Paris skyline to include wind turbines

By Reuters


CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
Paris city authorities are planning to build small wind turbines into one of the world's most famous skylines to take advantage of the strong winds that sometimes sweep high points such as Montmartre.

"We are not talking of big models like those we see in the countryside. We are in Paris and we musn't disfigure the landscape," Denis Baupin, a deputy mayor in charge of sustainable development, told Le Parisien newspaper.

The turbines would be installed on flat rooftops in four neighborhoods, which experience strong winds, he said in the interview.

One of them is Montmartre in northern Paris home to the celebrated Sacre-Coeur Basilica and the Moulin Rouge cabaret, whose name translates as "Red Windmill."

Other capital cities such as London have already installed big wind turbines on their city fringes and a huge turbine is expected to be built for the 2012 Olympic games, the paper said.

The turbines in Paris will produce electricity that will be sold to the state-owned utility EDF or directly used in the buildings where they will be installed, Baupin said.

Baupin said the city's authorities were also studying setting up water turbines under the capital's bridges of the Seine River.

"The first tests will start in 2011 or 2012," he said.

France aims for terrestrial wind energy to reach 20,000 megawatts by 2020, or around 20 percent of current capacity, up from 3,000 MW now.

Related News

How the 787 uses electricity to maximise efficiency

Boeing 787 More-Electric Architecture replaces pneumatics with bleedless pressurization, VFSG starter-generators, electric brakes, and heated wing anti-ice, leveraging APU, RAT, batteries, and airport ground power for efficient, redundant electrical power distribution.

 

Key Points

An integrated, bleedless electrical system powering start, pressurization, brakes, and anti-ice via VFSGs, APU and RAT.

✅ VFSGs start engines, then generate 235Vac variable-frequency power

✅ Bleedless pressurization, electric anti-ice improve fuel efficiency

✅ Electric brakes cut hydraulic weight and simplify maintenance

 

The 787 Dreamliner is different to most commercial aircraft flying the skies today. On the surface it may seem pretty similar to the likes of the 777 and A350, but get under the skin and it’s a whole different aircraft.

When Boeing designed the 787, in order to make it as fuel efficient as possible, it had to completely shake up the way some of the normal aircraft systems operated. Traditionally, systems such as the pressurization, engine start and wing anti-ice were powered by pneumatics. The wheel brakes were powered by the hydraulics. These essential systems required a lot of physical architecture and with that comes weight and maintenance. This got engineers thinking.

What if the brakes didn’t need the hydraulics? What if the engines could be started without the pneumatic system? What if the pressurisation system didn’t need bleed air from the engines? Imagine if all these systems could be powered electrically… so that’s what they did.

 

Power sources

The 787 uses a lot of electricity. Therefore, to keep up with the demand, it has a number of sources of power, much as grid operators track supply on the GB energy dashboard to balance loads. Depending on whether the aircraft is on the ground with its engines off or in the air with both engines running, different combinations of the power sources are used.

 

Engine starter/generators

The main source of power comes from four 235Vac variable frequency engine starter/generators (VFSGs). There are two of these in each engine. These function as electrically powered starter motors for the engine start, and once the engine is running, then act as engine driven generators.

The generators in the left engine are designated as L1 and L2, the two in the right engine are R1 and R2. They are connected to their respective engine gearbox to generate electrical power directly proportional to the engine speed. With the engines running, the generators provide electrical power to all the aircraft systems.

 

APU starter/generators

In the tail of most commercial aircraft sits a small engine, the Auxiliary Power Unit (APU). While this does not provide any power for aircraft propulsion, it does provide electrics for when the engines are not running.

The APU of the 787 has the same generators as each of the engines — two 235Vac VFSGs, designated L and R. They act as starter motors to get the APU going and once running, then act as generators. The power generated is once again directly proportional to the APU speed.

The APU not only provides power to the aircraft on the ground when the engines are switched off, but it can also provide power in flight should there be a problem with one of the engine generators.

 

Battery power

The aircraft has one main battery and one APU battery. The latter is quite basic, providing power to start the APU and for some of the external aircraft lighting.

The main battery is there to power the aircraft up when everything has been switched off and also in cases of extreme electrical failure in flight, and in the grid context, alternatives such as gravity power storage are being explored for long-duration resilience. It provides power to start the APU, acts as a back-up for the brakes and also feeds the captain’s flight instruments until the Ram Air Turbine deploys.

 

Ram air turbine (RAT) generator

When you need this, you’re really not having a great day. The RAT is a small propeller which automatically drops out of the underside of the aircraft in the event of a double engine failure (or when all three hydraulics system pressures are low). It can also be deployed manually by pressing a switch in the flight deck.

Once deployed into the airflow, the RAT spins up and turns the RAT generator. This provides enough electrical power to operate the captain’s flight instruments and other essentials items for communication, navigation and flight controls.

 

External power

Using the APU on the ground for electrics is fine, but they do tend to be quite noisy. Not great for airports wishing to keep their noise footprint down. To enable aircraft to be powered without the APU, most big airports will have a ground power system drawing from national grids, including output from facilities such as Barakah Unit 1 as part of the mix. Large cables from the airport power supply connect 115Vac to the aircraft and allow pilots to shut down the APU. This not only keeps the noise down but also saves on the fuel which the APU would use.

The 787 has three external power inputs — two at the front and one at the rear. The forward system is used to power systems required for ground operations such as lighting, cargo door operation and some cabin systems. If only one forward power source is connected, only very limited functions will be available.

The aft external power is only used when the ground power is required for engine start.

 

Circuit breakers

Most flight decks you visit will have the back wall covered in circuit breakers — CBs. If there is a problem with a system, the circuit breaker may “pop” to preserve the aircraft electrical system. If a particular system is not working, part of the engineers procedure may require them to pull and “collar” a CB — placing a small ring around the CB to stop it from being pushed back in. However, on the 787 there are no physical circuit breakers. You’ve guessed it, they’re electric.

Within the Multi Function Display screen is the Circuit Breaker Indication and Control (CBIC). From here, engineers and pilots are able to access all the “CBs” which would normally be on the back wall of the flight deck. If an operational procedure requires it, engineers are able to electrically pull and collar a CB giving the same result as a conventional CB.

Not only does this mean that the there are no physical CBs which may need replacing, it also creates space behind the flight deck which can be utilised for the galley area and cabin.


 

 

A normal flight

While it’s useful to have all these systems, they are never all used at the same time, and, as the power sector’s COVID-19 mitigation strategies showed, resilience planning matters across operations. Depending on the stage of the flight, different power sources will be used, sometimes in conjunction with others, to supply the required power.

 

On the ground

When we arrive at the aircraft, more often than not the aircraft is plugged into the external power with the APU off. Electricity is the blood of the 787 and it doesn’t like to be without a good supply constantly pumping through its system, and, as seen in NYC electric rhythms during COVID-19, demand patterns can shift quickly. Ground staff will connect two forward external power sources, as this enables us to operate the maximum number of systems as we prepare the aircraft for departure.

Whilst connected to the external source, there is not enough power to run the air conditioning system. As a result, whilst the APU is off, air conditioning is provided by Preconditioned Air (PCA) units on the ground. These connect to the aircraft by a pipe and pump cool air into the cabin to keep the temperature at a comfortable level.

 

APU start

As we near departure time, we need to start making some changes to the configuration of the electrical system. Before we can push back , the external power needs to be disconnected — the airports don’t take too kindly to us taking their cables with us — and since that supply ultimately comes from the grid, projects like the Bruce Power upgrade increase available capacity during peaks, but we need to generate our own power before we start the engines so to do this, we use the APU.

The APU, like any engine, takes a little time to start up, around 90 seconds or so. If you remember from before, the external power only supplies 115Vac whereas the two VFSGs in the APU each provide 235Vac. As a result, as soon as the APU is running, it automatically takes over the running of the electrical systems. The ground staff are then clear to disconnect the ground power.

If you read my article on how the 787 is pressurised, you’ll know that it’s powered by the electrical system. As soon as the APU is supplying the electricity, there is enough power to run the aircraft air conditioning. The PCA can then be removed.


 

 

Engine start

Once all doors and hatches are closed, external cables and pipes have been removed and the APU is running, we’re ready to push back from the gate and start our engines. Both engines are normally started at the same time, unless the outside air temperature is  below 5°C.

On other aircraft types, the engines require high pressure air from the APU to turn the starter in the engine. This requires a lot of power from the APU and is also quite noisy. On the 787, the engine start is entirely electrical.

Power is drawn from the APU and feeds the VFSGs in the engines. If you remember from earlier, these fist act as starter motors. The starter motor starts the turn the turbines in the middle of the engine. These in turn start to turn the forward stages of the engine. Once there is enough airflow through the engine, and the fuel is igniting, there is enough energy to continue running itself.


 

 

After start

Once the engine is running, the VFSGs stop acting as starter motors and revert to acting as generators. As these generators are the preferred power source, they automatically take over the running of the electrical systems from the APU, which can then be switched off. The aircraft is now in the desired configuration for flight, with the 4 VFSGs in both engines providing all the power the aircraft needs.

As the aircraft moves away towards the runway, another electrically powered system is used — the brakes. On other aircraft types, the brakes are powered by the hydraulics system. This requires extra pipe work and the associated weight that goes with that. Hydraulically powered brake units can also be time consuming to replace.

By having electric brakes, the 787 is able to reduce the weight of the hydraulics system and it also makes it easier to change brake units. “Plug in and play” brakes are far quicker to change, keeping maintenance costs down and reducing flight delays.

 

In-flight

Another system which is powered electrically on the 787 is the anti-ice system. As aircraft fly though clouds in cold temperatures, ice can build up along the leading edge of the wing. As this reduces the efficiency of the the wing, we need to get rid of this.

Other aircraft types use hot air from the engines to melt it. On the 787, we have electrically powered pads along the leading edge which heat up to melt the ice.

Not only does this keep more power in the engines, but it also reduces the drag created as the hot air leaves the structure of the wing. A double win for fuel savings.

Once on the ground at the destination, it’s time to start thinking about the electrical configuration again. As we make our way to the gate, we start the APU in preparation for the engine shut down. However, because the engine generators have a high priority than the APU generators, the APU does not automatically take over. Instead, an indication on the EICAS shows APU RUNNING, to inform us that the APU is ready to take the electrical load.


 

 

Shutdown

With the park brake set, it’s time to shut the engines down. A final check that the APU is indeed running is made before moving the engine control switches to shut off. Plunging the cabin into darkness isn’t a smooth move. As the engines are shut down, the APU automatically takes over the power supply for the aircraft. Once the ground staff have connected the external power, we then have the option to also shut down the APU.

However, before doing this, we consider the cabin environment. If there is no PCA available and it’s hot outside, without the APU the cabin temperature will rise pretty quickly. In situations like this we’ll wait until all the passengers are off the aircraft until we shut down the APU.

Once on external power, the full flight cycle is complete. The aircraft can now be cleaned and catered, ready for the next crew to take over.

 

Bottom line

Electricity is a fundamental part of operating the 787. Even when there are no passengers on board, some power is required to keep the systems running, ready for the arrival of the next crew. As we prepare the aircraft for departure and start the engines, various methods of powering the aircraft are used.

The aircraft has six electrical generators, of which only four are used in normal flights. Should one fail, there are back-ups available. Should these back-ups fail, there are back-ups for the back-ups in the form of the battery. Should this back-up fail, there is yet another layer of contingency in the form of the RAT. A highly unlikely event.

The 787 was built around improving efficiency and lowering carbon emissions whilst ensuring unrivalled levels safety, and, in the wider energy landscape, perspectives like nuclear beyond electricity highlight complementary paths to decarbonization — a mission it’s able to achieve on hundreds of flights every single day.

 

Related News

View more

Energy storage poised to tackle grid challenges from rising EVs as mobile chargers bring new flexibility

EV Charging Grid Readiness addresses how rising EV adoption, larger batteries, and fast charging affect electric utilities, using vehicle-to-grid, energy storage, mobile and temporary chargers, and smart charging to mitigate distribution stress.

 

Key Points

Planning and tech to manage EV load growth with V2G, storage and smart charging to avoid overloads on distribution grids.

✅ Lithium-ion costs may drop 60%, enabling new charger models

✅ Mobile and temporary chargers buffer local distribution peaks

✅ Smart charging and V2G defer transformer and feeder upgrades

 

The impacts of COVID-19 likely mean flat electric vehicle (EV) sales this year, but a trio of new reports say the long-term outlook is for strong growth — which means the electric grid and especially state power grids will need to respond.

As EV adoption grows, newer vehicles will put greater stress on the electric grid due to their larger batteries and capacity for faster charging, according to Rhombus Energy Solutions, while a DOE lab finds US electricity demand could rise 38% as EV adoption scales. A new white paper from the company predicts the cost of lithium-ion batteries will drop by 60% over the next decade, helping enable a new set of charging solutions.

Meanwhile, mobile and temporary EV charging will grow from 0.5% to 2% of the charging market by 2030, according to new Guidehouse research. The overall charging market is expected to reach reach almost $16 billion in revenues in 2020 and more than $60 billion by 2030. ​A third report finds long-range EVs are growing their share of the market as well, and charging them could cause stress to electric distribution systems. 

"One can expect that the number of EVs in fleets will grow very rapidly over the next ten years," according to Rhombus' report. But that means many fleet staging areas will have trouble securing sufficient charging capacity as electric truck fleets scale up.

"Given the amount of time it takes to add new megawatt-level power feeds in most cities (think years), fleet EVs will run into a significant 'power crisis' by 2030," according to Rhombus.

"Grid power availability will become a significant problem for fleets as they increase the number of electric vehicles they operate," Rhombus CEO Rick Sander said in a statement. "Integrating energy storage with vehicle-to-grid capable chargers and smart [energy management system] solutions as seen in California grid stability efforts is a quick and effective mitigation strategy for this issue."

Along with energy storage, Guidehouse says a new, more flexible approach to charger deployment enabled by grid coordination strategies will help meet demand. That means chargers deployed by a van or other mobile stations, and "temporary" chargers that can help fleets expand capacity. 

According to Guidehouse, the temporary units "are well positioned to de-risk large investments in stationary charging infrastructure" while also providing charge point networks and service providers "with new capabilities to flexibly supply predictable changes in EV transportation behaviors and demand surges."

"Mobile charging is a bit of a new area in the EV charging scene. It primarily leverages batteries to make chargers mobile, but it doesn't necessarily have to," Guidehouse Senior Research Analyst Scott Shepard told Utility Dive. 

"The biggest opportunity is with the temporary charging format," said Shepard. "The bigger units are meant to be located at a certain site for a period of time. Those units are interesting because they create a little more scale-ability for sites and a little risk mitigation when it comes to investing in a site."

"Utilities could use temporary chargers as a way to provide more resilient service, using these chargers in line with on-site generation," Shepard said.

Increasing rates of EV adoption, combined with advances in battery size and charging rates, "will impact electric utility distribution infrastructure at a higher rate than previously projected," according to new analysis from FleetCarma.

The charging company conducted a study of over 3,900 EVs, illustrating the rapid change in vehicle capabilities in just the last five years. According to FleetCarma, today's EVs use twice as much energy and draw it at twice the power level. The long-range EV has increased as a proportion of new electric vehicle sales from 14% in 2014 to 66% in 2019 in the United States, it found.

Long-range EVs "are very different from older electric vehicles: they are driven more, they consume more energy, they draw power at a higher level and they are less predictable," according to FleetCarma.

Guidehouse analysts say grid modernization efforts and energy storage can help smooth the impacts of charging larger vehicles. 

Mobile and temporary charging solutions can act as a "buffer" to the distribution grid, according to Guidehouse's report, allowing utilities to avoid or defer some transmission and distribution upgrade costs that could be required due to stress on the grid from newer vehicles.

"At a high level, there's enough power and energy to supply EVs with proper management in place," said Shepard. "And in a lot of different locations, those charging deployments will be built in a way that protects the grid. Public fast charging, large commercial sites, they're going to have the right infrastructure embedded."

"But for certain areas of the grid where there is low visibility, there is the potential for grid disruption and questions about whether the UK grid can cope with EV demand," said Shepard. "This has been on the mind of utilities but never realized: overwhelming residential transformers."

As EVs with higher charging and energy capacities are connected to the grid, Shepard said, "you are going to start to see some of those residential systems come under pressure, and probably see increased incidences of having to upgrade transformers." Some residential upgrades can be deferred through smarter charging programs, he added.

 

Related News

View more

U.S. Senate Looks to Modernize Renewable Energy on Public Land

PLREDA 2019 advances solar, wind, and geothermal on public lands, guiding DOI siting, improving transmission access, streamlining permitting, sharing revenues, and funding conservation to meet climate goals while protecting wildlife and recreation.

 

Key Points

A bipartisan bill to expand renewables on public lands fund conservation, speed permitting and advance U.S. climate aims.

✅ Targets 25 GW of public-land renewables by 2025

✅ Establishes wildlife conservation and recreation access funds

✅ Streamlines siting, transmission, and equitable revenue sharing

 

The Senate unveiled its version of a bill the House introduced in July to help the U.S. realize the extraordinary renewable energy potential of our shared public lands.

Senator Martha McSally (R-AZ) and a bipartisan coalition of western Senators introduced a Senate version of draft legislation that will help the Department of the Interior tap the renewable energy potential of our shared public lands. The western Senators represent Arizona, New Mexico, Colorado, Montana, and Idaho.

Elsewhere in the West, lawmakers have moved to modernize Oregon hydropower to streamline licensing, signaling broad regional momentum.

The Public Land Renewable Energy Development Act of 2019 (PLREDA) facilitates siting of solar, wind, and geothermal energy projects on public lands, boosts funding for conservation, and promotes ambitious renewable energy targets that will help the U.S. take action on the climate crisis.

Like the House version, the Senate bill enjoys strong bi-partisan support and industry endorsement. The Senate version makes few notable changes to the bill introduced in July by Representatives Mike Levin (D-CA) and Paul Gosar (R-AZ). It includes:

  • A commitment to enhance natural resource conservation and stewardship via the establishment of a fish and wildlife conservation fund that would support conservation and restoration work and other important stewardship activities.
  • An ambitious renewable energy production goal for the Department of the Interior to permit a total of 25 gigawatts of renewable energy on public lands by 2025—nearly double the current generating capacity of projects currently on our public lands.
  • Establishment of criteria for identifying appropriate areas for renewable energy development using the 2012 Western Solar Plan as a model. Key criteria to be considered include access to transmission lines and likelihood of avoiding or minimizing conflict with wildlife habitat, cultural resources, and other resources and values.
  • Improved public access to Federal lands for recreational uses via funds made available for preserving and improving access, including enhancing public access to places that are currently inaccessible or restricted.
  • Sharing of revenues raised from renewable energy development on public lands in an equitable manner that benefits local communities near new renewable energy projects and supports the efficient administration of permitting requirements.
  • Creating incentives for renewable energy development by giving Interior the authority to reduce rental rates and capacity fees to ensure new renewable energy development remains competitive in the marketplace.

NRDC strongly supports this legislation, and we will do our utmost to facilitate its passage into law. There is no question that in our era of runaway climate change, legislation that balances energy production with environmental conservation and stewardship of our public lands is critical.

PLREDA takes a balanced approach to using our public lands to help lead the U.S. toward a low-carbon future, as states pursue 100% renewable electricity goals nationwide. The bill outlines a commonsense approach for federal agencies to play a meaningful role in combatting climate change.

 

Related News

View more

Japan to host one of world's largest biomass power plants

eRex Biomass Power Plant will deliver 300 MW in Japan, offering stable baseload renewable energy, coal-cost parity, and feed-in tariff independence through economies of scale, efficient fuel procurement, and utility-scale operations supporting RE100 demand.

 

Key Points

A 300 MW Japan biomass project targeting coal-cost parity and FIT-free, stable baseload renewable power.

✅ 300 MW capacity; enough for about 700,000 households

✅ Aims to skip feed-in tariff via economies of scale

✅ Targets coal-cost parity with stable, dispatchable output

 

Power supplier eRex will build its largest biomass power plant to date in Japan, hoping the facility's scale will provide healthy margins, a strategy increasingly seen among renewable developers pursuing diverse energy sources, and a means of skipping the government's feed-in tariff program.

The Tokyo-based electric company is in the process of selecting a location, most likely in eastern Japan. It aims to open the plant around 2024 or 2025 following a feasibility study. The facility will cost an estimated 90 billion yen ($812 million) or so, and have an output of 300 megawatts -- enough to supply about 700,000 households. ERex may work with a regional utility or other partner

The biggest biomass power plant operating in Japan currently has an output of 100 MW. With roughly triple that output, the new facility will rank among the world's largest, reflecting momentum toward 100% renewable energy globally that is shaping investment decisions.

Nearly all biomass power facilities in Japan sell their output through the government-mediated feed-in tariff program, which requires utilities to buy renewable energy at a fixed price. For large biomass plants that burn wood or agricultural waste, the rate is set at 21 yen per kilowatt-hour. But the program costs the Japanese public more than 2 trillion yen a year, and is said to hamper price competition.

ERex aims to forgo the feed-in tariff with its new plant by reaping economies of scale in operation and fuel procurement. The goal is to make the undertaking as economical as coal energy, which costs around 12 yen per kilowatt-hour, even as solar's rise in the U.S. underscores evolving benchmarks for competitive renewables.

Much of the renewable energy available in Japan is solar power, which fluctuates widely according to weather conditions, though power prediction accuracy has improved at Japanese PV projects. Biomass plants, which use such materials as wood chips and palm kernel shells as fuel, offer a more stable alternative.

Demand for reliable sources of renewable energy is on the rise in the business world, as shown by the RE100 initiative, in which 100 of the world's biggest companies, such as Olympus, have announced their commitment to get 100% of their power from renewable sources. ERex's new facility may spur competition.

 

Related News

View more

Siemens Energy to unlock a new era of offshore green hydrogen production

Offshore Wind-to-Hydrogen Integration enables green hydrogen by embedding an electrolyzer in offshore turbines. Siemens Gamesa and Siemens Energy align under H2Mare to decarbonize industry, advance the Paris Agreement, and unlock scalable, off-grid renewable production.

 

Key Points

A method integrating electrolyzers into offshore wind turbines to generate green hydrogen and reduce carbon emissions.

✅ Integrated electrolyzer at turbine base for off-grid operation

✅ Enables scalable, cost-efficient green hydrogen production

✅ Supports decarbonization targets under Paris Agreement

 

To reach the Paris Agreement goals, the world will need vast amounts of green hydrogen and, with offshore wind growth accelerating, wind will provide a large portion of the power needed for its production.

Siemens Gamesa and Siemens Energy announced today that they are joining forces combining their ongoing wind-to-hydrogen developments to address one of the major challenges of our decade - decarbonizing the economy to solve the climate crisis.

The companies are contributing with their developments to an innovative solution that fully integrates an electrolyzer into an offshore wind turbine as a single synchronized system to directly produce green hydrogen. The companies intend to provide a full-scale offshore demonstration of the solution by 2025/2026. The German Federal Ministry of Education and Research, reflecting Germany's clean energy progress, announced today that the developments can be implemented as part of the ideas competition 'Hydrogen Republic of Germany'.

'Our more than 30 years of experience and leadership in the offshore wind industry, coupled with Siemens Energy's expertise in electrolyzers, brings together brilliant minds and cutting-edge technologies to address the climate crisis. Our wind turbines play a huge role in the decarbonization of the global energy system, and the potential of wind to hydrogen means that we can do this for hard-to-abate industries too. It makes me very proud that our people are a part of shaping a greener future,' said Andreas Nauen, Siemens Gamesa CEO.

Christian Bruch, CEO of Siemens Energy, explains: 'Together with Siemens Gamesa, we are in a unique position to develop this game changing solution. We are the company that can leverage its highly flexible electrolyzer technology and create and redefine the future of sustainable offshore energy production. With these developments, the potential of regions with abundant offshore wind, such as the UK offshore wind sector, will become accessible for the hydrogen economy. It is a prime example of enabling us to store and transport wind energy, thus reducing the carbon footprint of economy.'

Over a time frame of five years, Siemens Gamesa plans to invest EUR 80 million and Siemens Energy is targeting to invest EUR 40 million in the developments. Siemens Gamesa will adapt its development of the world's most powerful turbine, the SG 14-222 DD offshore wind turbine to integrate an electrolysis system seamlessly into the turbine's operations. By leveraging Siemens Gamesa's intricate knowledge and decades of experience with offshore wind, electric losses are reduced to a minimum, while a modular approach ensures a reliable and efficient operational set-up for a scalable offshore wind-to-hydrogen solution. Siemens Energy will develop a new electrolysis product to not only meet the needs of the harsh maritime offshore environment and be in perfect sync with the wind turbine, but also to create a new competitive benchmark for green hydrogen.

The ultimate fully integrated offshore wind-to-hydrogen solution will produce green hydrogen using an electrolyzer array located at the base of the offshore wind turbine tower, blazing a trail towards offshore hydrogen production. The solution will lower the cost of hydrogen by being able to run off grid, much like solar-powered hydrogen in Dubai showcases for desert environments, opening up more and better wind sites. The companies' developments will serve as a test bed for making large-scale, cost-efficient hydrogen production a reality and will prove the feasibility of reliable, effective implementation of wind turbines in systems for producing hydrogen from renewable energy.

The developments are part of the H2Mare initiative which is a lighthouse project likely to be supported by the German Federal Ministry of Education and Research ideas competition 'Hydrogen Republic of Germany'. The H2mare initiative under the consortium lead of Siemens Energy is a modular project consisting of multiple sub-projects to which more than 30 partners from industry, institutes and academia are contributing. Siemens Energy and Siemens Gamesa will contribute to the H2Mare initiative with their own developments in separate modular building blocks.

About hydrogen and its role in the green energy transition

Currently 80 million tons of hydrogen are produced each year and production is expected to increase by about 20 million tons by 2030. Just 1% of that hydrogen is currently generated from green energy sources. The bulk is obtained from natural gas and coal, emitting 830 million tons of CO2 per year, more than the entire nation of Germany or the global shipping industry. Replacing this current polluting consumption would require 820 GW of wind generating capacity, 26% more than the current global installed wind capacity. Looking further ahead, many studies suggest that by 2050 production will have grown to about 500 million tons, with a significant shift to green hydrogen already signaled by projects like Brazil's green hydrogen plant now underway. The expected growth will require between 1,000 GW and 4,000 GW of renewable capacity by 2050 to meet demand, and in the U.S. initiatives like DOE hydrogen hubs aim to catalyze this build-out, which highlights the vast potential for growth in wind power.

 

Related News

View more

Community-generated green electricity to be offered to all in UK

Community Power Tariff UK delivers clean electricity from community energy projects, sourcing renewable energy from local wind and solar farms, with carbon offset gas, transparent provenance, fair pricing, and reinvestment in local generators across Britain.

 

Key Points

UK energy plan delivering 100% community renewable power with carbon-offset gas, sourced from local wind and solar.

✅ 100% community-generated electricity from UK wind and solar

✅ Fair prices with profits reinvested in local projects

✅ Carbon-offset gas and verified, transparent provenance

 

UK homes will soon be able to plug into community wind and solar farms from anywhere in the country through the first energy tariff to offer clean electricity exclusively from community projects.

The deal from Co-op Energy comes as green energy suppliers race to prove their sustainability credentials amid rising competition for eco-conscious customers and “greenwashing” in the market.

The energy supplier will charge an extra £5 a month over Co-op’s regular tariff to provide electricity from community energy projects and gas which includes a carbon offset in the price.

Co-op, which is operated by Octopus Energy after it bought the business from the Midcounties Co-operative last year, will source the clean electricity for its new tariff directly from 90 local renewable energy generation projects across the UK, including the Westmill wind and solar farms in Oxfordshire. It plans to use all profits to reinvest in maintaining the community projects and building new ones.

Phil Ponsonby, the chief executive of Midcounties Co-operative, said the tariff is the UK’s only one to be powered by 100% community-generated electricity and would ensure a fair price is paid to community generators too, amid a renewable energy auction boost that supports wider deployment.

Customers on the Community Power tariff will be able to “see exactly where it is being generated at small scale sites across the UK, and, with new rights to sell solar power back to energy firms, they know it is benefiting local communities”, he said.

Co-op, which has about 300,000 customers, has set itself apart from a rising number of energy supply deals which are marked as 100% renewable, but are not as green as they seem, even as many renewable projects are on hold due to grid constraints.

Consumer group Which? has found that many suppliers offer renewable energy tariffs but do not generate renewable electricity themselves or have contracts to buy any renewable electricity directly from generators.

Instead, the “pale green” suppliers exploit a loophole in the energy market by snapping up cheap renewable energy certificates, without necessarily buying energy from renewables projects.

The certificates are issued by the regulator to renewable energy developers for each megawatt generated, but these can be sold separately from the electricity for a fraction of the price.

A survey conducted last year found that one in 10 people believe that a renewables tariff means that the supplier generates at least some of its electricity from its own renewable energy projects.

Ponsonby said the wind and solar schemes that generate electricity for the Community Power tariff “plough the profits they make back into their neighbourhoods or into helping other similar projects get off the ground”.

Greg Jackson, the chief executive of Octopus Energy, said being able to buy locally-sourced clean, green energy is “a massive jump in the right direction” which will help grow the UK’s green electricity capacity nationwide.

“Investing in more local energy infrastructure and getting Britain’s homes run by the sun when it’s shining and wind energy when it’s blowing can end our reliance on dirty fossil fuels sooner than we hoped,” he said.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.