NERC reports on summer peak demands

By North American Electric Reliability Corporation


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
ATLANTA – Most of North America has sufficient resources available to meet summer peak demands, the North American Electric Reliability Corporation’s NERC 2012 Summer Reliability Assessment finds. However, planning reserve margins in the Electric Reliability Council of Texas ERCOT assessment area are projected to be below the NERC Reference Margin Level, the threshold by which resource adequacy is measured.

In California, reserves are projected to be tight, but manageable, through the summer months.

"Reduced planning reserves in certain areas will challenge operations this summer," said Mark Lauby, vice president and director of Reliability Assessment and Performance Analysis. "NERC has reviewed the operating procedures and preparations in the assessment areas, and in most areas they appear to be sufficient to meet these challenges."

Since summer 2011, capacity resources have grown across North America by approximately 12,310 megawatts, most notably within the SERC Reliability Corporation and the Northeast Power Coordinating Council areas. Compared to the 2011 projections, NERC-wide total peak demand forecast is 3,700 MW lower. The largest increase in peak demand is expected in ERCOT, where a 1.7 percent increase is projected.

"With continued growth in peak demand and only a small amount of new generation coming online, resource adequacy levels in ERCOT have fallen below targets," said John Moura, manager of Reliability Assessment at NERC.

"If ERCOT experiences stressed system conditions or record-breaking electricity demand due to extreme and prolonged high temperatures, system operators will most likely rely on demand response and emergency operating procedures, which may include initiating rotating outages to maintain the reliability of the interconnection," Moura added."

Related News

UK price cap on household energy bills expected to cost 89bn

UK Energy Price Guarantee Cost forecasts from Cornwall Insight suggest an £89bn bill, tied to wholesale gas prices, OBR projections, and fiscal policy, to shield households amid the cost of living crisis.

 

Key Points

It is the projected government spend to cap household bills, driven by wholesale gas prices and OBR market forecasts.

✅ Base case: £89bn over two years, per Cornwall Insight

✅ Range: £72bn to £140bn, volatile wholesale gas costs

✅ Excludes 6-month business support estimated at £22bn-£48bn

 

Liz Truss’s intervention to freeze energy prices for households for two years is expected to cost the government £89bn, according to the first major costing of the policy by the sector’s leading consultancy.

The analysis from Cornwall Insight, seen exclusively by the Guardian, shows the prime minister’s plan to tackle the cost of living crisis could cost as much as £140bn in a worst-case scenario.

Truss announced in early September that the average annual bill for a typical household would be capped at £2,500 to protect consumers from the intensifying cost of living crisis amid high winter energy costs and a scheduled 80% rise in the cap to £3,549.

The ultimate cost of the policy is uncertain as it is highly dependent on the wholesale cost of gas, including UK natural gas prices which have soared since Russia’s invasion of Ukraine put a squeeze on already-volatile international markets. Ballpark projections had put the cost anywhere from £100bn to £150bn.

The Office for Budget Responsibility is expected to give its forecast for the bill when it provides its independent assessment of Kwasi Kwarteng’s medium-term fiscal plan, which the chancellor said on Tuesday would still happen on 23 November despite previous reports that it would be brought forward.

Cornwall Insight analysed projections of wholesale market moves to cost the intervention. In its base case scenario, analysts expect the policy to cost £89bn. That assumes the cost of supporting each household would be just over £1,000 in the first year, and about £2,000 in the second year.

The study’s authors said the wholesale price of gas would be influenced by energy demand, the severity of weather, “geo-political uncertainty” and prices for liquified natural gas as Europe seeks to refill storage facilities, which countries have rushed to fill up this winter but which could be relatively empty by next spring.

In the best-case outcome, the policy would cost £72bn, with some projections pointing to a 16% decrease in energy bills in April for households, while the “extreme high” outlook would see the government shell out £140bn to protect 29m UK households.

Gas prices are expected to push even higher if the Kremlin decides to completely cut off Russian gas exports into Europe.

Cornwall Insight’s projection does not include a separate six-month initiative to cap costs for companies, charities and public sector organisations, which is forecast to cost £22bn to £48bn.

The consultancy’s chief executive, Gareth Miller, said the £70bn range in its forecasts reflected “a febrile wholesale market continuing to be beset by geopolitical instability, sensitivity to demand, weather and infrastructure resilience”.

