AECL stands by Candu safety record

By Toronto Star


CSA Z463 Electrical Maintenance -

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
There have been clusters of earthquakes centred in western Lake Ontario, just 80 kilometres from the Pickering nuclear generating station.

But they are minor quakes, says University of Toronto geologist Pierre-Yves Robin, who adds that Lake Ontario is too small to produce a tsunami.

From a geological perspective, this provinceÂ’s nuclear power facilities are effectively immune to the seismic cataclysms that sent reactors at JapanÂ’s Fukushima Daiichi facility down a molten path to obliteration last month, Robin contends.

Still, disasters ranging from hurricanes to ice storms to cascading blackouts could conceivably cut electrical supplies to this provinceÂ’s three nuclear generating facilities.

A tsunami-tripped power outage — and backup generator failures — cut off pumps that basted cooling water over the Japanese reactor cores, causing at least three of them to commence a meltdown. It’s believed that subsequent explosions caused damage to one reactor’s top pool for cooling spent fuel rods, allowing them to heat and emit dangerous radiation.

But at a time when the Fukushima factor is stoking anti-nuke pressures against two planned new reactors in Ontario, the question is: Could such power shutdowns result in the same kind of radiation-spewing cataclysm in this province?

Indeed, is there any scenario that might add the names of Pickering, Darlington or Bruce to those of Fukushima, Three Mile Island and Chernobyl in historyÂ’s list of nuclear plant nightmares?

EnvironmentalistsÂ’ serious concerns notwithstanding, many experts say the chances are slight.

For one thing, experts say, a slew of the safety systems installed in Canada’s own Candu reactors — 17 of which currently produce all this country’s nuclear energy — are powered by immutable forces of nature, and not by a vulnerable electrical grid.

The imperative forces of gravity, thermodynamics, vacuums, atomic absorption and brute structural inertia are used to power many of the Canadian reactorÂ’s key emergency systems.

The unique fuel and reactor design of Candus makes such accidents less likely than at any other type of nuclear generating facility.

“I think the nuclear plants here in Canada are probably some of the safest in the world,” says David Novog, director of McMaster University’s Institute for Energy Studies and a leading expert on nuclear plants.

“They’re designed to be able to cool themselves independently of the electrical grid for quite a long period of time. Certainly the rapid deterioration wouldn’t occur here.”

The first line of defence, Novog says, is a pair of emergency shutdown mechanisms that can cut off the nuclear chain reaction in the CanduÂ’s core immediately.

Like most reactors, Candus are equipped with shutdown rods that drop into the reactor from above, absorb the whizzing neutrons that create the coreÂ’s atom-splitting fission and turn the reactor off within two seconds.

The Canadian reactors also back up those rods with a liquid neutron “poison” that can be pumped quickly into the core to halt the neutron flow.

Neither system requires an electrical trigger. Indeed, they both turn on automatically if the electricity is turned off, with the poison being blasted in by compressed helium and the rods, hung above the core with electromagnets, being drawn down by gravity.

Shutting down the fission process brings core heat down to about 7 per cent of its running temperature.

While no longer fissioning, the fuel rods are still plenty hot. And, like those at Fukushima, they will get hotter still through natural radioactive decay unless they are continuously cooled by water.

Fortunately, the CanduÂ’s basic design means the rods in OntarioÂ’s reactors are already surrounded by a huge pool of cool water, says Jerry Hopwood, vice-president of product development at Atomic Energy of Canada Ltd., which designs the reactors.

Unlike most reactors, the Candu does not put all its uranium fuel eggs in one pressurized basket.

The bulk of the world’s reactors, like those at the Fukushima and Three Mile Island plants, use bundles of “enriched” uranium rods packed tightly together in a single vessel.

These vessels are filled with natural or “light” water, which will quickly boil off if not constantly circulated in and out.

In Candu reactors, the core is contained in a calandria, a boiler-shaped structure the size of a bus that houses hundreds of horizontal pressure tubes.

These cylindrical tubes — there are some 390 in each of the four Pickering A reactors — contain zircon-covered rows of small uranium fuel pellets and pressurized heavy water. The heavy water is pumped through the latticework of tubes, where it is heated by the fissioning fuel to 350C and carried to overhead steam generators containing ordinary water.

The generator water is heated, in turn, by the closed heavy water piping to create the steam that spins the plantÂ’s turbines and generates electricity. The amount of electricity created in this way daily by PickeringÂ’s eight reactors is equal to twice the amount generated every 24 hours on the Canadian side of Niagara Falls.

