Reliable, affordable energy and the nuclear option

By Dustin Chambers & Dan Ervin, The Gov Monitor


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
The U.S. economy is sensitive to high-energy prices. An aggressive push toward green power would result in the net loss of millions of jobs. There is a better way forward.

Unlike most products, electrical energy is fraught with thorny economic issues. These include market competitiveness (e.g., the generation and distribution of energy resembles monopoly more than perfect competition), the emission of pollution, and public safety. Consequently, government regulation of the power industry in some shape or form is common around the globe.

Historically, when governments enmesh themselves in the regulation of industry, they have a nasty habit of micromanaging, picking “winning” firms and technologies. True to form, the current energy debate centers on what proportion of America’s electric energy should be generated by “green” sources, and what form those “green” sources should take (e.g., wind, solar, biomass, etc.).

The answer to these questions will have significant ramifications for the U.S. economy for decades to come. In what follows, we explore these economic ramifications in greater detail, and compare wind power (currently the cheapest source of green energy) with what we believe is the best energy option: nuclear power.

Reliably affordable energy is important because swift surges in energy prices typically have harmful economic effects. Commonly called “supply shocks,” high-energy prices ultimately stoke inflation, reduce economic output, and swell the ranks of the unemployed. The process begins by raising production costs in energy intensive industries such as manufacturing and transportation. In response, these industries attempt to pass along these higher costs to their customers (typically other firms). This puts pressure on industries further up the economic food chain to raise their prices, as they are forced to pay more for the goods and services they receive from energy-intensive suppliers.

For example, high diesel fuel prices force trucking firms to raise the rates they charge retailers to move merchandise to their stores. Retailers, in turn face higher costs, which they attempt to pass along to their customers in the form of higher retail prices. In this way, higher energy prices both directly and indirectly raise the cost of doing business, thereby increasing prices across the entire economy in a process called “cost-push inflation.”

In addition to facing higher prices for virtually everything they purchase, households must also contend with higher energy expenses in the form of pricier gasoline, heating oil, natural gas, and electricity. Not surprisingly, households respond by paring consumption, which typically represents 70 percent of U.S. gross domestic product (GDP). The combination of declining sales and higher production costs squeeze corporate profits and force businesses to lay off workers and reduce output. In this way, a spike in energy prices ultimately fosters higher inflation, falling output, and rising unemployment.

Although the meltdown of the U.S. housing market is principally to blame for the current recession, the massive run-up in energy prices that peaked in the summer of 2008 certainly played a role in the United States entering into recession later that year (indeed, some have argued that high energy prices prior to September 11, 2001 contributed to that yearÂ’s recession).

These downturns notwithstanding, the most oft-cited examples of energy-related supply shocks are the recessions of 1974 and 1980. Beginning in late 1973, the Organization of the Petroleum Exporting Countries (OPEC) initiated an embargo that lead to a nearly fivefold increase in crude oil prices in the span of just one year.

The following year, the U.S. economy was in recession.

From the time the crisis began in October 1973 until the peak of the recession in May 1975, average prices rose by nearly 17 percent, economic output dropped by 2.4 percent, and unemployment soared from 4.6 percent to 9 percent. In the wake of the Iranian revolution of 1979, crude prices doubled, and the United States entered another period of recession. From July 1979 to July 1980, average prices surged 13 percent, output dropped 1.6 percent, and unemployment jumped from 5.7 percent to 7.8 percent.

Given this historical background, how will an aggressive push toward green energy affect the U.S. economy today?

The Obama administration claims that a shift to green energy will create a staggering 5 million new jobs over 10 years. A careful examination of data available from the Bureau of Labor Statistics casts serious doubt on the credibility of that estimate. As of May 2008, the entire electric utility industry (generation, transmission, and distribution) employed 401,550 workers, and the electric and power transmission equipment manufacturing industries employed a combined 259,530 workers, while the industries that provide the fuel (e.g., natural gas, oil, and coal) collectively employed 335,380 workers.

Putting all of this together, the entire electric power industry — from the manufacturing of the equipment, to the mining and drilling of fuel, to the generation of power, and the ultimate delivery of that power to customers — employs just over 996,000 workers, or about 20 percent of the Obama green job estimate. Creating 5 million new “green” jobs is not even remotely credible.

WhatÂ’s more, most green job estimates ignore all of the jobs lost because of higher energy prices. In both the 1974 and 1980 recessions, the unemployment rate surged by 4.4 and 2.1 percentage points, respectively. As of May 2009, the U.S. labor force stood at 160 million workers. Therefore, every one percentage point increase in the unemployment rate results in nearly 1.6 million lost jobs. With this in mind, even if President ObamaÂ’s energy policies create a mere 250,000 green jobs, the resulting high energy prices (which we discuss in greater detail below) are likely to slow economic growth and spur unemployment in the wider economy.

Job losses outside of the energy sector equivalent to a miniscule two-tenths of a percentage point (0.2 percent) of the nationÂ’s labor force (250,000 jobs) would exactly offset the green job gains. In light of the U.S. economyÂ’s historic sensitivity to high-energy prices, an aggressive push toward green power would likely result in the net loss of millions of jobs.

Having dispensed with the broader macroeconomic implications of the Obama administrationÂ’s energy policy, we turn to a detailed comparison of wind and nuclear power. We focus on wind power because it is the current green energy frontrunner.

According to the U.S. Department of Energy (DOE), the wind industry enjoyed 30 percent annual growth from 2003 to 2007, and represented 30 percent of all new domestic generation capacity in 2007. Moreover, the Obama administration is a vocal supporter of wind power. Wind will likely be a major player in AmericaÂ’s future green-energy portfolio.

Throughout recorded history, humans have harnessed wind energy for various applications. The Egyptians used sailboats to navigate the Nile approximately 7,000 years ago, while the Chinese developed windmills to pump water by 200 BC. Despite this long experience utilizing wind power, man has been unable to fully overcome this technologyÂ’s chief shortcoming: it neither produces energy nor does any work when the wind stops blowing (also known as the intermittency problem).

Over the millennia, this problem has been ameliorated through the use of backup or storage systems. For sailboats, it is muscle-power and oars; for water pumps, it is storage tanks. Unlike our ancient ancestors, modern engineers have struggled to develop cost-effective storage systems for wind-generated electricity.