He said: “Fortune befriends the bold, but it also favours the prepared. The large uncertainties around commodity markets over the next two years means that the government could get lucky with costs coming out at the low end of the range, but the opposite could also be true.

“In each case, the government may find itself passengers to circumstances outside its control, having made policy that is a hostage to surprises, events and volatile factors. That’s a difficult position to be in.”

Privacy Notice: Newsletters may contain info about charities, online ads, and content funded by outside parties. For more information see our Privacy Policy. We use Google reCaptcha to protect our website and the Google Privacy Policy and Terms of Service apply.
The government has faced criticism, as some British MPs urge tighter limits on prices, that the policy is effectively a “blank cheque” and is not targeted at the most vulnerable in society.

Concerns over how Truss and Kwarteng intend to fund a series of measures, including the price guarantee, have spooked financial markets.

The EU, which has outlined possible gas price cap strategies in recent proposals, said last week it planned to cap the revenues of low-carbon electricity generators at €180 a megawatt hour, which is less than half current market prices. Truss has so far resisted calls to extend a levy on North Sea oil and gas operators to electricity generators, who have benefited from a link between gas and electricity prices in Britain.

Truss hopes to strike voluntary long-term deals with generators including Centrica and EDF, alongside the government’s Energy Security Bill measures, to bring down wholesale prices.

The Financial Times reported on Tuesday that the government has threatened companies with legislation to cap their revenues if voluntary deals cannot be agreed.

 

Related News

View more

How waves could power a clean energy future

Wave Energy Converters can deliver marine power to the grid, with DOE-backed PacWave enabling offshore testing, robust designs, and renewable electricity from oscillating waves to decarbonize coastal communities and replace diesel in remote regions.

 

Key Points

Wave energy converters are devices that transform waves' oscillatory motion into electricity for the grid or loads.

✅ DOE's PacWave enables full-scale, grid-connected offshore testing.

✅ Multiple designs convert oscillating motion into torque and power.

✅ Ideal for islands, microgrids, and replacing diesel generation.

 

Waves off the coast of the U.S. could generate 2.64 trillion kilowatt hours of electricity per year — that’s about 64% of last year’s total utility-scale electricity generation in the U.S. We won’t need that much, but one day experts do hope that wave energy will comprise about 10-20% of our electricity mix, alongside other marine energy technologies under development today.

“Wave power is really the last missing piece to help us to transition to 100% renewables, ” said Marcus Lehmann, co-founder and CEO of CalWave Power Technologies, one of a number of promising startups focused on building wave energy converters.

But while scientists have long understood the power of waves, it’s proven difficult to build machines that can harness that energy, due to the violent movement and corrosive nature of the ocean, combined with the complex motion of waves themselves, even as a recent wave and tidal market analysis highlights steady advances.

″Winds and currents, they go in one direction. It’s very easy to spin a turbine or a windmill when you’ve got linear movement. The waves really aren’t linear. They’re oscillating. And so we have to be able to turn this oscillatory energy into some sort of catchable form,” said Burke Hales, professor of cceanography at Oregon State University and chief scientist at PacWave, a Department of Energy-funded wave energy test site off the Oregon Coast. Currently under construction, PacWave is set to become the nation’s first full-scale, grid-connected test facility for these technologies, a milestone that parallels U.K. wind power lessons on scaling new industries, when it comes online in the next few years.

“PacWave really represents for us an opportunity to address one of the most critical barriers to enabling wave energy, and that’s getting devices into the open ocean,” said Jennifer Garson, Director of the Water Power Technologies Office at the U.S. Department of Energy.

At the beginning of the year, the DOE announced $25 million in funding for eight wave energy projects to test their technology at PacWave, as offshore wind forecasts underscore the growing investor interest in ocean-based energy. We spoke with a number of these companies, which all have different approaches to turning the oscillatory motion of the waves into electrical power.

Different approaches
Of the eight projects, Bay Area-based CalWave received the largest amount, $7.5 million. 

″The device we’re testing at PacWave will be a larger version of this,” said Lehmann. The x800, our megawatt-class system, produces enough power to power about 3,000 households.”

CalWave’s device operates completely below the surface of the water, and as waves rise and fall, surge forward and backward, and the water moves in a circular motion, the device moves too. Dampers inside the device slow down that motion and convert it into torque, which drives a generator to produce electricity, a principle mirrored in some wind energy kite systems as they harvest aerodynamic forces.