But the high temperature pressure tubes in the calandria are also surrounded by cooler pools of heavy water, which moderate or slow the free flow of neutrons that create the coreÂ’s nuclear chain reaction.

This moderating water — usually kept bathwater hot — would keep fuel temperatures under control for several hours on its own.

The calandria itself is also surrounded by a second layer of water contained within a metal shield tank that would take up some of the heat.

“We have layers of tanks around the Candu, all of which can absorb heat,” Novog says.

But Novog says the fuel would continue to be cooled primarily by water inside the pressure tubes through thermodynamic convection.

“Hot air wants to rise and hot water wants to rise,” Novog says.

As the pressurized water heats in the core, it will rise up though pipes to the steam generators above, where its heat will be lost. This cooler water will travel back in a loop and be replaced by newly heated liquid.

“Once the reactors are shutdown, we don’t really use any pumped circulation to remove the heat from the core,” Novog says. “As long as we have a place to dump that heat, the cycle goes on indefinitely.”

If these natural thermodynamics fail to keep core temperatures stable, the plants also have huge reservoirs of water stored either in tanks or nearby water towers.

The water tower shower would be driven by gravity, and the water tank liquid would be shot in by compressed air. This flow of relief water, which would require no electricity, would be released into the generator system to allow it to take up more heat.

Should any of the piping rupture, the resulting steam would be contained within the thick concrete “containment” domes that are the signature architecture of Candu plants.

“They are built to resist people flying an airplane into them,” says the U of T’s Robin, a structural geologist who has studied nuclear waste storage facilities. “Which is some ways is a much more likely cause of attack of a nuclear plant in Ontario than a natural disaster.”

Under the Candu’s “defence in depth” safety strategy, however, even these metre-thick containment domes have a backup should steam pressures within approach their structural limits.

Nearby vacuum buildings would suck in the steam, where water would be sprayed down from above to liquefy it, even under power outage conditions, Hopwood says.

Because Candu fuel is kept in separate pressure tubes, if one tube were to melt down, it would not likely cause all the others to fail.

As at all nuclear plants, spent Candu fuel rods are stored in on-site pools. Unlike at the Fukushima plant, however, Candu pools are located below grade and away from the reactor, not above it.

Still, there are many who say that itÂ’s folly to think that any nuclear plant is safe, no matter how many protective layers it sports.

“Every design has some passive features, some features that would survive somebody else’s accident,” says Norman Rubin, director of nuclear research and senior policy analyst at Energy Probe.

Rubin says that itÂ’s an apple and oranges comparison to smugly pit Candu safety features against those of other reactors because they are designed so differently and prone to different problems.

For example, the Candu has far more potential to create explosive gases in a meltdown situation because its pressure tubes are made out of zirconium, which produces hydrogen when it overheats and reacts with steam.

“Those are concerns in Candu... which are orders of magnitude greater than in Fukushima,” Rubin says. He points out that these tubes tend to become brittle and have needed to be replaced far earlier than expected in several reactors.

Novog counters that Candu plants are protected from this potentially explosive release by technology that plucks out hydrogen atoms and “recombines” them with oxygen to form water. And again, this technology does not require electricity.

Rubin says Canadian nuclear “experts” in the industry and at universities are almost uniformly cheerleaders for Candu and are blinded to its dangers.

“If you want to find someone other than the AECL who is more flamingly pro-nuclear in his outlook and his religion and his beliefs... try looking in academia,” he says, explaining that many have worked in the industry and are training students to join it.

Rubin likens reactors to science experiments that will inevitably go bad during repeated runs.

“And the more reactors you have,” he says, “the longer you run them, the worse the probability gets.”

Related News

Nissan accepting electricity from EVs as payment for parking

Nissan V2G Parking lets EV drivers pay with electricity via bidirectional charging at the Yokohama Nissan Pavilion, showcasing vehicle-to-grid, smart energy trading, and integrated mobility experiences like Ariya rides and Formula E simulators.

 

Key Points

A program where EV owners use V2G to pay for parking by discharging power at Nissan's Yokohama Pavilion.

