Additional PPA Agreements Reached


NFPA 70e Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today

Alberta PPA Settlements finalize agreements returning Sundance A/B and Sheerness to the Balancing Pool, with carbon offsets and payments from TransCanada and AltaGas, supporting coal transition, renewable energy integration, and stable, affordable power.

 

Key Points

Agreements ending PPAs for Sundance A/B and Sheerness, returning to the Balancing Pool with carbon offsets and payments.

✅ PPAs for Sundance A/B and Sheerness returned to Balancing Pool

✅ Carbon offsets and cash payments from AltaGas and TransCanada

✅ Supports coal phaseout, renewable integration, price stability

 

The Government of Alberta has reached final agreements to settle power purchase arrangements (PPAs) with AltaGas Ltd. and TransCanada Energy Ltd. 

The agreements will terminate the PPA held by ASTC Power Partnership, a partnership between AltaGas and TransCanada, for Sundance B. The agreements will also terminate TransCanada’s PPAs for Sundance A and Sheerness, aligning with Alberta’s plan to retire coal power by 2023 across the province. The PPAs will be returned to the Balancing Pool.

“These agreements will help ensure Albertans receive stable, reliable power at affordable prices as we transition from coal and add more renewable energy. Moving ahead, the province looks forward to working with energy companies to power Alberta’s future.”

Marg McCuaig-Boyd, Minister of Energy

The province has launched requests for proposals to purchase clean electricity to accelerate renewable procurement.

AltaGas will contribute 391,879 self-generated carbon offsets and pay $6 million to the Balancing Pool. The cash payments will be made over three years starting in 2018, as many electricity generators switch to gas across Alberta.

TransCanada has provided value associated with a package of carbon offset credits that it has amassed as part of its risk management efforts. The value of the credits will be reflected in TransCanada’s annual, year-end financial statements, which will be released in February 2017.

The carbon offset contribution allows the Balancing Pool greater flexibility in meeting its future greenhouse gas emissions compliance obligations for the PPAs it will hold, especially as Alberta’s last coal plant closes and the grid embraces clean energy.

This action today completely removes TransCanada Energy and AltaGas Ltd. from the court proceedings and settles the matter between them and the government as well as all arbitrations between the two companies and the Balancing Pool. Capital Power has also been removed from the government's proceeding as per its settlement with them, announced Nov. 24, 2016.

 

Related News

Related News

Russia-Ukraine Agreement on Power Plant Attacks Possible

Russia-Ukraine Energy Ceasefire explores halting strikes on power plants, safeguarding energy infrastructure and grids, easing humanitarian crises, stabilizing European markets, and advancing diplomatic talks on security, resilience, and critical infrastructure protection.

 

Key Points

A proposed pact to halt strikes on power plants, protect energy infrastructure, and stabilize grids and security.

✅ Shields power plants and grid infrastructure from attacks

✅ Eases humanitarian strain and improves winter resilience

✅ Supports European energy security and market stability

 

In a significant diplomatic development amid ongoing conflict, Russia and Ukraine are reportedly exploring the possibility of reaching an agreement to halt attacks on each other’s power plants. This potential cessation of hostilities could have far-reaching implications for the energy security and stability of both nations, as well as for the broader European energy landscape.

The Context of Energy Warfare

The conflict between Russia and Ukraine has escalated into what many analysts term "energy warfare," where both sides have targeted each other’s energy infrastructure. Such actions not only aim to undermine the adversary’s military capabilities but also have profound effects on civilian populations, leading to widespread power outages and humanitarian crises. Energy infrastructure has become a focal point in the conflict, with power plants and grids frequently damaged or destroyed.

The ongoing hostilities have raised concerns about energy security in Europe, with some warning of an energy nightmare if disruptions escalate, especially as many countries in the region rely on energy supplies from Russia. The attacks on power facilities exacerbate vulnerabilities in the energy supply chain, prompting calls for a ceasefire that encompasses energy infrastructure.

The Humanitarian Implications

The humanitarian impact of the conflict has been staggering, with millions of civilians affected by power outages, heating shortages, and disrupted access to essential services. The winter months, in particular, pose a grave challenge, as Ukraine prepares for winter amid ongoing energy constraints for vulnerable populations. A potential agreement to cease attacks on power plants could provide much-needed relief and stability for civilians caught in the crossfire.