“And so the waves move the system up and down. And every time it moves down, we can generate power, and then the waves bring it back up. And so that oscillating motion, we can turn into electricity just like a wind turbine,” said Lehmann.

Another approach is being piloted by Seattle-based Oscilla Power, which was awarded $1.8 million from the DOE, and is getting ready to deploy its wave energy converter off the coast of Hawaii, at the U.S. Navy Wave Energy Test site.

Oscilla Power’s device is composed of two parts. One part floats on the surface and moves with the waves in all directions — up and down, side to side and rotationally. This float is connected to a large, ring-shaped structure which hangs below the surface, and is designed to stay relatively steady, much like how underwater kites leverage a stable reference to generate power. The difference in motion between the float and the ring generates force on the connecting lines, which is used to rotate a gearbox to drive a generator.

″The system that we’re deploying in Hawaii is what we call the Triton-C. This is a community-scale system,” said Balky Nair, CEO of Oscilla Power. “It’s about a third of the size of our flagship product. It’s designed to be 100 kilowatt rated, and it’s designed for islands and small communities.”

Nair is excited by wave energy’s potential to generate electricity in remote regions, which currently rely on expensive and polluting diesel imports to meet their energy needs when other renewables aren’t available, and similar tidal energy for remote communities efforts in Canada point to viable models. Before wave energy is adopted at-scale, many believe we’ll see wave energy replacing diesel generators in off-the-grid communities.

A third company, C-Power, based in Charlottesville, Virginia, was awarded more than $4 million to test its grid-scale wave energy converter at PacWave. But first, the company wants to commercialize its smaller scale system, the SeaRAY, which is designed for lower-power applications. 

″Think about sensors in the ocean, research, metocean data gathering, maybe it’s monitoring or inspection,” said C-Power CEO Reenst Lesemann on the initial applications of his device.

The SeaRAY consists of two floats and a central body, the nacelle, which contains the drivetrain. As waves pass by, the floats bob up and down, rotating about the nacelle and turning their own respective gearboxes which power the electric generators.

Eventually, C-Power plans to scale up its SeaRAY so that it’s capable of satellite communications and deep water deployments, before building a larger system, called the StingRAY, for terrestrial electricity generation.

Meanwhile, one Swedish company, Eco Wave Power, is taking another approach completely, eschewing offshore technologies in favor of simpler wave power devices that can be installed on breakwaters, piers, and jetties.

“All the expensive conversion machinery, instead of being inside the floaters like in the competing technologies, is on land just like a regular power station. So basically this enables a very low installation, operation, and maintenance cost,” explained CEO Inna Braverman.

 

Related News

View more

A New Electric Boat Club Launches in Seattle

Aurelia Boat Club delivers electric boat membership in Seattle, featuring zero-emission propulsion, quiet cruising, sustainable recreation, and a managed fleet with maintenance, insurance, moorage, and charging handled for members seeking hassle-free, eco-friendly boating.

 

Key Points

Aurelia Boat Club is a Seattle membership offering all-electric boats, with maintenance, insurance, and moorage included.

✅ Unlimited access to an all-electric fleet

✅ Maintenance, insurance, moorage, and charging included

✅ Quiet, zero-emission cruising on Seattle waters

 

Seattle's maritime scene has welcomed a new player: Aurelia Boat Club. Founded by former Pure Watercraft employees, Aurelia is poised to redefine electric boating in the city, where initiatives like Washington State Ferries hybrid-electric upgrade are underway. The club's inception follows the unexpected closure of Pure Watercraft, a Seattle-based startup that aimed to revolutionize the pleasure boating industry before its financial troubles led to its downfall.

From Pure Watercraft to Aurelia Boat Club

Pure Watercraft, established in 2011, garnered attention for its innovative electric propulsion systems designed to replace traditional gas-powered motors in boats, while efforts to build the first commercial electric speedboats also advanced. The company attracted significant investment, including a notable partnership with General Motors in 2021, which acquired a 25% stake in Pure Watercraft. Despite these efforts, Pure Watercraft faced financial difficulties and entered receivership in 2024, leading to the liquidation of its assets. 

Amidst this transition, Danylo Kurgan and Mrugesh Desai saw an opportunity to continue the vision of electric boating. Kurgan, formerly a financial analyst at Pure Watercraft and involved in the company's boat club operations, teamed up with Desai, a technology executive and startup investor. Together, they acquired key assets from Pure Watercraft's receivership, including electric outboard motors, pontoon boats, inflatable crafts, battery systems, spare parts, and digital infrastructure. 

Aurelia Boat Club's Offerings

Aurelia Boat Club aims to provide a sustainable and accessible alternative to traditional gas-powered boat clubs in Seattle. Members can enjoy unlimited access to a fleet of all-electric boats without the responsibilities of ownership. The club's boats are equipped with electric motors, offering a quiet and environmentally friendly boating experience, similar to how electric ships are clearing the air on the B.C. coast. Additionally, Aurelia handles maintenance, repairs, insurance, and moorage, allowing members to focus solely on enjoying their time on the water. 

The Future of Electric Boating in Seattle

Aurelia Boat Club's launch signifies a growing interest in sustainable boating practices in Seattle. The club's founders are committed to scaling the business and expanding their fleet to meet the increasing demand for eco-friendly recreational activities, as projects like battery-electric high-speed ferries indicate. By leveraging the assets and knowledge gained from Pure Watercraft, Aurelia aims to continue the legacy of innovation in the electric boating industry.

As the boating community becomes more environmentally conscious, initiatives like Aurelia Boat Club play a crucial role in promoting sustainable practices, and examples such as Harbour Air's electric aircraft highlight the momentum. The club's success could serve as a model for other cities, demonstrating that with the right vision and resources, the transition to electric boating is not only feasible but also desirable.

While the closure of Pure Watercraft marked the end of one chapter, it also paved the way for new ventures like Aurelia Boat Club to carry forward the mission of transforming the boating industry, with regional moves like the Kootenay Lake electric-ready ferry and international innovations such as Berlin electric flying ferry showing what's possible. With a strong foundation and a clear vision, Aurelia is set to make significant waves in Seattle's electric boating scene.

 

 

Related News

View more

Brand New Renewable Technology Harnesses Electricity From The Cold, Dark Night

Nighttime Thermoelectric Generator converts radiative cooling into renewable energy, leveraging outer space cold; a Stanford-UCLA prototype complements solar, serving off-grid loads with low-power output during peak evening demand, using simple materials on a rooftop.

 

Key Points

A device converting nighttime radiative cooling into electricity, complementing solar for low-power evening needs.

✅ Uses thermocouples to convert temperature gradients to voltage.

✅ Exploits radiative cooling to outer space for night power.

✅ Complements solar; low-cost parts suit off-grid applications.

 

Two years ago, one freezing December night on a California rooftop, a tiny light shone weakly with a little help from the freezing night air. It wasn't a very bright glow. But it was enough to demonstrate the possibility of generating renewable power after the Sun goes down.

Working with Stanford University engineers Wei Li and Shanhui Fan, University of California Los Angeles materials scientist Aaswath Raman put together a device that produces a voltage by channelling the day's residual warmth into cooling air, effectively generating electricity from thin air with passive heat exchange.

"Our work highlights the many remaining opportunities for energy by taking advantage of the cold of outer space as a renewable energy resource," says Raman.

"We think this forms the basis of a complementary technology to solar. While the power output will always be substantially lower, it can operate at hours when solar cells cannot."

For all the merits of solar energy, it's just not a 24-7 source of power, although research into nighttime solar cells suggests new possibilities for after-dark generation. Sure, we can store it in a giant battery or use it to pump water up into a reservoir for later, but until we have more economical solutions, nighttime is going to be a quiet time for renewable solar power. 

Most of us return home from work as the Sun is setting, and that's when energy demands spike to meet our needs for heating, cooking, entertaining, and lighting.

Unfortunately, we often turn to fossil fuels to make up the shortfall. For those living off the grid, it could require limiting options and going without a few luxuries.

Shanhui Fan understands the need for a night time renewable power source well. He's worked on a number of similar devices, including carbon nanotube generators that scavenge ambient energy, and a recent piece of technology that flipped photovoltaics on its head by squeezing electricity from the glow of heat radiating out of the planet's Sun-warmed surface.

While that clever item relied on the optical qualities of a warm object, this alternative device makes use of the good old thermoelectric effect, similar to thin-film waste-heat harvesting approaches now explored.

Using a material called a thermocouple, engineers can convert a change in temperature into a difference in voltage, effectively turning thermal energy into electricity with a measurable voltage. This demands something relatively toasty on one side and a place for that heat energy to escape to on the other.

The theory is the easy part – the real challenge is in arranging the right thermoelectric materials in such a way that they'll generate a voltage from our cooling surrounds that makes it worthwhile.

To keep costs down, the team used simple, off-the-shelf items that pretty much any of us could easily get our hands on.

They put together a cheap thermoelectric generator and linked it with a black aluminium disk to shed heat in the night air as it faced the sky. The generator was placed inside a polystyrene enclosure sealed with a window transparent to infrared light, and linked to a single tiny LED.


 

For six hours one evening, the box was left to cool on a roof-top in Stanford as the temperature fell just below freezing. As the heat flowed from the ground into the sky, the small generator produced just enough current to make the light flicker to life.

At its best, the device generated around 0.8 milliwatts of power, corresponding to 25 milliwatts of power per square metre.

That might just be enough to keep a hearing aid working. String several together and you might just be able to keep your cat amused with a simple laser pointer. So we're not talking massive amounts of power.

But as far as prototypes go, it's a fantastic starting point. The team suggests that with the right tweaks and the right conditions, 500 milliwatts per square metre isn't out of the question.

"Beyond lighting, we believe this could be a broadly enabling approach to power generation suitable for remote locations, and anywhere where power generation at night is needed," says Raman.

While we search for big, bright ideas to drive the revolution for renewables, it's important to make sure we don't let the smaller, simpler solutions like these slip away quietly into the night.

This research was published in Joule.

 

Related News

View more

Ex-SpaceX engineers in race to build first commercial electric speedboat

Arc One Electric Speedboat delivers zero-emission performance, quiet operation, and reduced maintenance, leveraging battery propulsion, aerospace engineering, and venture-backed innovation to cut noise pollution, fuel costs, and water contamination in high-performance marine recreation.

 

Key Points

Arc One Electric Speedboat is a battery-powered, zero-emission craft offering quiet, high-performance marine cruising.

✅ 475 hp, 24 ft hull, about 40 mph top speed

✅ Cuts noise, fumes, and water contamination vs gas boats

✅ Backed by Andreessen Horowitz; ex-SpaceX engineers

 

A team of former SpaceX rocket engineers have joined the race to build the first commercial electric speedboat.

The Arc Boat company announced it had raised $4.25m (£3m) in seed funding to start work on a 24ft 475-horsepower craft that will cost about $300,000.

The LA-based company, which is backed by venture capital firm Andreessen Horowitz (an early backer of Facebook and Airbnb), said the first model of the Arc One boat would be available for sale by the end of the year.

Mitch Lee, Arc’s chief executive, said he wanted to build electric boats because of the impact conventional petrol- or diesel-powered boats have on the environment.

“They not only get just two miles to the gallon, they also pump a lot of those fumes into the water,” Lee said. “In addition, there is the huge noise pollution factor [of conventional boats] and that is awful for the marine life. With gas-powered boats it’s not just carbon emissions into the air, it’s also polluting the water and causing noise pollution. Electric boats, like electric ships clearing the air on the B.C. coast, eliminate all that.”

Lee said electric vessels would also reduce the hassle of boat ownership. “I love being out on the water, being on a boat is so much fun, but owning a boat is so awful,” he said. “I have always believed that electric boats make sense. They will be quicker, quieter and way cheaper and easier to operate and maintain, with access options like an electric boat club in Seattle lowering barriers for newcomers.”

While the first models will be very expensive, Lee said the cost was mostly in developing the technology and cheaper versions would be available in the future, mirroring advances in electric aviation seen across the industry. “It is very much the Tesla approach – we are starting up market and using that income to finance research and development and work our way down market,” he said.

Lee said the technology could be applied to larger craft, and even ferries could run on electricity in the future, as projects for battery-electric high-speed ferries begin to scale.

“We started in February with no team, no money and no warehouse,” he said. “By December we are going to be selling the Arc One, and we are hiring aggressively because we want to accelerate the adoption of electric boats across a whole range of craft, including an electric-ready ferry on Kootenay Lake.”

Lee founded the company with fellow mechanical engineer Ryan Cook. Cook, the company’s chief technology officer, was previously the lead mechanical engineer at Elon Musk’s space exploration company SpaceX where he worked on the Falcon 9 rocket, the world’s first orbital class reusable rocket. In parallel, Harbour Air's electric aircraft highlights cross-sector electrification. Apart from Lee, all of Arc’s employees have some experience working at SpaceX.

The Arc boat, which would have a top speed of 40 mph, joins a number of startups rushing to make the first large-scale production of electric-powered speedboats, while a Vancouver seaplane airline demonstrates complementary progress with a prototype electric aircraft. The Monaco Yacht Club this month held a competition for electric boat prototypes to “instigate a new vision and promote all positive approaches to bring yachting into line” with global carbon dioxide emission reduction targets. Sweden’s Candela C-7 hydrofoil boat was crowned the fastest electric vessel.

 

Related News

View more

Why Nuclear Fusion Is Still The Holy Grail Of Clean Energy

Nuclear fusion breakthrough signals progress toward clean energy as NIF lasers near ignition and net energy gain, while tokamak designs like ITER advance magnetic confinement, plasma stability, and self-sustaining chain reactions for commercial reactors.

 

Key Points

A milestone as lab fusion nears ignition and net gain, indicating clean energy via lasers and tokamak confinement.

✅ NIF laser shot approached ignition and triggered self-heating

✅ Tokamak path advances with ITER and stronger magnetic confinement

✅ Net energy gain remains the critical milestone for power plants

 

Just 100 years ago, when English mathematician and astronomer Arthur Eddington suggested that the stars power themselves through a process of merging atoms to create energy, heat, and light, the idea was an unthinkable novelty. Now, in 2021, we’re getting remarkably close to recreating the process of nuclear fusion here on Earth. Over the last century, scientists have been steadily chasing commercial nuclear fusion, ‘the holy grail of clean energy.’ The first direct demonstration of fusion in a lab took place just 12 years after it was conceptualized, at Cambridge University in 1932, followed by the world’s first attempt to build a fusion reactor in 1938. In 1950, Soviet scientists Andrei Sakharov and Igor Tamm propelled the pursuit forward with their development of the tokamak, a fusion device involving massive magnets which is still at the heart of many major fusion pursuits today, including the world’s biggest nuclear fusion experiment ITER in France.

Since that breakthrough, scientists have been getting closer and closer to achieving nuclear fusion. While fusion has indeed been achieved in labs throughout this timeline, it has always required far more energy than it emits, defeating the purpose of the commercial fusion initiative, and elsewhere in nuclear a new U.S. reactor start-up highlights ongoing progress. If unlocked, commercial nuclear fusion would change life as we know it. It would provide an infinite source of clean energy requiring no fossil fuels and leaving behind no hazardous waste products, and many analysts argue that net-zero emissions may be out of reach without nuclear power, underscoring fusion’s promise.

Nuclear fission, the process which powers all of our nuclear energy production now, including next-gen nuclear designs in development, requires the use of radioactive isotopes to achieve the splitting of atoms, and leaves behind waste products which remain hazardous to human and ecological health for up to tens of thousands of years. Not only does nuclear fusion leave nothing behind, it is many times more powerful. Yet, it has remained elusive despite decades of attempts and considerable investment and collaboration from both public and private entities, such as the Gates-backed mini-reactor concept, around the world.

But just this month there was an incredible breakthrough that may indicate that we are getting close. “For an almost imperceptible fraction of a second on Aug. 8, massive lasers at a government facility in Northern California re-created the power of the sun in a tiny hot spot no wider than a human hair,” CNET reported in August. This breakthrough occurred at the National Ignition Facility, where scientists used lasers to set off a fusion reaction that emitted a stunning 10 quadrillion watts of power. Although the experiment lasted for just 100 trillionths of a second, the amount of energy it produced was equal to about “6% of the total energy of all the sunshine striking Earth’s surface at any given moment.”

“This phenomenal breakthrough brings us tantalizingly close to a demonstration of ‘net energy gain’ from fusion reactions — just when the planet needs it,” said Arthur Turrell, physicist and nuclear fusion expert. What’s more, scientists and experts are hopeful that the rate of fusion breakthroughs will continue to speed up, as interest in atomic energy is heating up again across markets, and commercial nuclear fusion could be achieved sooner than ever seemed possible before. At a time when it has never been more important or more urgent to find a powerful and affordable means of producing clean energy, and as policies like the U.K.’s green industrial revolution guide the next waves of reactors, commercial nuclear fusion can’t come fast enough.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.