✅ Pay for parking with EV energy via V2G

✅ Powered by Nissan LEAFs and solar at the Pavilion

✅ Showcases Ariya, Formula E, ProPILOT, and I2V tech

 

Nissan is letting customers pay for parking with electricity by discharging power from their electric car’s battery pack, a concept similar to how EV owners sell electricity back to the grid in other programs. In what the company claims to be a global first, owner of electric cars can trade energy for a parking space at Nissan Pavilion exhibition space in Yokohama, Japan, echoing how parked EVs earn from Europe's grids in comparable schemes.

The venue that showcases Nissan's future technologies, opened its doors to public on August 1 and will remain so through October 23, underscoring how stored EV energy can power buildings in broader applications. “(It) is a place where customers can see, feel, and be inspired by (the company's) near-future vision for society and mobility," says CEO Makoto Uchida. “As the world shifts to electric mobility, EVs will be integrated into society in ways that go beyond just transportation."

Apart from the innovate parking experience, people visiting the pavilion can also virtually experience the thrill of Formula E electric street racing or go for a ride in the all-new Ariya electric crossover, similar to demos at the Everything Electric show in Vancouver. Other experiences include ProPILOT advanced driver assistance system as well as Nissan’s Invisible-to-Visible (I2V) technology, which combines information from the real and virtual worlds to assist drivers, themes also explored at an EV education centre in Toronto for public outreach.

A mobility hub in front of the Pavilion offers a variety of services including EV car-sharing. The Pavilion also operates a cafe operated on power supplied by Nissan LEAF electric cars and solar energy, showcasing vehicle-to-building charging benefits on site.

As part of its Nissan NEXT transformation plan, the company plans to expand its global lineup of EVs and aims to sell more than 1 million electrified vehicles a year by the end of fiscal 2023, aligning with the American EV boom and the challenge of scaling charging infrastructure.

 

Related News

View more

Power customers in British Columbia, Quebec have faced fees for refusing the installation of smart meters

NB Power Smart Meter Opt-Out Fees reflect cost causation principles set before the Energy and Utilities Board, covering meter reading charges, transmitter-disable options, rollout targets, and education plans across New Brunswick's smart metering program.

 

Key Points

Fees NB Power may apply to customers opting out of smart meters, reflecting cost causation and meter-reading costs.

✅ Based on cost causation and meter reading expenses

✅ BC and Quebec charge monthly opt-out surcharges

✅ Policy finalized during rollout after EUB review

 

NB Power customers who do not want a smart meter installed on their home could be facing a stiff fee for that decision, but so far the utility is not saying how much it might be.  

"It will be based on the principles of cost causation, but we have not gotten into the detail of what that fee would be at this point," said NB Power Senior Vice President of Operations Lori Clark at Energy and Utilities Board hearings on Friday.

In other jurisdictions that have already adopted smart meters, customers not wanting to participate have faced hundreds of dollars in extra charges, while Texas utilities' pullback from smart-home networks shows approaches can differ.

In British Columbia, power customers are charged a meter reading fee of $32.40 per month if they refuse a smart meter, or $20 per month if they accept a smart meter but insist its radio transmitter be turned off. That's a cost of between $240 and $388.80 per year for customers to opt out.

In Quebec, smart meters were installed beginning in 2012. Customers who refused the devices were initially charged $98 to opt out plus a meter reading fee of $17 per month. That was eventually cut by Quebec's energy board in 2014 to a $15 refusal fee and a $5 per month meter reading surcharge.

NB Power said it may be a year or more before it settles on its own fee.

"The opt out policy will be developed and implemented as part of the roll out.  It will be one of the last things we do," said Clark.

 

Customers need to be on board

NB Power is in front of the New Brunswick Energy and Utilities Board seeking permission to spend $122.7 million to install 350,000 smart meters province wide, as neighboring markets grapple with major rate increases that heighten affordability concerns.  

The meters are capable of transmitting consumption data of customers back to NB Power in real time, which the utility said will allow for a number of innovations in pricing and service, and help address old meter inaccuracies that affected some households.

The meters require near universal adoption by customers to maximize their financial benefit — like eliminating more than $20 million a year NB Power currently spends to read meters manually. The utility has said the switch will not succeed if too many customers opt out.

"We certainly wouldn't be looking at making an investment of this size without having the customer with us," said Clark.

On Thursday, Kent County resident Daniel LeBlanc, who along with Roger Richard, is opposing the introduction of smart meters for health reasons, predicted a cool reception for the technology in many parts of the province, given concerns that include health effects and billing disputes in Nova Scotia reported elsewhere.