That struggle continues today as researchers explore six different technologies to help boost windÂ’s potential, including batteries, compressed air, capacitors, hydrogen generation and storage, flywheels, and superconducting magnetic energy storage; however, none of these is yet commercially viable. The only storage technology currently in operation in the United States is pumped storage, which consists of a large body of water (a lake or reservoir) and turbines attached to generators.

During peak times, water can be quickly released from the lake, driving the turbines and generators, and thus producing hydroelectricity. During periods of low energy demand, such as at night, the process runs in reverse, with the turbines acting as pumps and moving water back into the lake.

Unfortunately, this is an inefficient and costly way to store electricity, and thus is not a viable solution for wind energy. Consequently, electric companies rely on backup generation systems, typically natural gas-fired turbines, which must be rapidly brought on- and offline with fluctuations in the wind and consumer demand.

One measure of the intermittency of an energy source is the capacity factor, which equals the ratio of the amount of electricity generated to the maximum amount a turbine could generate. Alternatively put, the capacity factor measures the reliability or dependability of an energy source. Using information from the American Wind Energy Association (AWEA), the average annual capacity factor for wind is 31.8 per cent.

This means that wind turbines produce just under one-third of their maximum potential output. Compare this to nuclear power plants, which are nearly three times as reliable as wind power. According to the DOEÂ’s Energy Information Administration (EIA), nuclear power achieved a capacity factor of 91.5 percent in 2007. Given the major intermittency problems of wind, what are the potential consequences of relying on such a capricious energy source?

Vattenfall Europe Transmission, a regional power company that services northeastern Germany and controls 41 percent of that nationÂ’s wind-generating capacity, is an instructive case study in how intermittency affects the daily operations of an electric transmission system. Like the United States, the transmission system in Germany is antiquated and limited in its ability to direct electricity outside a given region.

However, unlike American operators who generally schedule and coordinate power generators a day ahead, the unpredictability of wind forces Vattenfall to abandon daily scheduling approximately 50 percent of the time. Consequently, Vattenfall relies heavily on backup generation systems to lessen fluctuations in customer demand and intermittent supply, which necessitates the frequent starting and stopping of backup electric generators, which is very costly and inefficient from both an economic and engineering perspective.

All too often, these backup generation costs are not included in cost estimates used in the green energy debate.

That being said, it would be a mistake to conclude that intermittency poses only logistical problems in the generation of electricity. In its most acute form, intermittency can give rise to complete or rolling blackouts.

This nearly occurred in early 2008, when a cold front moved through Texas and unexpectedly reduced wind speeds. Electric output from wind turbines in the state plunged 82 percent, from 1,700 to a mere 300 megawatts, forcing power operators to implement rolling blackouts to avoid system failure.

This event is especially disturbing when one considers that the DOE has extensively surveyed U.S. wind resources and concluded that the panhandle of Texas through Kansas and into the Dakotas is the optimal region for wind turbines.

Apart from the obvious public safety problems posed by power outages, their economic impact can be severe. The DOE estimates that the prolonged blackout hitting the northeastern United States on August 14, 2003 cost Americans $6 billion (or about $250 million per hour).

While this blackout was not caused by a failure of green energy, it vividly illustrates the economic costs stemming from a prolonged power outage.

India provides another example of the economic consequences of an unreliable electricity system. IndiaÂ’s rapidly expanding market economy belies a legacy of socialist policies that have left the nation with an archaic transmission system and a shortage of generating capacity. Consequently, the nation experiences blackouts on a regular basis.

The World Bank reports that approximately 30 percent of business owners believe unpredictable electricity service is the main obstacle for the Indian economy. Despite the desperate need for additional generation capacity, India has struggled to find sites for new facilities, and environmental regulations have further slowed the development of generating assets.

This challenge is further exacerbated by the uncertainty created by fear of future regulatory changes.

Scale is another area where nuclear energy trumps wind power.

The latest nuclear reactor designs can produce up to 1,500 megawatts, as compared to the largest wind turbine, which generates a mere 5 megawatts. Ignoring differences in capacity factors, 300 wind turbines are required to equal one nuclear plant. If output reliability is taken into account, approximately 863 wind turbines are required to equal the output of one nuclear power plant.

All of this raises a natural question: if the public wants to eliminate pollution/CO2 emissions, but green technologies fail to deliver both low cost and reliability, how can this policy objective be met? The answer lies with nuclear power.

In the 1970s, with global energy prices surging, many developed nations took a keen interest in nuclear power. This golden age of nuclear power was not to last, as accidents at Three Mile Island in 1979 and Chernobyl in 1986 prompted many nations to either close their existing plants or placed moratoriums on constructing new ones.

Over the ensuing 30 years, safety improvements along with nuclear waste-reducing breakthroughs have greatly increased the attractiveness of atomic power. When coupled with the ability to produce a reliably large quantity of pollution-free, low-cost energy (6.5 cents per kWh, according to the Electric Power Research Institute, EPRI), it is no surprise that the industryÂ’s nuclear winter is beginning to thaw.

According to the EPRI, Algeria, Argentina, Armenia, Azerbaijan, Belarus, Brazil, Bulgaria, Canada, Chile, China, Egypt, Finland, France, India, Indonesia, Jordan, Kazakhstan, Libya, Lithuania, Mexico, Morocco, Oman, Pakistan, Poland, Romania, Russia, Saudi Arabia, South Africa, Sweden, Turkey, Ukraine, Vietnam, the United Arab Emirates, the United Kingdom, and the United States are either considering or building new facilities.

In addition to the 437 reactors in use today, the International Atomic Energy Agency predicts that 70 new plants will go online within the next 15 years, with 55 already under construction.

Although construction cost estimates for the first nuclear plants to be built are high (between $5 and $7 billion), most knowledgeable observers believe that cost will decline as the United States retools the related industries needed to support a vibrant atomic power industry.

The poster child for nuclear power is France, which generates more than 80 percent of its electrical energy using atomic power. The French model is instructive on a number of levels.

First, it demonstrates that nuclear power is highly scalable, meaning that nuclear power plants can be built in large numbers to meet the desired electric generation needs of an entire nation. By contrast, most renewable energy sources suffer from intermittency problems (e.g., wind and solar), limited natural resource availability (e.g., hydroelectric and biomass), and power grid distribution issues (i.e., the regions where the power is produced are isolated and not well connected to the existing electric utility grid).

Consequently, ambitious green energy proposals, like that of the Obama administration, do not envisage renewable energy providing more than 20 percent of the U.S.Â’s electric power needs.

A second notable feature of the French model is the significant strides made to reduce radioactive waste. Unlike the United States, which officially shunned the reprocessing of spent nuclear fuel from commercial reactors in 1977, the French have openly embraced it.

While the science behind reprocessing is quite complex, the basic idea is surprisingly simple.

Roughly 96 percent of spent nuclear fuel rods are recyclable. The French separate the ancillary non-recyclable materials from the recyclable uranium and plutonium, which are in turn recombined in a four-phase process to produce mixed oxide (MOX) fuel. This significantly reduces both total waste and the demand for newly mined uranium.

Far from contributing to weapon proliferation, the MOX recycling approach creates no net increase in plutonium over the fuel cycle and can be used to convert weapons of mass destruction (WMD) into peaceful civilian energy.

Areva, the government-owned enterprise responsible for reprocessing FranceÂ’s spent fuel, has found that reactors that use a 30 percent MOX and 70 percent conventional fuel mixture actually produce as much plutonium as they consume over the fuel cycle, thus significantly reducing nuclear proliferation fears.

Indeed, the MOX fabrication technique is helping to pound the swords of the Cold War into AmericaÂ’s energy plowshares.

In 1999, the DOE contracted with Areva to build a MOX fabrication facility near Aiken, South Carolina. The Savannah River plant will take weapons-grade plutonium from decommissioned U.S. warheads and combine it with uranium oxide to produce MOX for AmericaÂ’s nuclear power industry.

America is at an energy crossroads. The paths before us are well trodden. One path represents what we call the German Model, which relies on expensive and heavily subsidized wind and solar power (7.7 to 12.7 cents per kWh for wind, and 64 to 87.4 cents per kWh for solar). The other, less-traveled path represents what we call the French Model, which can produce vast, reliable quantities of cheap energy (6.5 cents per kWh) safely while creating very little radioactive waste.

Adopting the German Model will reduce employment and economic growth in the United States by forcing Americans to depend upon expensive and inherently unreliable sources of energy. Embracing the French Model will do the opposite.

However, America faces three significant hurdles if embarking on the French path.

First, the cost of constructing new installations is prohibitive. No less a free market advocate than Adam Smith recognized the need for public investment in projects that were both crucial to commerce but too expensive to be reasonably financed by the private sector. While Smith was principally concerned with bridges, canals, and roads, that list has since grown to include railroads, large commercial ports, interstate highways, airports, etc. It does not seem unreasonable to add nuclear power to this list, as the permit application and construction costs will likely exceed $5 billion for the first new reactors.

In practice, this public investment could be either direct, following the example of the federal governmentÂ’s operation of nuclear facilities under the auspices of the Tennessee Valley Authority, or indirect, taking the form of loan guarantees.

The second major obstacle is the ever-present risk that future regulatory changes may forcibly shut down U.S. reactors. Nuclear installations typically have a 40- to 60-year lifespan, plenty of time for future administrations or Congress to change the rules of the game and mothball facilities being built today.

Given the massive fixed (capital) costs involved in constructing new plants, many years of continuous operation are necessary to successfully recoup these sunk costs. Because the government is largely responsible for creating this regulatory risk, it must therefore bear the cost of assuming that risk. If the government constructs new facilities, this is achieved automatically.

However, if policy makers wish to encourage private investment in nuclear energy vis-à-vis subsidies, the government must also assume the role of loan guarantor, thereby shifting future regulatory risk from private investors to the public sector.

Finally, the third hurdle involves the reprocessing of spent nuclear fuel. The American people will not support atomic energy if it results in a massive buildup of radioactive waste. Areva has shown that reprocessing can be done effectively without increasing the danger of WMD proliferation.

Related News

Blackout-Prone California Is Exporting Its Energy Policies To Western States, Electricity Will Become More Costly And Unreliable

California Blackouts expose grid reliability risks as PG&E deenergizes lines during high winds. Mandated solar and wind displace dispatchable natural gas, straining ISO load balancing, transmission maintenance, and battery storage planning amid escalating wildfire liability.

 

Key Points

California grid shutoffs stem from wildfire risk, renewables, and deferred transmission maintenance under mandates.

✅ PG&E deenergizes lines to reduce wildfire ignition during high winds.

✅ Mandated solar and wind displace dispatchable gas, raising balancing costs.

✅ Storage, reliability pricing, and grid upgrades are needed to stabilize supply.

 

California is again facing widespread blackouts this season. Politicians are scrambling to assign blame to Pacific Gas & Electric (PG&E) a heavily regulated utility that can only do what the politically appointed regulators say it can do. In recent years this has meant building a bunch of solar and wind projects, while decommissioning reliable sources of power and scrimping on power line maintenance and upgrades.

The blackouts are connected with the legal liability from old and improperly maintained power lines being blamed for sparking fires—in hopes that deenergizing the grid during high winds reduces the likelihood of fires. 

How did the land of Silicon Valley and Hollywood come to have developing world electricity?

California’s Democratic majority, from Gov. Gavin Newsom to the solidly progressive legislature, to the regulators they appoint, have demanded huge increases in renewable energy. Renewable electricity targets have been pushed up, and policymakers are weighing a revamp of electricity rates to clean the grid, with the state expected to reach a goal of 33% of its power from renewable sources, mostly solar and wind, by next year, and 60% of its electricity from renewables by 2030.

In 2018, 31% of the electricity Californians purchased at the retail level came from approved renewables. But when rooftop solar is added to the mix, about 34% of California’s electricity came from renewables in 2018. Solar photovoltaic (PV) systems installed “behind-the-meter” (BTM) displace utility-supplied generation, but still affect the grid at large, as electricity must be generated at the moment it is consumed. PV installations in California grew 20% from 2017 to 2018, benefiting from the state’s Self-Generation Incentive Program that offers hefty rebates through 2025, as well as a 30% federal tax credit.

Increasingly large amounts of periodic, renewable power comes at a price—the more there is, the more difficult it is to keep the power grid stable and energized. Since electricity must be consumed the instant it is generated, and because wind and solar produce what they will whenever they do, the rest of the grid’s power producers—mostly natural gas plants—have to make up any differences between supply and immediate demand. This load balancing is vital, because without it, the grid will crash and widespread blackouts will ensue.

California often produces a surplus of mandated solar and wind power, generated for 5 to 8 cents per kilowatt hour. This power displaces dispatchable power from natural gas, coal and nuclear plants, resulting in reliable power plants spending less time online and driving up electricity prices as the plants operate for fewer hours of the day. Subsidized and mandated solar power, along with a law passed in California in 2006 (SB 1638) that bans the renewal of coal-fired power contracts, has placed enormous economic pressure on the Western region’s coal power plants—among them, the nation’s largest, Navajo Generating Station. As these plants go off line, the Western power grid will become increasingly unstable. Eventually, the states that share their electric power in the Western Interconnect may have to act to either subsidize dispatchable power or place a value on reliability—something that was taken for granted in the growth of the America’s electrical system and its regulatory scheme.

California law regarding electricity explicitly states that “a violation of the Public Utilities Act is a crime” and that it is “…the intent of the Legislature to provide for the evolution of the ISO (California’s Independent System Operator—the entity that manages California’s grid) into a regional organization to promote the development of regional electricity transmission markets in the western states.” In other words, California expects to dictate how the Western grid operates.

One last note as to what drives much of California’s energy policy: politics. California State Senator Kevin de León (the author served with him in the State Assembly) drafted SB 350, the Clean Energy and Pollution Reduction Act. It became law in 2015. Sen. de León followed up with SB 100 in 2018, signed into law weeks before the 2018 election. SB 100 increased California’s renewable portfolio standard to 60% by 2030 and further requires all the state’s electricity to come from carbon-free sources by 2045, a capstone of the state’s climate policies that factor into the blackout debate.  

Sen. de León used his environmental credentials to burnish his run for the U.S. Senate against Sen. Dianne Feinstein, eventually capturing the endorsements of the California Democratic Party and billionaire environmentalist Tom Steyer, now running for president. Feinstein and de León advanced to the general in California’s jungle primary, where Feinstein won reelection 54.2% to 45.8%.

De León may have lost his race for the U.S. Senate, but his legacy will live on in increasingly unaffordable electricity and blackouts, not only in California, but in the rest of the Western United States—unless federal or state regulators begin to place a value on reliability. This could be done by requiring utility scale renewable power providers to guarantee dispatchable power, as policymakers try to avert a looming shortage of firm capacity, either through purchase agreements with thermal power plants or through the installation of giant and costly battery farms or other energy storage means.

 

Related News

View more

Canadian Manufacturers and Exporters Congratulates the Ontario Government for Taking Steps to Reduce Electricity Prices

Ontario Global Adjustment Deferral offers COVID-19 electricity bill relief to industrial and commercial consumers not on the RPP, aligning GA to March levels for Class A and Class B manufacturers to improve cash flow.

 

Key Points

A temporary GA deferral easing electricity costs for Ontario industrial and commercial users not on the RPP.

✅ Sets Class B GA at $115/MWh; Class A gets equal percentage cut.

✅ Applies April-June 2020; automatic bill adjustments and credits.

✅ Deferred charges repaid over 12 months starting January 2021.

 

Manufacturers welcome the Government of Ontario's decision to defer a portion of Global Adjustment (GA) charges as part of support for industrial and commercial electricity consumers that do not participate in the Regulated Price Plan.

"Manufacturers are pleased the government listened to Canadian Manufacturers & Exporters (CME) member recommendations and is taking action to reduce Ontario electricity bills immediately," said Dennis Darby, President & CEO of CME.

"The majority of manufacturers have identified cash flow as their top concern during the crisis, "added Darby. "The GA system would have caused a nearly $2 billion cost surge to Ontario manufacturers this year. This new initiative by the government is on top of the billions in support already provided to help manufacturers weather this unprecedented storm, while other provinces accelerate British Columbia's clean energy shift to drive long-term competitiveness. All these measures are a great start in helping businesses of all sizes stay afloat during the crisis and, keeping Ontarians employed."

"We call on the Ontario government to continue to consider the impact of electricity costs on the manufacturing sector, even after the COVID-19 crisis is resolved," stated Darby. "High prices are putting Ontario manufacturers at a significant competitive disadvantage and, discourages investments." A recent report from London Economics International (LEI) found that when compared to jurisdictions with similar manufacturing industries, Ontario's electricity prices can be up to 75% more expensive, underscoring the importance of planning for Toronto's growing electricity needs to maintain affordability.

To provide companies with temporary immediate relief on their electricity bills, the Ontario government is deferring a portion of Global Adjustment (GA) charges for industrial and commercial electricity consumers that do not participate in the Regulated Price Plan (RPP), starting from April 2020, as some regions saw reduced electricity demand from widespread remote work during the pandemic. The GA rate for smaller industrial and commercial consumers (i.e., Class B) has been set at $115 per megawatt-hour, which is roughly in line with the March 2020 value. Large industrial and commercial consumers (i.e., Class A) will receive the same percentage reduction in GA charges as Class B consumers.

The Ontario government intends to keep this relief in place through the end of June 2020, alongside investments like smart grid technology in Sault Ste. Marie to support reliability, subject to necessary extensions and approvals to implement this initiative.

Industrial and commercial electricity consumers will automatically see this relief reflected on their bills. Consumers who have already received their April bill should see an adjustment on a future bill.

Related initiatives include developing cyber standards for electricity sector IoT devices to strengthen system security.

The government intends to bring forward subsequent amendments that would, if approved, recover the deferred GA charges (excluding interest) from industrial and commercial electricity consumers, as Toronto prepares for a surge in electricity demand amid continued growth, over a 12-month period beginning in January 2021.

 

Related News

View more

3 ways 2021 changed electricity - What's Next

U.S. Power Sector Outlook 2022 previews clean energy targets, grid reliability and resilience upgrades, transmission expansion, renewable integration, EV charging networks, and decarbonization policies shaping utilities, markets, and climate strategies amid extreme weather risks.

 

Key Points

An outlook on clean energy goals, grid resilience, transmission, and EV infrastructure shaping U.S. decarbonization.

✅ States set 100% clean power targets; equity plans deepen.

✅ Grid reforms, transmission builds, and RTO debates intensify.

✅ EV plants, batteries, and charging corridors accelerate.

 

As sweeping climate legislation stalled in Congress this year, states and utilities were busy aiming to reshape the future of electricity.

States expanded clean energy goals and developed blueprints on how to reach them. Electric vehicles got a boost from new battery charging and factory plans.

The U.S. power sector also is sorting through billions of dollars of damage that will be paid for by customers over time. States coped with everything from blackouts during a winter storm to heat waves, hurricanes, wildfires and tornadoes. The barrage has added urgency to a push for increased grid reliability and resilience, especially as the power generation mix evolves, EV grid challenges grow as electricity is used to power cars and the climate changes.

“The magnitude of our inability to serve with these sort of discontinuous jumps in heat or cold or threats like wildfires and flooding has made it really clear that we can’t take the grid for granted anymore — and that we need to do something,” said Alison Silverstein, a Texas-based energy consultant.

Many of the announcements in 2021 could see further developments next year as legislatures, utilities and regulators flesh out details on everything from renewable projects to ways to make the grid more resilient.

On the policy front, the patchwork of state renewable energy and carbon reduction goals stands out considering Congress’ failure so far to advance a key piece of President Biden’s agenda — the "Build Back Better Act," which proposed about $550 billion for climate action. Criticism from fellow Democrats has rained on Sen. Joe Manchin (D-W.Va.) since he announced his opposition this month to that legislation (E&E Daily, Dec. 21).

The Biden administration has taken some steps to advance its priorities as it looks to decarbonize the U.S. power sector by 2035. That includes promoting electric vehicles, which are part of a goal to make the United States have net-zero emissions economywide no later than 2050. The administration has called for a national network of 500,000 EV charging stations as the American EV boom raises power-supply questions, and mandated the government begin buying only EVs by 2035.

Still, the fate of federal legislation and spending is uncertain. States and utility plans are considered a critical factor in whether Biden’s targets come to fruition. Silverstein also stressed the importance of regional cooperation as policymakers examine the grid and challenges ahead.

“Our comfort as individuals and as households and as an economy depends on the grid staying up,” Silverstein said, “and that’s no longer a given.”

Here are three areas of the electricity sector that saw changes in 2021, and could see significant developments next year:

 

1. Clean energy
The list of states with new or revamped clean energy goals expanded again in 2021, with Oregon and Illinois joining the ranks requiring 100 percent zero-carbon electricity in 2040 and 2050, respectively.

Washington state passed a cap-and-trade bill. Massachusetts and Rhode Island adopted 2050 net-zero goals.

North Carolina adopted a law requiring a 70 percent cut in carbon emissions by 2030 from 2005 levels and establishing a midcentury net-zero goal.

Nebraska didn’t adopt a statewide policy, but its three public power districts voted separately to approve clean energy goals, actions that will collectively have the same effect. Even the governor of fossil-fuel-heavy North Dakota, during an oil conference speech, declared a goal of making the state carbon-neutral by the end of the decade.

These and other states join hundreds of local governments, big energy users and utilities, which were also busy establishing and reworking renewable energy and climate goals this year in response to public and investor pressure.

However, many of the details on how states will reach those targets are still to be determined, including factors such as how much natural gas will remain online and how many renewable projects will connect to the grid.

Decisions on clean energy that could be made in 2022 include a key one in Arizona, which has seen support rise and fall over the years for a proposal to lead to 100 percent clean power for regulated electric utilities. The Arizona Corporation Commission could discuss the matter in January, though final approval of the plan is not a sure thing. Eyes also are on California, where a much bigger grid for EVs will be needed, as it ponders a recent proposal on rooftop solar that has supporters of renewables worried about added costs that could hamper the industry.

In the wake of the major energy bill North Carolina passed in 2021, observers are waiting for Duke Energy Corp.’s filing of its carbon-reduction plan with state utility regulators. That plan will help determine the future electricity mix in the state.

Warren Leon, executive director of the Clean Energy States Alliance (CESA), said that without federal action, state goals are “going to be more difficult to achieve.”

State and federal policies are complementary, not substitutes, he said. And Washington can provide a tailwind and help states achieve their goals more quickly and easily.

“Progress is going to be most rapid if both the states and the federal government are moving in the same direction, but either of them operating independently of the others can still make a difference,” he said.

While emissions reductions and renewable energy goals were centerpieces of the state energy and climate policies adopted this year, there were some other common threads that could continue in 2022.

One that’s gone largely unnoticed is that an increasing number of states went beyond just setting targets for clean energy and have developed plans, or road maps, for how to meet their goals, Leon said.

Like the New Year resolutions that millions of Americans are planning — pledges to eat healthier or exercise more — it’s far easier to set ambitious goals than to achieve them.

According to CESA, California, Colorado, Nevada, Maine, Rhode Island, Massachusetts and Washington state all established plans for how to achieve their clean energy goals. Prior to late 2020, only two states — New York and New Jersey — had done so.

Another trend in state energy and climate policies: Equity and energy justice provisions factored heavily in new laws in places such as Maine, Illinois and Oregon.

Equity isn’t a new concern for states, Leon said. But state plans have become more detailed in terms of their response to ways the energy transition may affect vulnerable populations.

“They’re putting much more concrete actions in place,” he said. “And they are really figuring out how they go about electricity system planning to make sure there are new voices at the table, that the processes are different, and there are things that are going to be measured to determine whether they’re actually making progress toward equity.”

 

2. Grid
Climate change and natural disasters have been a growing worry for grid planners, and 2021 was a year the issue affected many Americans directly.

Texas’ main power grid suffered massive outages during a deadly February winter storm, and it wasn’t far from an uncontrolled blackout that could have required weeks or months of recovery.

Consumers elsewhere in the country watched as millions of Texans lost grid power and heat amid a bitter cold snap. Other parts of the central United States saw more limited power outages in February.

“I think people care about the grid a lot more this year than they did last year,” Silverstein said, adding, “All of a sudden people are realizing that electricity’s not as easy as they’ve assumed it was and … that we need to invest more.”

Many of the challenges are not specific to one state, she added.

“It seems to me that the state regulators need to put a lot — and utilities need to put a lot — more commitment into working together to solve broad regional problems in cooperative regional ways,” Silverstein said.

In 2022, multiple decisions could affect the grid, including state oversight of spending on upgrades and market proposals that could sway the amount of clean energy brought online.

A focal point will be Texas, where state regulators are examining further changes to the Electric Reliability Council of Texas’ market design. That could have major implications for how renewables develop in the state. Leaders in other parts of the country will likely keep tabs on adjustments in Texas as they ponder their own changes.

Texas has already embarked on reforms to help improve the power sector and its coordination with the natural gas system, which is critical to keeping plants running. But its primary power grid, operated by ERCOT, remains largely isolated and hasn’t been able to rule out power shortages this winter if there are extreme conditions (Energywire, Nov. 22).

Transmission also remains a key issue outside of the Lone Star State, both for resilience and to connect new wind and solar farms. In many areas of the country, the job of planning these new regional lines and figuring out how to allocate billions of dollars in costs falls to regional grid operators (Energywire, Dec. 13).

In the central U.S., the issue led to tension between states in the Midwest and the Gulf South (Energywire, Oct. 15).

In the Northeast, a Maine environmental commissioner last month suspended a permit for a major transmission project that could send hydropower to the region from Canada (Greenwire, Nov. 24). The project’s developers are now battling the state in court to force construction of the line — a process that could be resolved in 2022 — after Mainers signaled opposition in a November vote.

Advocates of a regional transmission organization for Western states, meanwhile, hope to keep building momentum even as critics question the cost savings promoted by supporters of organized markets. Among those in existing markets, states such as Louisiana are expected to monitor the costs and benefits of being associated with the Midcontinent Independent System Operator.

In other states, more details are expected to emerge in 2022 about plans announced this year.

In California, where policymakers are also exploring EVs for grid stability alongside wildfire prevention, Pacific Gas & Electric Co. announced a plan over the summer to spend billions of dollars to underground some 10,000 miles of power lines to help prevent wildfires, for example (Greenwire, July 22).

Several Southeastern utilities, including Dominion Energy Inc., Duke Energy, Southern Co. and the Tennessee Valley Authority, won FERC approval to create a new grid plan — the Southeast Energy Exchange Market, or SEEM — that they say will boost renewable energy.

SEEM is an electricity trading platform that will facilitate trading close to the times when the power is used. The new market is slated to include two time zones, which would allow excess renewables such as solar and wind to be funneled to other parts of the country to be used during peak demand times.

SEEM is significant because the Southeast does not have an organized market structure like other parts of the country, although some utilities such as Dominion and Duke do have some operations in the region managed by PJM Interconnection LLC, the largest U.S. regional grid operator.

SEEM is not a regional transmission organization (RTO) or energy imbalance market. Critics argue that because it doesn’t include a traditional independent monitor, SEEM lacks safeguards against actions that could manipulate energy prices.

Others have said the electric companies that formed SEEM did so to stave off pressure to develop an RTO. Some of the regulated electric companies involved in the new market have denied that claim.

 

3. Electric vehicles
With electric vehicles, the Midwest and Southeast gained momentum in 2021 as hubs for electrifying the transportation sector, as EVs hit an inflection point in mainstream adoption, and the Biden administration simultaneously worked to boost infrastructure to help get more EVs on the road.

From battery makers to EV startups to major auto manufacturers, companies along the entire EV supply chain spectrum moved to or expanded in those two regions, solidifying their footprint in the fast-growing sector.

A wave of industry announcements capped off in December with California-based Rivian Automotive Inc. declaring it would build a $5 billion electric truck, SUV and van factory in Georgia. Toyota Motor Corp. picked North Carolina for its first U.S.-based battery plant. General Motors Co. and a partner plan to build a $2.5 billion battery plant in GM’s home state of Michigan. And Proterra Inc. has unveiled plans to build a new battery factory in South Carolina.

Advocates hope the EV shift by automakers in the Midwest and Southeast will widen the options for customers. Automakers and startups also have been targeting states with zero-emission vehicle targets to launch new and more models because there’s an inherent demand for them.

“The states that have adopted those standards are getting more vehicles,” said Anne Blair, senior EV policy manager for the Electrification Coalition.

EV advocates say they hope those policies could help bring products like Ford’s electrified signature truck line on the road and into rural areas. Ford also is partnering with Korean partner SK Innovation Co. Ltd. to build two massive battery plants in Kentucky.

Regardless of the fanfare about new vehicles, more jobs and must-needed economic growth, barriers to EV adoption remain. Many states have tacked on annual fees, which some elected officials argue are needed to replace revenues secured from a gasoline tax.

Other states do not allow automakers to sell directly to consumers, preventing companies like Lordstown Motors Corp. and Rivian to effectively do business there.

“It’s about consumer choice and consumers having the capacity to buy the vehicles that they want and that are coming out, in new and innovative ways,” Blair told E&E News. Blair said direct sales also will help boost EV sales at traditional dealerships.

In 2022, advocates will be closely watching progress with the National Electric Highway Coalition, amid tensions over charging control among utilities and networks, which was formed by more than 50 U.S. power companies to build a coast-to-coast fast-charging network for EVs along major U.S. travel corridors by the end of 2023 (Energywire, Dec. 7).

A number of states also will be holding legislative sessions, and they could include new efforts to promote EVs — or change benefits that currently go to owners of alternative vehicles.

EV advocates will be pushing for lawmakers to remove barriers that they argue are preventing customers from buying alternative vehicles.

Conversations already have begun in Georgia to let startup EV makers sell their cars and trucks directly to consumers. In Florida, lawmakers will try again to start a framework that will create a network of charging stations as charging networks jostle for position under federal electrification efforts, as well as add annual fees to alternative vehicles to ease concerns over lost gasoline tax revenue.

 

Related News

View more

Ontario pitches support for electric bills

Ontario CEAP Program provides one-time electricity bill relief for residential consumers via local utilities, supports low-income households, aligns with COVID-19 recovery rates, and complements time-of-use pricing options and the winter disconnection ban.

 

Key Points

A one-time electricity bill credit for eligible Ontario households affected by COVID-19, available via local utilities.

✅ Apply through your local distribution company or utility

✅ One-time credit for overdue electricity bills from COVID-19

✅ Complements TOU options, OER, and winter disconnection ban

 

Applications for the CEAP program for Ontario residential consumers has opened. Residential customers across the province can now apply for funding through their local distribution company/utility.

On June 1st, our government announced a suite of initiatives to support Ontario’s electricity consumers amid changes for electricity consumers during the pandemic, including a $9 million investment to support low-income Ontarians through the COVID-19 Energy Assistance Program (CEAP). CEAP will provide a one-time payment to Ontarians who are struggling to pay down overdue electricity bills incurred during the COVID-19 outbreak.

These initiatives include:

  • $9 million for the COVID-19 Energy Assistance Program (CEAP) to support consumers struggling to pay their energy bills during the pandemic. CEAP will provide one-time payments to consumers to help pay down any electricity bill debt incurred over the COVID19 period. Applications will be available through local utilities in the upcoming months;
  • $8 million for the COVID-19 Energy Assistance Program for Small Business (CEAP-SB) to provide support to businesses struggling with bill payments as a result of the outbreak; and
  • An extension of the Ontario Energy Board’s winter disconnection ban until July 31, 2020 to ensure no one is disconnected from their natural gas or electricity service during these uncertain times.


More information about applications for the CEAP for Small Business will be coming later this summer, as electricity rates are about to change across Ontario for many customers.

In addition, the government recently announced that it will continue the suspension of time-of-use (TOU) electricity rates and, starting on June 1, 2020, customers will be billed based on a new fixed COVID-19 hydro rate of 12.8 cents per kilowatt hour. The COVID-19 Recovery Rate, which some warned in analysis could lead to higher hydro bills will be in place until October 31, 2020.

Later in the pandemic, Ontario set electricity rates at the off-peak price until February 7 to provide additional relief.

“Starting November 1, 2020, our government has announced Ontario electricity consumers will have the option to choose between time-of-use and tiered electricity pricing plan, following the Ontario Energy Board’s new rate plan prices and support thresholds announcement. We are proud to soon offer Ontarians the ability to choose an electricity plan that best suits for their lifestyle,” said Jim McDonell, MPP for Stormont–Dundas–South Glengarry.

The government will continue to subsidize electricity bills by 31.8 per cent through the Ontario Electricity Rebate.

The government is providing approximately $5.6 billion in 2020-21 as part of its existing electricity cost relief programs and conservation initiatives such as the Peak Perks program to help ensure more affordable electricity bills for eligible residential, farm and small business consumers.

 

Related News

View more

Is tidal energy the surge remote coastal communities need?

BC Tidal Energy Micro-Grids harness predictable tidal currents to replace diesel in remote Indigenous coastal communities, integrating marine renewables, storage, and demand management for resilient off-grid power along Vancouver Island and Haida Gwaii.

 

Key Points

Community-run tidal turbines and storage deliver reliable, diesel-free electricity to remote B.C. coastal communities.

✅ Predictable power from tidal currents reduces diesel dependence

✅ Integrates storage, demand management, and microgrid controls

✅ Local jobs via marine supply chains and community ownership

 

Many remote West Coast communities are reliant on diesel for electricity generation, which poses a number of negative economic and environmental effects.

But some sites along B.C.’s extensive coastline are ideal for tidal energy micro-grids that may well be the answer for off-grid communities to generate clean power, suggested experts at a COAST (Centre for Ocean Applied Sustainable Technologies) virtual event Wednesday.

There are 40 isolated coastal communities, many Indigenous communities, and 32 of them are primarily reliant on diesel for electricity generation, said Ben Whitby, program manager at PRIMED, a marine renewable energy research lab at the University of Victoria (UVic).

Besides being a costly and unreliable source of energy, there are environmental and community health considerations associated with shipping diesel to remote communities and running generators, Whitby said.

“It's not purely an economic question,” he said.

“You've got the emissions associated with diesel generation. There's also the risks of transporting diesel … and sometimes in a lot of remote communities on Vancouver Island, when deliveries of diesel don't come through, they end up with no power for three or four days at a time.”

The Heiltsuk First Nation, which suffered a 110,000-litre diesel spill in its territorial waters in 2016, is an unfortunate case study for the potential environmental, social, and cultural risks remote coastal communities face from the transport of fossil fuels along the rough shoreline.

A U.S. barge hauling fuel for coastal communities in Alaska ran aground in Gale Pass, fouling a sacred and primary Heiltsuk food-harvesting area.

There are a number of potential tidal energy sites near off-grid communities along the mainland, on both sides of Vancouver Island, and in the Haida Gwaii region, Whitby said.

Tidal energy exploits the natural ebb and flow of the coast’s tidal water using technologies like underwater kite turbines to capture currents, and is a highly predictable source of renewable energy, he said.

Micro-grids are self-reliant energy systems drawing on renewables from ocean, wave power resources, wind, solar, small hydro, and geothermal sources.

The community, rather than a public utility like BC Hydro, is responsible for demand management, storage, and generation with the power systems running independently or alongside backup fuel generators — offering the operators a measure of energy sovereignty.

Depending on proximity, cost, and renewable solutions, tidal energy isn’t necessarily the solution for every community, Whitby noted, adding that in comparison to hydro, tidal energy is still more expensive.

However, the best candidates for tidal energy are small, off-grid communities largely dependent on costly fossil fuels, Whitby said.

“That's really why the focus in B.C. is at a smaller scale,” he said.

“The time it would take (these communities) to recoup any capital investment is a lot shorter.

“And the cost is actually on a par because they're already paying a significant amount of money for that diesel-generated power.”

Lisa Kalynchuk, vice-president of research and innovation at UVic, said she was excited by the possibilities associated with tidal power, not only in B.C., but for all of Canada’s coasts.

“Canada has approximately 40,000 megawatts available on our three coastlines,” Kalynchuk said.

“Of course, not all this power can be realized, but it does exist, so that leads us to the hard part — tapping into this available energy and delivering it to those remote communities that need it.”

Challenges to establishing tidal power include the added cost and complexity of construction in remote communities, the storage of intermittent power for later use, the economic model, though B.C.’s streamlined regulatory process may ease approvals, the costs associated with tidal power installations, and financing for small communities, she said.

But smaller tidal energy projects can potentially set a track record for more nascent marine renewables, as groups like Marine Renewables Canada pivot to offshore wind development, at a lower cost and without facing the same social or regulatory resistance a large-scale project might face.

A successful tidal energy demo project was set up using a MAVI tidal turbine in Blind Channel to power a private resort on West Thurlow Island, part of the outer Discovery Islands chain wedged between Vancouver Island and the mainland, Whitby said.

The channel’s strong tidal currents, which routinely reach six knots and are close to the marina, proved a good site to test the small-scale turbine and associated micro-grid system that could be replicated to power remote communities, he said.

The mooring system, cable, and turbine were installed fairly rapidly and ran through the summer of 2017. The system is no longer active as provincial and federal funding for the project came to an end.

“But as a proof of concept, we think it was very successful,” Whitby said, adding micro-grid tidal power is still in the early stages of development.

Ideally, the project will be revived with new funding, so it can continue to act as a test site for marine renewable energy and to showcase the system to remote coastal communities that might want to consider tidal power, he said.

In addition to harnessing a local, renewable energy source and increasing energy independence, tidal energy micro-grids can fuel employment and new business opportunities, said Whitby.

The Blind Channel project was installed using the local supply chain out of nearby Campbell River, he said.

“Most of the vessels and support came from that area, so it was all really locally sourced.”

Funding from senior levels of government would likely need to be provided to set up a permanent tidal energy demonstration site, with recent tidal energy investments in Nova Scotia offering a model, or to help a community do case studies and finance a project, Whitby said.

Both the federal and provincial governments have established funding streams to transition remote communities away from relying on diesel.

But remote community projects funded federally or provincially to date have focused on more established renewables, such as hydro, solar, biomass, or wind.

The goal of B.C.’s Remote Community Energy Strategy, part of the CleanBC plan and aligned with zero-emissions electricity by 2035 targets across Canada, is to reduce diesel use for electricity 80 per cent by 2030 by targeting 22 of the largest diesel locations in the province, many of which fall along the coast.

The province has announced a number of significant investments to shift Indigenous coastal communities away from diesel-generated electricity, but they predominantly involve solar or hydro projects.

A situation that’s not likely to change, as the funding application guide in 2020 deemed tidal projects as ineligible for cash.

Yet, the potential for establishing tidal energy micro-grids in B.C. is good, Kalynchuk said, noting UVic is a hub for significant research expertise and several local companies, including ocean and river power innovators working in the region, are employing and developing related service technologies to install and maintain the systems.

“It also addresses our growing need to find alternative sources of energy in the face of the current climate crisis,” she said.

“The path forward is complex and layered, but one essential component in combating climate change is a move away from fossil fuels to other sources of energy that are renewable and environmentally friendly.”

 

Related News

View more

Washington Australia announces $600 electricity bill bonus for every household

WA $600 Electricity Credit supports households with power bills as a budget stimulus, delivering an automatic rebate via Synergy and Horizon, funded by the Bell Group settlement to aid COVID-19 recovery and local spending.

 

Key Points

A one-off $600 power bill credit for all Synergy and Horizon residential accounts, funded by the Bell Group settlement.

✅ Automatic, not means-tested; applied to Synergy and Horizon accounts.

✅ Can offset upcoming bills or carry forward to future statements.

✅ Funded by Bell Group payout; aims to ease cost-of-living pressures.

 

Washington Premier Mark McGowan has announced more than a million households will receive a $600 electricity credit on their electricity account before their next bill.

The $650 million measure will form part of Thursday's pre-election state budget, similar to legislation to lower electricity rates in other jurisdictions, which has been delayed since May because of the pandemic and will help deflect criticism by the opposition that Labor hasn't done enough to stimulate WA's economy.

Mr McGowan made the announcement on Sunday while visiting a family in the electorate of Bicton.

"Here in WA, our state is in the best possible position as we continue our strong recovery from COVID-19, but times are still tough for many West Australians, and there is always more work to do," he said.

"[The credit] will mean WA families have a bit of extra money available in the lead up to Christmas.

"But I have a request, if this credit means you can spend some extra money, use it to support our local WA businesses."

The electricity bill credit will be automatically applied to every Synergy or Horizon residential account from Sunday, echoing moves such as reconnections for nonpayment by Hydro One in Canada.

It can be applied to future bills and will not be means tested.

"The $600 credit is fully funded through the recent Bell Group settlement, for the losses incurred in the Bell Group collapse in the early 1990s," Mr McGowan said.

"It made sense that these funds go straight back to Western Australians."

In September, the liquidator for the Bell Group and its finance arm distributed funds to its five major creditors, including $670 million to the WA government. The payment marked the close of the 30-year battle to recover taxpayer funds squandered during the WA Inc era of state politics.

The payout is the result of litigation stemming from the 1988 partnership between then Labor government and entrepreneur Alan Bond in acquiring major interests in Robert Holmes à Court’s failing Bell Group, following the 1987 stock market crash.

WA shadow minister for cost of living, Tony Krsticevic, said the $600 credit was returning money back into West Australian's pockets from "WA Labor's darkest days".

“This is taxpayers’ money out of a levy which was brought in to pay for Labor’s scandalous WA Inc losses of $450 million in the 1980s,” he said.

“This money should be returned to West Australians.

“WA families are in desperate need of it because they are struggling under cost of living increases of $850 every year since 2017 under WA Labor, amid concerns elsewhere that an electricity recovery rate could lead to higher hydro bills.

“But they need more than just a one-off payment. These $850 cost of living increases are an on-going burden.”

Prior to the onset of the coronavirus pandemic, the opposition believed it was gaining traction by attacking the government's increases to fees and charges in its first three budgets, and by urging an electricity market overhaul to favor consumers.

Last year, Labor increased household fees and charges by $127.77, which came on top of increases over the prior two budgets, as other jurisdictions faced hydro rate increases of around 3 per cent.

According the state's annual report on its finances released in September, the $2.6 billion budget surplus forecast in the at the end of 2019 had been reduced by $920 million to $1.7 billion despite the impact of the coronavirus.

But total public sector net debt was at $35.4 billion, down from the $36.1 billion revision at the end of 2019 in the mid-year review.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.