International organizations, including the United Nations and various humanitarian NGOs, have been vocal in urging both parties to prioritize civilian safety and to protect critical infrastructure. Any agreement reached could facilitate aid efforts and enhance the overall humanitarian situation in affected areas.

Diplomatic Efforts and Negotiations

Reports indicate that diplomatic channels are being utilized to explore this potential agreement. While the specifics of the negotiations remain unclear, the idea of protecting energy infrastructure has been gaining traction among international diplomats. Key players, including European nations and the United States, with debates over U.S. energy security shaping positions, may play a pivotal role in mediating discussions.

Negotiating a ceasefire concerning energy infrastructure could serve as a preliminary step toward broader peace talks. By demonstrating goodwill through a tangible agreement, both parties might foster an environment conducive to further negotiations on other contentious issues in the conflict.

The Broader European Energy Landscape

The ramifications of an agreement between Russia and Ukraine extend beyond their borders. The stability of energy supplies in Europe is inextricably linked to the dynamics of the conflict, and the posture of certain EU states, such as Hungary's energy alliance with Russia, also shapes outcomes across the region. Many European nations have been grappling with rising energy prices and supply uncertainties, particularly in light of reduced gas supplies from Russia.

A halt to attacks on power plants could alleviate some of the strain on energy markets, which have experienced price hikes and instability in recent months, helping to stabilize prices and improve energy security for neighboring countries. Furthermore, it could pave the way for increased cooperation on energy issues, such as joint projects for renewable energy development or grid interconnections.

Future Considerations

While the prospect of an agreement is encouraging, skepticism remains about the willingness of both parties to adhere to such terms. The historical context of mistrust and previous violations of ceasefires, as both sides have accused each other of violations in recent months, raises questions about the durability of any potential pact. Continued dialogue and monitoring by international entities will be essential to ensure compliance and to build confidence between the parties.

Moreover, as discussions progress, it will be crucial to consider the long-term implications for energy policy in both Russia and Ukraine. The conflict has already prompted Ukraine to seek alternative energy sources and reduce its dependence on Russian gas, turning to electricity imports to keep the lights on, while Russia is exploring new markets for its energy exports.

The potential agreement between Russia and Ukraine to stop targeting each other’s power plants represents a glimmer of hope in a protracted conflict characterized by violence and humanitarian suffering. As both nations explore this diplomatic avenue, the implications for energy security, civilian safety, and the broader European energy landscape could be profound. Continued international support and monitoring will be vital to ensure that any agreement reached translates into real-world benefits for affected populations and contributes to a more stable energy future for the region.

 

Related News

View more

Manitoba Hydro hikes face opposition as hearings begin

Manitoba Hydro rate hikes face public hearings over electricity rates, utility bills, and debt, with impacts on low-income households, Indigenous communities, and Winnipeg services amid credit rating pressure and rising energy costs.

 

Key Points

Manitoba Hydro seeks 7.9% annual increases to stabilize finances and debt, impacting electricity costs for households.

✅ Proposed hikes: 7.9% yearly through 2023/24

✅ Driven by debt, credit rating declines, rising interest

✅ Disproportionate impact on low-income and Indigenous communities

 

Hearings began Monday into Manitoba Hydro’s request for consecutive annual rate hikes of 7.9 per cent.  The crown corporation is asking for the steep hikes to commence April 1, 2018.

The increases would continue through 2023/2024, under a multi-year rate plan before dropping to what Hydro calls “sustainable” levels.

Patti Ramage, legal counsel for Hydro, said while she understands no one welcomes the “exceptional” rate increases, the company is dealing with exceptional circumstances.

It’s the largest rate increase Hydro has ever asked for, though a scaled-back increase was discussed later, saying rising debt and declining credit ratings are affecting its financial stability.

President and CEO Kelvin Shepherd said Hydro is borrowing money to fund its interest payments, and acknowledged that isn’t an effective business model.

Hydro’s application states that it will be spending up to 63 per cent of its revenue on paying financial expenses if the current request for rate hikes is not approved.

If it does get the increase it wants, that number could shrink to 45 per cent – which Ramage says is still quite high, but preferable to the alternative.

She cited the need to take immediate action to fix Hydro’s finances instead of simply hoping for the best.

“The worst thing we can do is defer action… that’s why we need to get this right,” Ramage said.

A number of intervenors presented varying responses to Hydro’s push for increased rates, with many focusing on how the hikes would affect Manitobans with lower incomes.

Senwung Luk spoke on behalf of the Assembly of Manitoba Chiefs, and said the proposed rates would hit First Nations reserves particularly hard.

He noted that 44.2 per cent of housing on reserves in the province needs significant improvement, which means electricity use tends to be higher to compensate for the lower quality of infrastructure.

Luk says this problem is compounded by the higher rates of poverty in Indigenous populations, with 76 per cent of children on reserves in Manitoba living below the poverty line.

If the increase goes forward, he said the AMC hopes to see a reduced rate for those living on reserves, despite a recent appeal court ruling on such pricing.

Byron Williams, speaking on behalf of the Consumers Coalition, said the 7.9 per cent increase unreasonably favours the interests of Hydro, and is unjustly biased against virtually everyone else.

In Saskatchewan, the NDP criticized an SaskPower 8 per cent rate hike as unfair to customers, highlighting regional concerns.

Williams said customers using electric space heating would be more heavily targeted by the rate increase, facing an extra $13.14 a month as opposed to the $6.88 that would be tacked onto the bills of those not using electric space heating.

Williams also called Hydro’s financial forecasts unreliable, bringing the 7.9 per cent figure into question.

Lawyer George Orle, speaking for the Manitoba Keewatinowi Okimakanak, said the proposed rate hikes would “make a mockery” of the sacrifices made by First Nations across the province, given that so much of Hydro’s infrastructure is on Indigenous land.

The city of Winnipeg also spoke out against the jump, saying property taxes could rise or services could be cut if the hikes go ahead to compensate for increased, unsustainable electricity costs.

In British Columbia, a BC Hydro 3 per cent increase also moved forward, drawing attention to affordability.

A common theme at the hearing was that Hydro’s request was not backed by facts, and that it was heading towards fear-mongering.

Manitoba Hydro’s CEO begged to differ as he plead his case during the first hearing of a process that is expected to take 10 weeks.

 

Related News

View more

A Snapshot of the US Market for Smart Solar Inverters

Smart solar inverters anchor DER communications and control, meeting IEEE 1547 and California Rule 21 for volt/VAR, reactive power, and ride-through, expanding hosting capacity and enabling grid services via secure real-time telemetry and commands.

 

Key Points

Smart solar inverters use IEEE 1547, volt/VAR and reactive power to stabilize circuits and integrate DER safely.

✅ Meet IEEE 1547, Rule 21 ride-through and volt/VAR functions

✅ Support reactive power to manage voltage and hosting capacity

✅ Enable utility communications, telemetry, and grid services

 

Advanced solar inverters could be one of the biggest distributed energy resource communications and control points out there someday. With California now requiring at least early-stage “smart” capabilities from all new solar projects — and a standards road map for next-stage efforts like real-time communications and active controls — this future now has a template.

There are still a lot of unanswered questions about how smart inverters will be used.

That was the consensus at Intersolar this week, where experts discussed the latest developments on the U.S. smart solar inverter front. After years of pilot projects, multi-stakeholder technical working groups, and slow and steady standards development, solar smart inverters are finally starting to hit the market en masse — even if it’s not yet clear just what will be done with them once they’re installed.

“From the technical perspective, the standards are firm,” Roger Salas, distribution engineering manager for Southern California Edison, said. In September of last year, his utility started requiring that all new solar installations come with “Phase 1" advanced inverter functionality, as defined under the state’s Rule 21.

Later this month, it’s going to start requiring “reactive power priority” for these inverters, and in February 2019, it’s going to start requiring that inverters support the communications capabilities described in “Phase 2,” as well as some more advanced “Phase 3” capabilities.

 

Increasing hosting capacity: A win-win for solar and utilities

Each of these phases aligns with a different value proposition for smart inverters. The first phase is largely preventative, aimed at solving the kinds of problems that have forced costly upgrades to how inverters operate in solar-heavy Germany and Hawaii.

The key standard in question in the U.S. is IEEE 1547, which sets the rules for what grid-connected DERs must do to stay safe, such as trip offline when the grid goes down, or avoid overloading local transformers or circuits.

The old version of the standard, however, had a lot of restrictive rules on tripping off during relatively common voltage excursions, which could cause real problems on circuits with a lot of solar dropping off all at once.

Phase 1 implementation of IEEE 1547 is all about removing these barriers, Salas said. “They need to be stable, they need to be connected, they need to be able to support the grid.”

This should increase hosting capacity on circuits that would have otherwise been constrained by these unwelcome behaviors, he said.

 

Reactive power: Where utility and solar imperatives collide

The old versions of IEEE 1547 also didn’t provide rules for how inverters could use one of their more flexible capabilities: the ability to inject or absorb reactive power to mitigate voltage fluctuations, including those that may be caused by the PV itself. The new version opens up this capability, which could allow for an active application of reactive power to further increase hosting capacity, as well as solve other grid edge challenges for utilities.

But where utilities see opportunity, the solar industry sees a threat. Every unit of reactive power comes at the cost of a reduction in the real power output of solar inverters — and almost every solar installation out there is paid based on the real power it produces.

“If you’re tasked to do things that rob your energy sales, that will reduce compensation,” noted Ric O'Connell, executive director of the Oakland, Calif.-based GridLab. “And a lot of systems have third-party owners — the Sunruns, the Teslas — with growing Powerwall fleets — that have contracts, performance guarantees, and they want to get those financed. It’s harder to do that if there’s uncertainty in the future with curtailment."

“That’s the bottleneck right now,” said Daniel Munoz-Alvarez, a GTM Research grid edge analyst. “As we develop markets on the retail end for ...volt/VAR control to be compensated on the grid edge and that is compensated back to the customer, then the customer will be more willing to allow the utility to control their smart inverters or to allow some automation.”

But first, he said, “We need some agreed-upon functions.”

 

The future: Communications, controls and DER integration

The next stage of smart inverter functionality is establishing communications with the utility. After that, utilities will be able use them to monitor key DER data, or issue disconnect and reconnect commands in emergencies, as well as actively orchestrate other utility devices and systems through emerging virtual power plant strategies across their service areas.

This last area is where Salas sees the greatest opportunity to putting mass-market smart solar inverters to use. “If you want to maximize the DERs and what they can do, the need information from the grid. And DERs provide operational and capability information to the utility.”

Inverter makers have already been forced by California to enable the latest IEEE 1547 capabilities into their existing controls systems — but they are clearly embracing the role that their devices can play on the grid as well. Microinverter maker Enphase leveraged its work in Hawaii into a grid services business, seeking to provide data to utilities where they already had a significant number of installations. While Enphase has since scaled back dramatically, its main rival SolarEdge has taken up the same challenge, launching its own grid services arm earlier this summer.

Inverters have been technically capable of doing most of these things for a long time. But utilities and regulators have been waiting for the completion of IEEE 1547 to move forward decisively. Patrick Dalton, senior engineer for Xcel Energy, said his company’s utilities in Colorado and Minnesota are still several years away from mandating advanced inverter capabilities and are waiting for California’s energy transition example in order to choose a path forward.

In the meantime, it’s possible that Xcel's front-of-meter volt/VAR optimization investments in Colorado, including grid edge devices from startup Varentec, could solve many of the issues that have been addressed by smart inverter efforts in Hawaii and California, he noted.

The broader landscape for rolling out smart inverters for solar installations hasn’t changed much, with Hawaii and California still out ahead of the pack, while territories such as Puerto Rico microgrid rules evolve to support resilience. Arizona is the next most important state, with a high penetration of distributed solar, a contentious policy climate surrounding its proper treatment in future years, and a big smart inverter pilot from utility Arizona Public Service to inform stakeholders.

All told, eight separate smart inverter pilots are underway across eight states at present, according to GTM Research: Pacific Gas & Electric and San Diego Gas & Electric in California; APS and Salt River Project in Arizona; Hawaiian Electric in Hawaii; Duke Energy in North Carolina; Con Edison in New York; and a three-state pilot funded by the Department of Energy’s SunShot program and led by the Electric Power Research Institute.

 

Related News

View more

German Energy Demand Hits Historic Low Amid Economic Stagnation

Germany Energy Demand Decline reflects economic stagnation, IEA forecasts, and the Energiewende, as industrial output slips and efficiency gains, renewables growth, and cost-cutting reduce fossil fuel use while reshaping sustainability and energy security.

 

Key Points

A projected 7% drop in German energy use driven by industrial slowdown, efficiency gains, and renewables expansion.

✅ IEA projects up to 7% demand drop in the next year

✅ Industrial slowdown and efficiency programs cut consumption

✅ Energiewende shifts mix to wind, solar, and less fossil fuel

 

Germany is on the verge of experiencing a significant decline in energy demand, with forecasts suggesting that usage could hit a record low as the country grapples with economic stagnation. This shift highlights not only the immediate impacts of sluggish economic growth but also broader trends in energy consumption, Europe's electricity markets, sustainability, and the transition to renewable resources.

Recent data indicate that Germany's economy is facing substantial challenges, including high inflation and reduced industrial output. As companies struggle to maintain profitability amid nearly doubled power prices and rising costs, many have begun to cut back on energy consumption. This retrenchment is particularly pronounced in energy-intensive sectors such as manufacturing and chemical production, which are crucial to Germany's export-driven economy.

The International Energy Agency (IEA) has projected that German energy demand could decline by as much as 7% in the coming year, a stark contrast to the trends seen in previous decades. This decline is primarily driven by a combination of factors, including reduced industrial activity, increased energy efficiency measures, and a shift toward alternative energy sources, as well as mounting pressures on local utilities to stay solvent. The current economic landscape has led businesses to prioritize cost-cutting measures, including energy efficiency initiatives aimed at reducing consumption.

In the context of these developments, Germany’s energy transition—known as the "Energiewende"—is becoming increasingly significant. The country has made substantial investments in renewable energy sources such as wind, solar, and biomass in recent years. As energy efficiency improves and the share of renewables in the energy mix rises, traditional fossil fuel consumption has begun to wane. This transition is seen as both a response to climate change and a strategy for energy independence, particularly in light of geopolitical tensions and Europe's wake-up call to ditch fossil fuels across the continent.

However, the current stagnation presents a paradox for the German energy sector. While lower energy demand may ease some pressures on supply and prices, it also raises concerns about the long-term viability of investments in renewable energy infrastructure, even as debates continue over electricity subsidies for industry to support competitiveness. The economic slowdown has the potential to derail progress made in reducing carbon emissions and achieving energy targets, particularly if it leads to decreased investment in green technologies.

Another layer to this issue is the potential impact on employment within the energy sector. As energy demand decreases, there may be a ripple effect on jobs tied to traditional energy production and even in renewable energy sectors if investment slows. Policymakers are now tasked with balancing the immediate need for economic recovery, illustrated by the 200 billion-euro energy price shield, with the longer-term goal of achieving sustainability and energy security.

The effects of the stagnation are also being felt in the residential sector. As households face increased living costs and rising heating and electricity costs, many are becoming more conscious of their energy consumption. Initiatives to improve home energy efficiency, such as better insulation and energy-efficient appliances, are gaining traction among consumers looking to reduce their utility bills. This shift toward energy conservation aligns with broader national goals of reducing overall energy consumption and carbon emissions.

Despite the challenges, there is a silver lining. The current situation offers an opportunity for Germany to reassess its energy strategies and invest in technologies that promote sustainability while also addressing economic concerns. This could include increasing support for research and development in green technologies, enhancing energy efficiency programs, and incentivizing businesses to adopt cleaner energy practices.

Furthermore, Germany’s experience may serve as a case study for other nations grappling with similar issues. As economies around the world face the dual pressures of recovery and sustainability, the lessons learned from Germany’s current energy landscape could inform strategies for balancing these often conflicting priorities.

In conclusion, Germany is poised to witness a historic decline in energy demand as economic stagnation takes hold. While this trend poses challenges for the energy sector and economic growth, it also highlights the importance of sustainability and energy efficiency in shaping the future. As the nation navigates this complex landscape, the focus will need to be on fostering innovation and investment that aligns with both immediate economic needs and long-term environmental goals. The path forward will require a careful balancing act, but with the right strategies, Germany can emerge as a leader in sustainable energy practices even in challenging times.

 

Related News

View more

CAA Quebec Shines at the Quebec Electric Vehicle Show

CAA Quebec Electric Mobility spotlights EV adoption, charging infrastructure, consumer education, and sustainability, highlighting policy collaboration, model showcases, and greener transport solutions from the Quebec Electric Vehicle Show to accelerate climate goals and practical ownership.

 

Key Points

CAA Quebec's program advancing EV education, charging network advocacy, and collaboration for sustainable transport.

✅ Consumer education demystifying EV range and charging

✅ Hands-on showcases of new EV models and safety tech

✅ Advocacy for faster, wider public charging networks

 

The Quebec Electric Vehicle Show has emerged as a significant event for the automotive industry, drawing attention from enthusiasts, industry experts, and consumers alike, similar to events like Everything Electric in Vancouver that amplify public interest. This year, CAA Quebec took center stage, showcasing its commitment to promoting electric vehicles (EVs) and sustainable transportation solutions.

A Strong Commitment to Electric Mobility

CAA Quebec’s participation in the show underscores its dedication to facilitating the transition to electric mobility. With the rising concerns over climate change and the increasing popularity of electric vehicles, as Canada pursues ambitious EV targets nationwide, organizations like CAA are pivotal in educating the public about the benefits and practicality of EV ownership. At the show, CAA Quebec offered valuable insights into the latest trends in electric mobility, including advancements in technology, charging infrastructure, and the overall impact on the environment.

Educational Initiatives

One of the highlights of CAA Quebec's presentation was its focus on education. The organization hosted informative sessions aimed at demystifying electric vehicles for the average consumer. Many potential buyers are still apprehensive about making the switch from traditional gasoline-powered cars. CAA Quebec addressed common misconceptions about EVs, such as range anxiety and charging challenges, providing attendees with the knowledge they need to make informed decisions.

The sessions included expert panels discussing the future of electric vehicles, with insights from automotive industry leaders and environmental experts, and addressing debates such as experts questioning Quebec's EV push that shape policy discussions.

Showcasing Innovative EVs

CAA Quebec also showcased a variety of electric vehicles from different manufacturers, giving attendees the chance to see and experience the latest models firsthand, similar to a popular EV event in Regina that drew strong community interest. This hands-on approach allowed potential buyers to explore the features of EVs, from performance metrics to safety technologies. By allowing consumers to interact with the vehicles, CAA Quebec helped to bridge the gap between interest and action, encouraging more people to consider an electric vehicle as their next purchase.

Addressing Infrastructure Challenges

A significant barrier to the widespread adoption of electric vehicles remains the availability of charging infrastructure. CAA Quebec took the opportunity to address this critical issue during the show. The organization has been actively involved in advocating for improved charging networks across Quebec, emphasizing the need for more public charging stations and faster charging options, where examples like BC's Electric Highway illustrate how corridor charging can ease long-distance travel concerns.

Collaboration with Government and Industry

CAA Quebec’s efforts are bolstered by collaboration with both government and industry stakeholders. The organization is working closely with provincial authorities to develop policies that support the growth of electric vehicle infrastructure. Additionally, partnerships with automotive manufacturers are paving the way for more sustainable practices in vehicle production and distribution, and utilities exploring vehicle-to-grid pilots in Nova Scotia to enhance grid resilience.

A Bright Future for Electric Vehicles

The Quebec Electric Vehicle Show highlighted not only the current state of electric mobility but also its promising future, reflected in growing interest in EVs in southern Alberta and other provinces. With the support of organizations like CAA Quebec, consumers are becoming more aware of the benefits of electric vehicles. This awareness is crucial as Quebec aims to achieve its ambitious climate goals, including a significant reduction in greenhouse gas emissions.

CAA Quebec's presence at the Quebec Electric Vehicle Show exemplifies its leadership in promoting electric vehicles and sustainable transportation. By focusing on education, showcasing innovative models, and advocating for improved infrastructure, CAA Quebec is helping to pave the way for a greener future. As the automotive landscape continues to evolve, the insights and initiatives presented at the show will play a vital role in guiding consumers towards embracing electric mobility. The future is electric, and with organizations like CAA Quebec at the helm, that future looks promising.