"If one were to ask most of the people in the rural areas, I'm not sure you would get a lot of takers for this infrastructure," said LeBlanc, who is concerned with the long-term effect microwave frequencies used by the meters to transmit data may have on human health.

That issue is before the EUB next week.

 

Haven't tested the waters

NB Power acknowledged it has not measured public opinion on adopting smart meters but is confident it can convince customers it is a good idea for them and the utility, even as seasonal rate proposals in New Brunswick have prompted consumer backlash.

"People don't understand what the smart meter is," said Clark. "We need to educate our customers first to allow them to make an informed decision so that will be part of the roll out plan."

Clark noted that smart meters, helped by stiff opting out penalties, were eventually accepted by 98 per cent of customers in British Columbia and by 97.4 per cent of customers in Quebec.

"We will check and adjust along the way if there are issues with customer uptake," said Clark.

 

"This is very similar to what has been done in other jurisdictions and they haven't had those challenges."

 

Related News

View more

Sustainable Marine now delivering electricity to Nova Scotia grid from tidal energy

Sustainable Marine tidal energy delivers in-stream power to Nova Scotia's grid from Grand Passage, proving low-impact, renewable generation and advancing a floating tidal array at FORCE and Minas Passage in the Bay of Fundy.

 

Key Points

The first in-stream tidal project supplying clean power to Nova Scotia's grid, proven at Grand Passage.

✅ First to deliver in-stream tidal power to Canada's grid

✅ Demonstration at Grand Passage informs FORCE deployments

✅ Low-impact design and environmental monitoring validated

 

Sustainable Marine has officially powered up its tidal energy operation in Canada and is delivering clean electricity to the power system in Nova Scotia, on the country’s Atlantic coast, as the province moves to increase wind and solar projects in the years ahead. The company’s system in Grand Passage is the first to deliver in-stream tidal power to the grid in Canada, following provincial approval to harness Bay of Fundy tides that is spurring further development.

The system start-up is the culmination of more than a decade of research, development and testing, including lessons from Scottish tidal projects in recent years and a powerful tidal turbine feeding onshore grids, managing the technical challenges associated with operating in highly energetic environments and proving the ultra-low environmental impact of the tidal technology.

Sustainable Marine is striving to deliver the world’s first floating tidal array at FORCE (Fundy Ocean Research Centre for Energy). This project will be delivered in phases, drawing upon the knowledge gained and lessons learned in Grand Passage, and insights from offshore wind pilots like France’s first offshore wind turbine in Europe. In the coming months the company will continue to operate the platform at its demonstration site at Grand Passage, gradually building up power production, while New York and New England clean energy demand continues to rise, to further prove the technology and environmental monitoring systems, before commencing deployments in the Minas Passage – renowned as the Everest of tidal energy.

The Bay of Fundy’s huge tidal energy resource contains more than four times the combined flow of every freshwater river in the world, with the potential to generate approximately 2,500 MW of green energy, underscoring why independent electricity planning will be important for integrating marine renewables.

 

Related News

View more

Egypt, China's Huawei discuss electricity network's transformation to smart grid

Egypt-Huawei Smart Grid advances Egypt's energy sector with digital transformation, grid modernization, and ICT solutions, enhancing power generation, transmission, and distribution while enabling renewable integration, data analytics, cybersecurity, and scalable infrastructure nationwide.

 

Key Points

An Egypt-Huawei project to modernize Egypt's grid into a smart network using ICT, analytics, and scalable infrastructure.

✅ Gradual migration to a smart grid to absorb higher load

✅ Boosts generation, transmission, and distribution efficiency

✅ ICT training supports workforce and digital transformation

 

Egypt and China's tech giant Huawei on Thursday discussed the gradual transformation of Egypt's electricity network to a smart grid model, Egyptian Ministry of Electricity and Renewable Energy said.

Egyptian Minister of Electricity and Renewable Energy Mohamed Shaker met with Huawei's regional president Li Jiguang in Cairo, where they discussed the cooperation, the ministry said in a statement.

The meeting is part of Egypt's plans to develop its energy sector based on the latest technologies and smarter electricity infrastructure initiatives, it added.

During the meeting, Shaker hailed the existing cooperation between Egypt and China in several mega projects, citing regional efforts like the Philippines power grid upgrades, welcoming further cooperation with China to benefit from its expertise and technological progress.

"The future vision of the Egyptian electricity sector is based on the gradual transformation of the current network from a typical one to a smart grid that would help absorb the large amounts of generated power," Shaker said.

Shaker highlighted his ministry's efforts to improve its services, including power generation, transportation and grid improvements across distribution.

Li, president of Huawei Northern Africa Enterprise Business Group, commended the rapid and remarkable development of the projects implemented by the Egyptian ministry to establish a strong infrastructure along with a smart grid that supports the digital grid transformation.

The Huawei official added that despite the challenges the corporation faced in the first half of 2020, it has managed to achieve revenues growth, which shows Huawei's strength and stability amid global challenges such as cybersecurity fears in critical infrastructure.

In late February, Egypt's Ministry of Higher Education and Scientific Research and Huawei discussed plans to provide training to develop the skills of Egyptian university students talented in information and communications technology, including emerging topics like 5G energy use considerations.

 

Related News

View more

Grounding and Bonding and The NEC - Section 250

Electrical Grounding and Bonding NEC 250 Training equips electricians with Article 250 expertise, OSHA compliance knowledge, lightning protection strategies, and low-impedance fault current path design for safer industrial, commercial, and institutional power systems.

 

Key Points

Live NEC 250 course on grounding and bonding, covering safety, testing, and OSHA-compliant design.

✅ Interprets NEC Article 250 grounding and bonding rules

✅ Designs low-impedance fault current paths for safety

✅ Aligns with OSHA, lightning protection, and testing best practices

 

The Electricity Forum is organizing a series of live online Electrical Grounding and Bonding - NEC 250 training courses this Fall:

  • September 8-9 , 2020 - 10:00 am - 4:30 pm ET
  • October 29-30 , 2020 - 10:00 am - 4:30 pm ET
  • November 23-24 , 2020 - 10:00 am - 4:30 pm ET

 

This interactive 12-hour live online instructor-led  Grounding and Bonding and the NEC Training course takes an in-depth look at Article 250 of the National Electrical Code (NEC) and is designed to give students the correct information they need to design, install and maintain effective electrical grounding and bonding systems in industrial, commercial and institutional power systems, with substation maintenance training also relevant in many facilities.

One of the most important AND least understood sections of the NEC is the section on Electrical Grounding, where resources like grounding guidelines can help practitioners navigate key concepts.

No other section of the National Electrical Code can match Article 250 (Grounding and Bonding) for confusion that leads to misapplication, violation, and misinterpretation. It's generally agreed that the terminology used in Section 250 has been a source for much confusion for industrial, commercial and institutional electricians. Thankfully, this has improved during the last few revisions to Article 250.

Article 250 covers the grounding requirements for providing a path to the earth to reduce overvoltage from lightning, with lightning protection training providing useful context, and the bonding requirements for a low-impedance fault current path back to the source of the electrical supply to facilitate the operation of overcurrent devices in the event of a ground fault.

Our Electrical Grounding Training course will address all the latest changes to  the Electrical Grounding rules included in the NEC, and relate them to VFD drive training considerations for modern systems.

Our course will cover grounding fundamentals, identify which grounding system tests can prevent safety and operational issues at your facilities, and introduce related motor testing training topics, and details regarding which tests can be conducted while the plant is in operation versus which tests require a shutdown will be discussed. 

Proper electrical grounding and bonding of equipment helps ensure that the electrical equipment and systems safely remove the possibility of electric shock, by limiting the voltage imposed on electrical equipment and systems from lightning, line surges, unintentional contact with higher-voltage lines, or ground-fault conditions. Proper grounding and bonding is important for personnel protection, with electrical safety tips offering practical guidance, as well as for compliance with OSHA 29 CFR 1910.304(g) Grounding.

It has been determined that more than 70 per cent of all electrical problems in industrial, commercial and institutional power systems, including large projects like the New England Clean Power Link, are due to poor grounding, and bonding errors. Without proper electrical grounding and bonding, sensitive electronic equipment is subjected to destruction of data, erratic equipment operation, and catastrophic damage. This electrical grounding and bonding training course will National Electrical Code.

Complete course details here:

https://electricityforum.com/electrical-training/electrical-grounding-nec

 

 

 

Related News

View more

Experts Advise Against Cutting Quebec's Energy Exports Amid U.S. Tariff War

Quebec Hydropower Export Retaliation examines using electricity exports to counter U.S. tariffs amid Canada-U.S. trade tensions, weighing clean energy supply, grid reliability, energy security, legal risks, and long-term market impacts.

 

Key Points

Using Quebec electricity exports as leverage against U.S. tariffs, and its economic, legal, and diplomatic consequences.

✅ Revenue loss for Quebec and higher costs for U.S. consumers

✅ Risk of legal disputes under trade and energy agreements

✅ Long-term erosion of market share and grid cooperation

 

As trade tensions between Canada and the United States continue to escalate, with electricity exports at risk according to recent reporting, discussions have intensified around potential Canadian responses to the imposition of U.S. tariffs. One of the proposals gaining attention is the idea of reducing or even halting the export of energy from Quebec to the U.S. This measure has been suggested by some as a potential countermeasure to retaliate against the tariffs. However, experts and industry leaders are urging caution, emphasizing that the consequences of such a decision could have significant economic and diplomatic repercussions for both Canada and the United States.

Quebec plays a critical role in energy trade, particularly in supplying hydroelectric power to the United States, especially to the northeastern states, including New York where tariffs may spike energy prices according to analysts, strengthening the case for stable cross-border flows. This energy trade is deeply embedded in the economic fabric of both regions. For Quebec, the export of hydroelectric power represents a crucial source of revenue, while for the U.S., it provides access to a steady and reliable supply of clean, renewable energy. This mutually beneficial relationship has been a cornerstone of trade between the two countries, promoting economic stability and environmental sustainability.

In the wake of recent U.S. tariffs on Canadian goods, some policymakers have considered using energy exports as leverage, echoing threats to cut U.S. electricity exports in earlier disputes, to retaliate against what is viewed as an unfair trade practice. The idea is to reduce or stop the flow of electricity to the U.S. as a way to strike back at the tariffs and potentially force a change in U.S. policy. On the surface, this approach may appear to offer a viable means of exerting pressure. However, experts warn that such a move would be fraught with significant risks, both economically and diplomatically.

First and foremost, Quebec's economy is heavily reliant on revenue from hydroelectric exports to the U.S. Any reduction in these energy sales could have serious consequences for the province's economic stability, potentially resulting in job losses and a decrease in investment. The hydroelectric power sector is a major contributor to Quebec's GDP, and recent events, including a tariff threat delaying a green energy bill in Quebec, illustrate how trade tensions can ripple through the policy landscape, while disrupting this source of income could harm the provincial economy.

Additionally, experts caution that reducing energy exports could have long-term ramifications on the energy relationship between Quebec and the northeastern U.S. These two regions have developed a strong and interconnected energy network over the years, and abruptly cutting off the flow of electricity could damage this vital partnership. Legal challenges could arise under existing trade agreements, and even as tariff threats boost support for Canadian energy projects among some stakeholders, the situation would grow more complex. Such a move could also undermine trust between the two parties, making future negotiations on energy and other trade issues more difficult.

Another potential consequence of halting energy exports is that U.S. states may seek alternative sources of energy, diminishing Quebec's market share in the long run. As the U.S. has a growing demand for clean energy, especially as it looks to transition away from fossil fuels, and looks to Canada for green power in several regions, cutting off Quebec’s electricity could prompt U.S. states to invest in other forms of energy, including renewables or even nuclear power. This could have a lasting effect on Quebec's position in the U.S. energy market, making it harder for the province to regain its footing.

Moreover, reducing or ceasing energy exports could further exacerbate trade tensions, leading to even greater economic instability. The U.S. could retaliate by imposing additional tariffs on Canadian goods or taking other measures that would negatively impact Canada's economy. This could create a cycle of escalating trade barriers that would hurt both countries and undermine the broader North American trade relationship.

While the concept of using energy exports as a retaliatory tool may seem appealing to some, the experts' advice is clear: the potential economic and diplomatic costs of such a strategy outweigh the short-term benefits. Quebec’s role as an energy supplier to the U.S. is crucial to its own economy, and maintaining a stable, reliable energy trade relationship is essential for both parties. Rather than escalating tensions further, it may be more prudent for Canada and the U.S. to seek diplomatic solutions that preserve trade relations and minimize harm to their economies.

While the idea of using Quebec’s energy exports as leverage in response to U.S. tariffs may appear attractive on the surface, and despite polls showing support for tariffs on energy and minerals among Canadians, it carries significant risks. Experts emphasize the importance of maintaining a stable energy export strategy to protect Quebec’s economy and preserve positive diplomatic relations with the U.S. Both countries have much to lose from further escalating trade tensions, and a more measured approach is likely to yield better outcomes in the long run.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified