Additional PPA Agreements Reached


NFPA 70e Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today

Alberta PPA Settlements finalize agreements returning Sundance A/B and Sheerness to the Balancing Pool, with carbon offsets and payments from TransCanada and AltaGas, supporting coal transition, renewable energy integration, and stable, affordable power.

 

Key Points

Agreements ending PPAs for Sundance A/B and Sheerness, returning to the Balancing Pool with carbon offsets and payments.

✅ PPAs for Sundance A/B and Sheerness returned to Balancing Pool

✅ Carbon offsets and cash payments from AltaGas and TransCanada

✅ Supports coal phaseout, renewable integration, price stability

 

The Government of Alberta has reached final agreements to settle power purchase arrangements (PPAs) with AltaGas Ltd. and TransCanada Energy Ltd. 

The agreements will terminate the PPA held by ASTC Power Partnership, a partnership between AltaGas and TransCanada, for Sundance B. The agreements will also terminate TransCanada’s PPAs for Sundance A and Sheerness, aligning with Alberta’s plan to retire coal power by 2023 across the province. The PPAs will be returned to the Balancing Pool.

“These agreements will help ensure Albertans receive stable, reliable power at affordable prices as we transition from coal and add more renewable energy. Moving ahead, the province looks forward to working with energy companies to power Alberta’s future.”

Marg McCuaig-Boyd, Minister of Energy

The province has launched requests for proposals to purchase clean electricity to accelerate renewable procurement.

AltaGas will contribute 391,879 self-generated carbon offsets and pay $6 million to the Balancing Pool. The cash payments will be made over three years starting in 2018, as many electricity generators switch to gas across Alberta.

TransCanada has provided value associated with a package of carbon offset credits that it has amassed as part of its risk management efforts. The value of the credits will be reflected in TransCanada’s annual, year-end financial statements, which will be released in February 2017.

The carbon offset contribution allows the Balancing Pool greater flexibility in meeting its future greenhouse gas emissions compliance obligations for the PPAs it will hold, especially as Alberta’s last coal plant closes and the grid embraces clean energy.

This action today completely removes TransCanada Energy and AltaGas Ltd. from the court proceedings and settles the matter between them and the government as well as all arbitrations between the two companies and the Balancing Pool. Capital Power has also been removed from the government's proceeding as per its settlement with them, announced Nov. 24, 2016.

 

Related News

Related News

Power Co-Op Gets Bond Rating Upgrade After Exiting Kemper Deal

Cooperative Energy bond rating upgrade signals lower debt costs as Fitch lifts GO Zone Bonds to A, reflecting Kemper exit, shift to owned generation, natural gas, and renewable energy for co-op members and borrowing rates.

 

Key Points

Fitch raised Cooperative Energy's GO Zone Bonds to A, cutting debt costs after Kemper exit and shift to natural gas.

✅ Fitch upgrades 2009A GO Zone Bonds from A- to A.

✅ Kemper divestment reduced risk and exposure to coal.

✅ Shift to owned generation, natural gas, renewables lowers costs.

 

Cooperative Energy and its 11 co-op members will see lower debt costs on $35.4 million bond; similar to regional utilities offering one-time bill decreases for customers recently.

Bailing out of its 15 percent ownership stake in Mississippi Power’s Kemper gasification plant, amid debates over coal and nuclear subsidies in federal policy, has helped Hattiesburg-based Cooperative Energy gain a ratings upgrade on a $35.4 million bond issue.

The electric power co-op, which changed its name to Cooperative Energy from South Mississippi Electric Power Association in November, received a ratings upgrade from A- to A for its 2009 2009A Mississippi Business Finance Corporation Gulf Opportunity Zone Bonds, even as other utilities announced bill reductions for customers during 2020.

“This rating upgrade reflects the success of our strategy to move from purchased power to owned generation resources, and from coal to natural gas and renewable energy as clean energy priorities gain traction,” said Cooperative Energy President/CEO Jim Compton in a press release.  “The result for our members is lower borrowing costs and more favorable rates.”

An “A” rating from Fitch designates the bond issue as “near premium quality,” a status noted as utilities adapted to pandemic-era electricity demand trends nationwide.