 

Related News

View more

Hong Kong to expect electricity bills to rise 1 or 2 per cent

Hong Kong Electricity Tariff Increase reflects a projected 1-2% rise as HK Electric and CLP Power shift to cleaner fuel and natural gas, expand gas-fired units and LNG terminals, and adjust the fuel clause charge.

 

Key Points

An expected 1-2% 2018 rise from cleaner fuel, natural gas projects, asset growth, and shrinking fuel cost surpluses.

✅ Expected 1-2% rise amid cleaner fuel and gas shift

✅ Fuel clause charge and asset expansion pressure prices

✅ HK Electric and CLP Power urged to use surpluses prudently

 

Hong Kong customers have been asked to expect higher electricity bills next year, as seen with BC Hydro rate increases in Canada, with a member of a government panel on energy policy anticipating an increase in tariffs of one or two per cent.

The environment minister, Wong Kam-sing, also hinted they should be prepared to dig deeper into their pockets for electricity, as debates over California electric bills illustrate, in the wake of power companies needing to use more expensive but cleaner fuel to generate power in the future.

HK Electric supplies power to Hong Kong Island, Lamma Island and Ap Lei Chau. Photo: David Wong

The city’s two power companies, HK Electric and CLP Power, are to brief lawmakers on their respective annual tariff adjustments for 2018, amid Ontario electricity price pressures drawing international attention, at a Legislative Council economic development panel meeting on Tuesday.

HK Electric supplies electricity to Hong Kong Island and neighbouring Lamma Island and Ap Lei Chau, while CLP Power serves Kowloon and the New Territories, including Lantau Island.

Wong said on Monday: “We have to appreciate that when we use cleaner fuel, there is a need for electricity tariffs to keep pace. I believe it is the hope of mainstream society to see a low-carbon and healthier environment.”

Secretary for the Environment Wong Kam-sing believes most people desire a low-carbon environment. Photo: Sam Tsang

But he declined to comment on how much the tariffs might rise.

World Green Organisation chief executive William Yu Yuen-ping, also a member of the Energy Advisory Committee, urged the companies to better use their “overflowing” surpluses in their fuel cost recovery accounts.

Tariffs are comprised of two components: a basic amount reflecting a company’s operating costs and investments, and the fuel clause charge, which is based on what the company projects it will pay for fuel for the year.

William Yu of World Green Organisation says the companies should use their surpluses more carefully. Photo: May Tse

Critics have claimed the local power suppliers routinely overestimate their fuel costs and amass huge surpluses.

In recent years, the two managed to freeze or cut their tariffs thanks to savings from lower fuel costs. Last year, HK Electric offered special rebates to its customers, which saw its tariff drop by 17.2 per cent. CLP Power froze its own charge for 2017.

Yu said the two companies should use the surpluses “more carefully” to stabilise tariffs.

Rise after fall in Hong Kong electricity use linked to subsidies

“We estimate a big share of the surplus has been used up and so the honeymoon period is over.”

Based on his group’s research, Yu believed the tariffs would increase by one or two per cent.

Economist and fellow committee member Billy Mak Sui-choi said the expansion of the power companies’ fixed asset bases, such as building new gas-fired units and offshore liquefied natural gas terminals, a pattern reflected in Nova Scotia's 14% rate hike recently approved by regulators, would also cause tariffs to rise.

To fight climate change and improve air quality, the government has pledged to cut carbon intensity by between 50 and 60 per cent by 2020. Officials set a target of boosting the use of natural gas for electricity generation to half the total fuel mix from 2020.

Both power companies are privately owned and monitored by the government through a mutually agreed scheme of control agreements, akin to oversight seen under the UK energy price cap in other jurisdictions. These require the firms to seek government approval for their development plans, including their projected basic tariff levels.

At present, the permitted rate of return on their net fixed assets is 9.99 per cent. The deals are due to expire late next year.

Earlier this year, officials reached a deal with the two companies on the post-2018 scheme, settling on a 15-year term. The new agreements slash their permitted rate of return to 8 per cent.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified