewa) recently visited China in bid to build closer ties with Chinese renewable and clean energy and smart services and smart grid companies, amid broader power grid modernization in Asia trends.

The team led by the managing director and CEO Saeed Mohammed Al Tayer visited the headquarters of Hanergy Holding Group, one of the largest international companies in alternative and renewable energy, in Beijing.

The visit complements the co-operation between Dewa and Hanergy after the signing MoU between the two sides last May, said a statement from Dewa.

The two parties focused on renewable and clean energy and its development, including efforts to integrate solar into the grid through advanced programs, and enhancing opportunities for joint investment.

Al Tayer also visited the Exhibition Hall and Exhibition Centre of the Hanergy Clean Energy Exhibition spread over a 7,000-sq-m area at the Beijing Olympic Park.

He discussed solar power technologies and applications, which included integrated photovoltaic panels and their distribution on the roofs of industrial and residential buildings, residential and mobile power systems, micro-grid installations in remote regions, solar-powered vehicles, and various elements of the exhibition.

Al Tayer and the accompanying delegation later visited the Beijing R&D Centre, which is one of Huaweis largest research institutes, known for Huawei smart grid initiatives across global markets, that employs over 12,000 people. The centre covers the latest pre-5G solutions, Cloud, Big Data, as well as vertical solutions for a smart and safe city.

"The visit is part of a joint venture with Huawei, which includes R&D projects to develop smart network infrastructures and various mechanisms and technologies, aligned with recent U.S. grid improvement funding initiatives, such as smart meters for electricity and water services, energy demand management, and self-recovery mechanisms from errors and disasters," he added.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.