 

Related News

View more

EVs could drive 38% rise in US electricity demand, DOE lab finds

EV-Driven Electricity Demand Growth will reshape utilities through electrification, EV adoption, grid modernization, and ratebasing of charging, as NREL forecasts rising terawatt-hours, CAGR increases, and demand-side flexibility to manage emissions and reliability.

 

Key Points

Growth in power consumption fueled by EV adoption and electrification, increasing utility sales and grid investment.

✅ NREL projects 20%-38% higher U.S. load by 2050

✅ Utilities see CAGR up to 1.6% and 80 TWh/year growth

✅ Demand-side flexibility and EV charging optimize grids

 

Utilities have struggled with flat demand for years, but analysis by the National Renewable Energy Laboratory predicts steady growth across the next three decades — largely driven by the adoption of electric vehicles, including models like the Tesla Model 3 that are reshaping expectations.

The study considers three scenarios, a reference case and medium- and high-adoption electrification predictions. All indicate demand growth, but in the medium and high scenarios for 2050, U.S. electricity consumption increases by 20% and 38%, respectively, compared to business as usual.

Utilities could go from stagnant demand to compound annual growth rates of 1.6%, which would amount to sustained absolute growth of 80 terawatt-hours per year.

"This unprecedented absolute growth in annual electricity consumption can significantly alter supply-side infrastructure development requirements," the report says, and could challenge state power grids in multiple regions.

NREL's Trieu Mai, principal investigator for the study, cautions that more research is needed to fully assess the drivers and impacts of electrification, "as well as the role and value of demand-side flexibility."

"Although we extensively and qualitatively discuss the potential drivers and barriers behind electric technology adoption in the report, much more work is needed to quantitatively understand these factors," Mai said in a statement.

However, utilities have largely bought into the dream.

"Electric vehicles are the biggest opportunity we see right now," Energy Impact Partners CEO Hans Kobler told Utility Dive. And the impact could go beyond just higher kilowattt-hour sales, particularly as electric truck fleets come online.

"When the transportation sector is fully electrified, it will result in around $6 trillion in investment," Kobler said. "Half of that is on the infrastructure side of the utility." And the industry can also benefit through ratebasing charging stations and managing the new demand.

One benefit that NREL's report points to is the possibility of "expanded value streams enabled by electric and/or grid-connected technologies," such as energy storage and mobile chargers that enhance flexibility.

"Many electric utilities are carefully watching the trend toward electrification, as it has the potential to increase sales and revenues that have stagnated or fallen over the past decade," the report said, highlighting potential benefits for all customers as adoption grows. "Beyond power system planning, other motivations to study electrification include its potential to impact energy security, emissions, and innovation in electrical end-use technologies and overall efficient system integration. The impacts of electrification could be far-reaching and have benefits and costs to various stakeholders."

 

Related News

View more

After alert on Russian hacking, a renewed focus on protecting U.S. power grid

U.S. Power Grid Cybersecurity combats DHS-FBI flagged threats to energy infrastructure, with PJM Interconnection using ICS/SCADA segmentation, phishing defenses, incident response, and resilience exercises against Russia-linked attacks and pipeline intrusions.

 

Key Points

Strategies, controls, and training that protect U.S. electric infrastructure from cyber threats and disruptions.

✅ ICS/SCADA network segmentation and zero-trust architecture

✅ Employee phishing drills and incident response playbooks

✅ DOE-led grid exercises and threat intelligence sharing

 

The joint alert from the FBI and Department of Homeland Security last month warning that Russia was hacking into critical U.S. energy infrastructure, as outlined in six essential reads on Russian hacks from recent coverage, came as no surprise to the nation’s largest grid operator, PJM Interconnection.

“You will never stop people from trying to get into your systems. That isn’t even something we try to do.” said PJM Chief Information Officer, Tom O’Brien. “People will always try to get into your systems. The question is, what controls do you have to not allow them to penetrate? And how do you respond in the event they actually do get into your system?”

PJM is the regional transmission organization for 65 million people, covering 13 states, including Pennsylvania, and Washington D.C.

On a rainy day in early April, about 10 people were working inside PJM’s main control center, outside Philadelphia, closely monitoring floor-to-ceiling digital displays showing real-time information from the electric power sector throughout PJM’s territory in the mid-Atlantic and parts of the midwest, amid reports that hackers accessed control rooms at U.S. utilities.

#google#

Donnie Bielak, a reliability engineering manager, was overseeing things from his office, perched one floor up.

“This is a very large, orchestrated effort that goes unnoticed most of the time,” Bielak said. “That’s a good thing.”

But the industry certainly did take notice in late 2015 and early 2016, when hackers successfully disrupted power to the Ukrainian grid. The outages lasted a few hours and affected about 225,000 customers. It was the first publicly-known case of a cyber attack causing major disruptions to a power grid. It was widely blamed on Russia.

One of the many lessons of the Ukraine attacks was a reminder to people who work on critical infrastructure to keep an eye out for odd communications.

“A very large percentage of entry points to attacks are coming through emails,” O’Brien said. “That’s why PJM, as well as many others, have aggressive phishing campaigns. We’re training our employees.”

O’Brien doesn’t want to get into specifics about how PJM deals with cyber threats. But one common way to limit exposure is by having separate systems: For example, industrial controls in a power plant are not connected to corporate business networks, a separation underscored after breaches at U.S. power plants prompted reviews across the sector.

Since 2011, North American grid operators and government agencies have also done large, security exercises every two years. Thousands of people practice how they’d respond to a coordinated physical or cyber event, including rising substation attacks that highlight resilience gaps.

So far, nothing like that has happened in the U.S. It’s possible, but not likely, according to Robert M. Lee, a former military intelligence analyst, who runs the industrial cybersecurity firm Dragos.

“The more complex the system, the harder it is to have a scalable attack,” said Lee, who co-authored a report analyzing the Ukraine attacks. “If you wanted to take out a power generation station– that isn’t the most complex thing. Let’s say you cause an hour of outage. But now you want to cause two months of outages? That’s an exponential increase in effort required.”

For example, he said, it would very difficult for hackers to knock out power to the entire east coast for a long time. But briefly disrupting a major city is easier. That’s the sort of thing that keeps him up at night.

“I worry about an adversary getting into, maybe, Washington D.C.’s portion of the grid, taking down power for 30 minutes,” he said.

The Department of Energy is creating a new office focused on cybersecurity and emergency response, following the U.S. government’s condemnation of power grid hacking by Russia.

Deterrence may be one reason why there has not yet been a major attack on the U.S. grid, said John MacWilliams, a former senior DOE official who’s now a fellow at Columbia University’s Center on Global Energy Policy.

“That’s obviously an act of war,” he said. “We have the capability of responding either through cyber mechanisms or kinetic military.”

In the meantime, small-scale incidents keep happening.

This spring, another cyber attack targeted natural gas pipelines. Four companies shut down their computer systems, just in case, but they say no service was disrupted.

 

Related News

View more

Tesla’s Powerwall as the beating heart of your home

GMP Tesla Powerwall Program replaces utility meters with smart battery storage, enabling virtual power plant services, demand response, and resilient homes, integrating solar readiness, EV charging support, and smart grid controls across Vermont households.

 

Key Points

Green Mountain Power uses Tesla Powerwalls as smart meters, creating a VPP for demand response and home backup.

✅ $30 monthly for 10 years or $3,000 upfront for two units

✅ Utility controls batteries for peak shaving and demand response

✅ Enables backup power, solar readiness, and EV charging support

 

There are more than 100 million single-family homes in the United States of America. If each of these homes were to have two 13.5 kWh Tesla Powerwalls, that would total 2.7 Terawatt-hours worth of electricity stored. Prior research has suggested that this volume of energy storage could get us halfway to the 5.4 TWh of storage needed to let the nation get 80% of its electricity from solar and wind, as states like California increasingly turn to grid batteries to support the transition.

Vermont utility Green Mountain Power (GMP) seeks to remove standard electric utility metering hardware and replace it with the equipment inside of a Tesla Powerwall, as part of a broader digital grid evolution underway. Mary Powell, President and CEO of Green Mountain Power, says, “We have a vision of a battery system in every single home” and they’ve got a patent pending software solution to make it happen.

The Resilient Home program will install two standard Tesla Powerwalls each in 250 homes in GMP’s service area. The homeowner will pay either $30 a month for ten years ($3,600), or $3,000 up front. At the end of the ten year period, payments end, but the unit can stay in the home for an additional five years – or as long as it has a usable life.

A single Powerwall costs approximately $6,800, making this a major discount.

GMP notes that the home must have reliable internet access to allow GMP and Tesla to communicate with the Powerwall. GMP will control the functions of the Powerwall, effectively operating a virtual power plant across participating homes, expanding the scope of programs like those that saved the state’s ratepayers more than $500,000 during peak demand events last year. The utility specifically notes that customers agree to share stored energy with GMP on several peak demand days each year.

The hardware can be designed to interact with current backup generators during power outages, or emerging fuel cell solutions that maintain battery charge longer during extended outages, however, the units will not charge from the generator. As noted the utility will be making use of the hardware during normal operating times, however, during a power outage the private home owner will be able to use the electricity to back up both their house and top off their car.

The utility told pv magazine USA that the Powerwalls are standard from the factory, with GMP’s patent pending software solution being the special sauce (has a hint of recent UL certifications). GMP said the program will also get home owners “adoption ready” for solar power, including microgrid energy storage markets, and other smart devices.

Sonnen’s ecoLinx is already directly interacting with a home’s electrical panel (literally throwing wifi enabled circuit breakers). Now with Tesla Powerwalls being used to replace utility meters, we see one further layer of integration that will lead to design changes that will drive residential solar toward $1/W. Electric utilities are also experimenting with controlling module level electronics and smart solar inverters in 100% residential penetration situations. And of course, considering that California is requiring solar – and probably storage in the future – in all new homes, we should expect to see further experimentation in this model. Off grid solar inverter manufacturers already include electric panels with their offerings.

If we add in the electric car, and have vehicle-to-grid abilities, we start to see a very strong amount of electricity generation and energy storage, helping to keep the lights on during grid stress, potentially happening in more than 100 million residential power plants. Resilient homes indeed.

 

Related News

View more

Electricity sales in the U.S. actually dropped over the past 7 years

US Electricity Sales Decline amid population growth and GDP gains, as DOE links reduced per capita consumption to energy efficiency, warmer winters, appliances, and bulbs, while hotter summers and rising AC demand may offset savings.

 

Key Points

US electricity sales fell 3% since 2010 despite population and GDP growth, driven by efficiency gains and warmer winters.

✅ DOE links drops to efficiency and warmer winters

✅ Per capita residential use fell about 7% since 2010

✅ Rising AC demand may offset winter heating savings

 

Since 2010, the United States has grown by 17 million people, and the gross domestic product (GDP) has increased by $3.6 trillion. Yet in that same time span, electricity sales in the United States actually declined by 3%, according to data released by the U.S. Department of Energy (DOE), even as electricity prices rose at a 41-year pace nationwide.

The U.S. decline in electricity sales is remarkable given that the U.S. population increased by 5.8% in that same time span. This means that per capita electricity use fell even more than that; indeed, the Department of Energy pegs residential electricity sales per capita as having declined by 7%, even as inflation-adjusted residential bills rose 5% in 2022 nationwide.

There are likely multiple reasons for this decline in electricity sales. Department of Energy analysts suggest that, at least in part, it is due to increased adoption of energy-efficient appliances and bulbs, like compact fluorescents. Indeed, the DOE notes that there is a correlation between consumer spending on “energy efficiency” and a reduction in per capita electricity sales, while utilities invest more in delivery infrastructure to modernize the grid.

Yet the DOE also notes that states with a greater increase in warm weather days had a corresponding decrease in electricity sales, as milder weather can reduce power demand across years. In southern states, the effect was most dramatic: for instance, from 2010 to 2016, Florida had a 56% decrease in cold weather days that would require heating and as a result, saw a 9% decrease in per capita electricity sales.

The moral is that warm winters save on electricity. But if global temperatures continue to rise, and summers become hotter, too, this decrease in winter heating spending may be offset by the increased need to run air conditioning in the summer, and given how electricity and natural gas prices interact, overall energy costs could shift. Indeed, it takes far more energy to cool a room than it does to heat it, for reasons related to the basic laws of thermodynamics. 

 

Related News

View more

CAA Quebec Shines at the Quebec Electric Vehicle Show

CAA Quebec Electric Mobility spotlights EV adoption, charging infrastructure, consumer education, and sustainability, highlighting policy collaboration, model showcases, and greener transport solutions from the Quebec Electric Vehicle Show to accelerate climate goals and practical ownership.

 

Key Points

CAA Quebec's program advancing EV education, charging network advocacy, and collaboration for sustainable transport.

✅ Consumer education demystifying EV range and charging

✅ Hands-on showcases of new EV models and safety tech

✅ Advocacy for faster, wider public charging networks

 

The Quebec Electric Vehicle Show has emerged as a significant event for the automotive industry, drawing attention from enthusiasts, industry experts, and consumers alike, similar to events like Everything Electric in Vancouver that amplify public interest. This year, CAA Quebec took center stage, showcasing its commitment to promoting electric vehicles (EVs) and sustainable transportation solutions.

A Strong Commitment to Electric Mobility

CAA Quebec’s participation in the show underscores its dedication to facilitating the transition to electric mobility. With the rising concerns over climate change and the increasing popularity of electric vehicles, as Canada pursues ambitious EV targets nationwide, organizations like CAA are pivotal in educating the public about the benefits and practicality of EV ownership. At the show, CAA Quebec offered valuable insights into the latest trends in electric mobility, including advancements in technology, charging infrastructure, and the overall impact on the environment.

Educational Initiatives

One of the highlights of CAA Quebec's presentation was its focus on education. The organization hosted informative sessions aimed at demystifying electric vehicles for the average consumer. Many potential buyers are still apprehensive about making the switch from traditional gasoline-powered cars. CAA Quebec addressed common misconceptions about EVs, such as range anxiety and charging challenges, providing attendees with the knowledge they need to make informed decisions.

The sessions included expert panels discussing the future of electric vehicles, with insights from automotive industry leaders and environmental experts, and addressing debates such as experts questioning Quebec's EV push that shape policy discussions.

Showcasing Innovative EVs

CAA Quebec also showcased a variety of electric vehicles from different manufacturers, giving attendees the chance to see and experience the latest models firsthand, similar to a popular EV event in Regina that drew strong community interest. This hands-on approach allowed potential buyers to explore the features of EVs, from performance metrics to safety technologies. By allowing consumers to interact with the vehicles, CAA Quebec helped to bridge the gap between interest and action, encouraging more people to consider an electric vehicle as their next purchase.

Addressing Infrastructure Challenges

A significant barrier to the widespread adoption of electric vehicles remains the availability of charging infrastructure. CAA Quebec took the opportunity to address this critical issue during the show. The organization has been actively involved in advocating for improved charging networks across Quebec, emphasizing the need for more public charging stations and faster charging options, where examples like BC's Electric Highway illustrate how corridor charging can ease long-distance travel concerns.

Collaboration with Government and Industry

CAA Quebec’s efforts are bolstered by collaboration with both government and industry stakeholders. The organization is working closely with provincial authorities to develop policies that support the growth of electric vehicle infrastructure. Additionally, partnerships with automotive manufacturers are paving the way for more sustainable practices in vehicle production and distribution, and utilities exploring vehicle-to-grid pilots in Nova Scotia to enhance grid resilience.

A Bright Future for Electric Vehicles

The Quebec Electric Vehicle Show highlighted not only the current state of electric mobility but also its promising future, reflected in growing interest in EVs in southern Alberta and other provinces. With the support of organizations like CAA Quebec, consumers are becoming more aware of the benefits of electric vehicles. This awareness is crucial as Quebec aims to achieve its ambitious climate goals, including a significant reduction in greenhouse gas emissions.

CAA Quebec's presence at the Quebec Electric Vehicle Show exemplifies its leadership in promoting electric vehicles and sustainable transportation. By focusing on education, showcasing innovative models, and advocating for improved infrastructure, CAA Quebec is helping to pave the way for a greener future. As the automotive landscape continues to evolve, the insights and initiatives presented at the show will play a vital role in guiding consumers towards embracing electric mobility. The future is electric, and with organizations like CAA Quebec at the helm, that future looks promising.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.