Nuclear could be the answer in next energy crisis

By St. Louis Today


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Although the United States always has been No. 1 in technological innovation, we are told that our nation's lead is slipping. But you never would know it here in Missouri, where a team of engineers and technicians at the Callaway nuclear plant has come up with an original way to use plastic piping for reactor cooling.

Heralded by experts as a safe and cost-effective advance in plant performance, the use of polyethylene piping in cooling water systems is expected to benefit nuclear power throughout the world.

Unlike carbon steel piping, high-density polyethylene piping is not subject to corrosion and fouling. It is less costly to install and maintain. And it doesn't have to be replaced, reducing the amount of down time for regularly scheduled maintenance and repairs at nuclear plants.

AmerenUE's nuclear plant in Callaway County supplies about 10 percent of Missouri's electricity. Among the most efficient nuclear plants in the United States, over the past three years Callaway has posted one of the highest capacity factors, generating electricity more than 90 percent of the time.

Finding ways to improve the performance of nuclear plants is a prime focus of engineers and technicians at the nation's nuclear plants as utilities gear up to build new reactors in the United States to meet projected growth in the need for electricity. Using a healthy mix of solar, wind, nuclear power and other forms of cutting-edge energy technologies will help curb our dependence on fossil fuels while reducing emissions of gases that contribute to global warming.

The House of Representatives recently passed a climate change bill that calls for an 80 percent reduction in greenhouse-gas emissions by 2050. Meeting that target would require the addition of 45 nuclear plants by 2030, according to the Electric Power Research Institute, which does research for the utility industry. But utilities have applied for licenses to construct and operate only half that number even though experts say we can and should build more.

For that to happen, however, Congress will need to provide additional loan guarantees to cover the high capital cost of building new plants. Banks won't approve loans for large power plants unless they are guaranteed by the federal government. Now, the amount of money Congress has authorized for loan guarantees would cover only four or five nuclear plants. Although the House bill would establish a bank to provide financial backing for clean-energy technologies, it would limit nuclear power's share of the loan guarantees to 30 percent. The Senate needs to drop that arbitrary limit.

A recent poll shows that 81 percent of Americans favor increased use of nuclear power, with support heaviest in communities that are near existing nuclear plants. A big reason for this is that new nuclear plants provide well-paying jobs for plant construction and permanent jobs.

Establishing a clean-energy bank to provide federal incentives for nuclear plant construction is our best hope to get the task done in an orderly way. The opportunity to increase the use of nuclear power, a safe and reliable source of energy using new advances in technology, is too sensible to ignore.

Related News

Schott Powers German Plants with Green Electricity

Schott Green Electricity CPPA secures renewable energy via a solar park in Schleswig-Holstein, supporting decarbonization in German glass manufacturing; the corporate PPA with ane.energy delivers about 14.5 GWh annually toward climate-neutral production by 2030.

 

Key Points

Corporate PPA for 14.5 GWh solar in Germany, cutting Schott plant emissions and advancing climate-neutral operations.

✅ 14.5 GWh solar from Schleswig-Holstein via ane.energy

✅ Powers Mainz HQ and plants in GrFCnenplan, Mitterteich, Landshut

✅ Two-year CPPA covers ~5% of Schott's German electricity needs

 

Schott, a leading specialty glass manufacturer, is advancing its sustainability initiatives in step with Germany's energy transition by integrating green electricity into its operations. Through a Corporate Power Purchase Agreement (CPPA) with green energy specialist ane.energy, Schott aims to significantly reduce its carbon footprint and move closer to its goal of climate-neutral production by 2030.

Transition to Renewable Energy

As of February 2025, amid a German renewables milestone for the power sector, Schott has committed to sourcing approximately 14.5 gigawatt-hours of clean energy annually from a solar park in Schleswig-Holstein, Germany. This renewable energy will power Schott's headquarters in Mainz and its plants in Grünenplan, Mitterteich, and Landshut. The CPPA covers about 5% of the company's annual electricity needs in Germany and is initially set for a two-year term, reflecting lessons from extended nuclear power during recent supply challenges.

Strategic Implementation

To achieve climate-neutral production by 2030, Schott is focusing on transitioning from gas to electricity sourced from renewable sources like photovoltaics, alongside complementary pathways such as hydrogen-ready power plants being developed nationally. Operating a single melting tank requires energy equivalent to the annual consumption of up to 10,000 single-family homes. Therefore, Schott has strategically selected suitable plants for this renewable energy supply to meet its substantial energy requirements.

Industry Leadership

Schott's collaboration with ane.energy demonstrates the company's commitment to sustainability and its proactive approach to integrating renewable energy into industrial operations. This partnership not only supports Schott's decarbonization goals but also sets a precedent for other manufacturers in the glass industry to adopt green energy solutions, mirroring advances like green hydrogen steel in heavy industry.

Schott's initiative to power its German glass plants with green electricity underscores the company's dedication to environmental responsibility and its strategic efforts to achieve climate-neutral production by 2030, aligning with the national coal and nuclear phaseout underway. This move reflects a broader trend in the manufacturing sector toward sustainable practices and the adoption of renewable energy sources, even as debates continue over a possible nuclear phaseout U-turn in Germany.

 

Related News

View more

Zero-emission electricity in Canada by 2035 is practical and profitable

Canada 100% Renewable Power by 2035 envisions a decentralized grid built on wind, solar, energy storage, and efficiency, delivering zero-emission, resilient, low-cost electricity while phasing out nuclear and gas to meet net-zero targets.

 

Key Points

Zero-emission, decentralized grid using wind, solar, and storage, plus efficiency, to retire fossil and nuclear by 2035.

✅ Scale wind and solar 18x with storage for reliability.

✅ Phase out nuclear and gas; no CCS or offsets needed.

✅ Modernize grids and codes; boost efficiency, jobs, and affordability.

 

A powerful derecho that left nearly a million people without power in Ontario and Quebec on May 21 was a reminder of the critical importance of electricity in our daily lives.

Canada’s electrical infrastructure could be more resilient to such events, while being carbon-emission free and provide low-cost electricity with a decentralized grid powered by 100 per cent renewable energy, according to a new study from the David Suzuki Foundation (DSF), a vision of an electric, connected and clean future if the country chooses.

This could be accomplished by 2035 by building a lot more solar and wind, despite indications that demand for solar electricity has lagged in Canada, adding energy storage, while increasing the energy efficiency in buildings, and modernizing provincial energy grids. As this happens, nuclear energy and gas power would be phased out. There would also be no need for carbon capture and storage nor carbon offsets, the modeling study concluded.

“Solar and wind are the cheapest sources of electricity generation in history,” said study co-author Stephen Thomas, a mechanical engineer and climate solutions policy analyst at the DSF.

“There are no technical barriers to reaching 100 per cent zero-emission electricity by 2035 nationwide,” Thomas told The Weather Network (TWN). However, there are considerable institutional and political barriers to be overcome, he said.

Other countries face similar barriers and many have found ways to reduce their emissions; for example, the U.S. grid's slow path to 100% renewables illustrates these challenges. There are enormous benefits including improved air quality and health, up to 75,000 new jobs annually, and lower electricity costs. Carbon emissions would be reduced by 200 million tons a year by 2050, just over one quarter of the reductions needed for Canada to meet its overall net zero target, the study stated.

Building a net-zero carbon electricity system by 2035 is a key part of Canada’s 2030 Emissions Reduction Plan. Currently over 80 per cent of the nation’s electricity comes from non-carbon sources including a 15 per cent contribution from nuclear, with solar capacity nearing a 5 GW milestone nationally. How the final 20 per cent will be emission-free is currently under discussion.

The Shifting Power study envisions an 18-fold increase in wind and solar energy, with the Prairie provinces expected to lead growth, along with a big increase in Canada’s electrical generation capacity to bridge the 20 per cent gap as well as replacing existing nuclear power.

The report does not see a future role for nuclear power due to the high costs of refurbishing existing plants, including the challenges with disposal of radioactive wastes and decommissioning plants at their end of life. As for the oft-proposed small modular nuclear reactors, their costs will likely “be much more costly than renewables,” according to the report.

There are no technical barriers to building a bigger, cleaner, and smarter electricity system, agrees Caroline Lee, co-author of the Canadian Climate Institute’s study on net-zero electricity, “The Big Switch” released in May. However, as Lee previously told TWN, there are substantial institutional and political barriers.

In many respects, the Shifting Power study is similar to Lee’s study except it phases out nuclear power, forecasts a reduction in hydro power generation, and does not require any carbon capture and storage, she told TWN. Those are replaced with a lot more wind generation and more storage capacity.

“There are strengths and weaknesses to both approaches. We can do either but need a wide debate on what kind of electricity system we want,” Lee said.

That debate has to happen immediately because there is an enormous amount of work to do. When it comes to energy infrastructure, nearly everything “we put in the ground has to be wind, solar, or storage” to meet the 2035 deadline, she said.

There is no path to net zero by 2050 without a zero-emissions electricity system well before that date. Here are some of the necessary steps the report provided:

Create a range of skills training programs for renewable energy construction and installation as well as building retrofits.

Prioritize energy efficiency and conservation across all sectors through regulations such as building codes.

Ensure communities and individuals are fully informed and can decide if they wish to benefit from hosting energy generation infrastructure.

Create a national energy poverty strategy to ensure affordable access.

Strong and clear federal and provincial rules for utilities that mandate zero-emission electricity by 2035.

For Indigenous communities, make sure ownership opportunities are available along with decision-making power.

Canada should move as fast as possible to 100 per cent renewable energy to gain the benefits of lower energy costs, less pollution, and reduced carbon emissions, says Stanford University engineer and energy expert Mark Jacobson.

“Canada has so many clean, renewable energy resources that it is one of the easier countries [that can] transition away from fossil fuels,” Jacobson told TWN.

For the past decade, Jacobson has been producing studies and technical reports on 100 per cent renewable energy, including a new one for Canada, even as Canada is often seen as a solar power laggard today. The Stanford report, A Solution to Global Warming, Air Pollution, and Energy Insecurity for Canada, says a 100 per cent transition by 2035 timeline is ideal. Where it differs from DSF’s Shifting Power report is that it envisions offshore wind and rooftop solar panels which the latter did not.

“Our report is very conservative. Much more is possible,” agrees Thomas.

“We’re lagging behind. Canadians really want to get going on building solutions and getting the benefits of a zero emissions electricity system.”

 

Related News

View more

High Natural Gas Prices Make This The Time To Build Back Better - With Clean Electricity

Build Back Better Act Energy Savings curb volatile fossil fuel heating bills by accelerating electrification and renewable electricity, insulating households from natural gas, propane, and oil price spikes while cutting emissions and lowering energy costs.

 

Key Points

BBBA policies expand clean power and electrification to curb volatility, lower bills, and cut emissions.

✅ Tax credits for renewables, EVs, and efficient all-electric homes

✅ Shields households from natural gas, propane, and heating oil spikes

✅ Cuts methane, lowers bills, and improves grid reliability and jobs

 

Experts are forecasting serious sticker shock from home heating bills this winter. Nearly 60 percent of United States’ households heat their homes with fossil fuels, including natural gas, propane, or heating oil, and these consumers are expected to spend much more this winter because of fuel price increases.

That could greatly burden many families and businesses already operating on thin margins. Yet homes that use electricity for heating and cooking are largely insulated from the pain of volatile fuel markets, and they’re facing dramatically lower price increases as a result.

Projections say cost increases for households could range anywhere from 22% to 94% more, depending on the fuel used for heating and the severity of the winter temperatures. But the added expenditures for the 41% of U.S. households using electricity for heating are much less stark—these consumers will see only a 6% price increase on average. The projected fossil fuel price spikes are largely due to increased demand, limited supply, declining fuel stores, and shifting investment priorities in the face of climate change.

The fossil fuel industry is already seizing this moment to use high prices to persuade policymakers to vote against clean energy policies, particularly the Build Back Better Act (BBBA). Spokespeople with ties to the fossil fuel industry and some consumer groups are trying to pin higher fuel prices on the proposed legislation even before it has passed, even as analyses show the energy crisis is not spurring a green revolution on its own, let alone begun impacting fuel markets. But the claim the BBBA would cost Americans and the economy is false.

The facts tell a different story. Adopting smart climate policies and accelerating the clean energy transition are precisely the solutions to counter this vicious cycle by ending our dependance on volatile fossil fuels. The BBBA will ensure reliable, affordable clean electricity for millions of Americans, in line with a clean electricity standard many experts advocate—a key strategy for avoiding future vulnerability. Unlike fossil fuels subject to the whims of a global marketplace, wind and sunshine are always free. So renewable-generated electricity comes with an ultra-low fixed price decades into the future.

By expanding clean energy and electric vehicle tax credits, creating new incentives for efficient all-electric homes, and dedicating new funding for state and local programs, the BBBA provides practical solutions that build on lessons from Biden's climate law to protect Americans from price shocks, save consumers money, and reduce emissions fueling dangerous climate change.


What’s really causing the gas price spikes?
The U.S. Energy Information Administration’s winter 2021 energy price forecasts project that homes heated with natural gas, fuel oil, and propane will see average price increases of 30%, 43%, and 54%, respectively. Those who heat their homes with electricity, on the other hand, should expect a modest 6% increase. At the pump, drivers are seeing some of the highest gas prices in nearly a decade as the U.S. energy crisis ripples through electricity, gas, and EV markets today. And the U.S. is not alone. Countries around the globe are experiencing similar price jumps, including Britain's high winter energy costs this season.

A closer look confirms the cause of these high prices is not clean energy or climate policies—it’s fossil fuels themselves.  

First, the U.S. (and the world) are just now feeling the effects of the oil and gas industry’s reduced fuel production and spending due to the pandemic. COVID-19 brought the world’s economies to a screeching halt, and most countries have not returned to pre-COVID economic activity. During the past 20 months, the oil and gas industry curtailed its production to avoid oversupply as demand fell to all-time lows. Just as businesses were reopening, stored fuel was needed to meet high demand for cooling during 2021’s hottest summer on record, driving sky-high summer energy bills for many households. February’s Texas Big Freeze also disrupted gas distribution and production.

The world is moving again and demand for goods and services is rebounding to pre-pandemic levels. But even with higher energy demand, OPEC announced it would not inject more oil into the economy. Major oil companies have also held oil and gas spending flat in 2021, with their share of overall upstream spending at 25%, compared with nearly 40% in the mid-2010s. And as climate change threats loom in the financial world, investors are reducing their exposure to the risks of stranded assets, increasingly diversifying and divesting from fossil fuels. 

Second, despite strong and sustained growth for renewable energy, energy storage, and electric vehicles, the relatively slow pace to adopt fossil fuel alternatives at scale has left U.S. households and businesses tethered to an industry well-known for price volatility. Today, some oil drillers are using profits from higher gas prices to pay back debt and reward shareholders as demanded by investors, instead of increasing supply. Rising prices for a limited commodity in high demand is generating huge profits for many of the world’s largest companies at the expense of U.S. households.

Because 48% of homes use fossil gas for heating and another 10% heat with propane and fuel oil, more than half of U.S. households will feel the impact of rising prices on their home energy bills. One in four U.S. households continues to experience a high energy burden (meaning their energy expenses consume an inordinate amount of their income), including risks of pandemic power shut-offs that deepen energy insecurity, and many are still experiencing financial hardships exacerbated by the pandemic. Those with inefficient fossil-fueled appliances, homes, and cars will be hardest hit, and many families with fixed- and lower-incomes could be forced to choose between heat or other necessities.

We have the solutions—the BBBA will unlock their benefits for all households

Short-term band-aids may be enticing, but long-term policies are the only way out of this negative feedback loop. Clean energy and building electrification will prevent more costly disasters in the future, but they’re the very solutions the fossil fuel industry fights at every turn. All-electric homes and vehicles are a natural hedge against the price spikes we’re experiencing today since renewables are inherently devoid of fuel-related price fluctuations.

RMI analysis shows all-electric single-family homes in all regions of the country have lower energy bills than a comparable mixed fuel-homes (i.e., electricity and gas). Electric vehicles also save consumers money. Research from University of California, Berkeley and Energy Innovation found consumers could save a total of $2.7 trillion in 2050—or $1,000 per year, per household for the next 30 years—if we accelerate electric vehicle deployment in the coming decade.

The BBBA would help deliver these consumer savings by expanding and expediting clean energy, while ensuring equitable adoption among lower-income households and underserved communities. Extending and expanding clean energy tax credits; new incentives for electric vehicles (including used electric vehicles); and new incentives for energy efficient homes and all-electric appliances (and electrical upgrades) will reduce up-front costs and spur widespread adoption of all-electric homes, buildings, and cars.

A combination of grants, incentives, and programs will promote private sector investments in a decarbonized economy, while also funding and supporting state and local governments already leading the way. The BBBA also allocates dedicated funding and makes important modifications (such as higher rebate amounts and greater point-of-purchase availability) to ensure these technologies are available to low-income households, underserved urban and rural communities, tribes, frontline communities, and people living in multifamily housing.

Finally, the BBBA proposes to make oil and gas polluters pay for the harm they are causing to people’s health and the climate through a methane fee. This fee would cost companies less than 1% of their revenue, meaning the industry would retain over 99% of its profits. In return return we’d see substantial reductions of a powerful greenhouse gas and a healthier environment in communities living near fossil fuel production. These benefits also come with a stronger economy—Energy Innovation analysis shows the methane fee would create more than 70,000 jobs by 2050 and boost gross domestic product more than $250 billion from 2023 to 2050.

The facts speak for themselves. Gas prices are rising because of reasons totally unrelated to smart climate and clean energy policies, which research shows actually lower costs. For the first time in more than a decade, America has the opportunity to enact a comprehensive energy policy that will yield measurable savings to consumers and free us from oil and gas industry control over our wallets.

The BBBA will help the U.S. get off the fossil fuel rollercoaster and achieve a stable energy future, ensuring that today’s price spikes will be a thing of the past. Proving, once and for all, that the solution to our fossil fuel woes is not more fossil fuels.

 

Related News

View more

Was there another reason for electricity shutdowns in California?

PG&E Wind Shutdown and Renewable Reliability examines PSPS strategy, wildfire risk, transmission line exposure, wind turbine cut-out speeds, grid stability, and California's energy mix amid historic high-wind events and supply constraints across service areas.

 

Key Points

An overview of PG&E's PSPS decisions, wildfire mitigation, and how wind cut-out limits influence grid reliability.

✅ Wind turbines reach cut-out near 55 mph, reducing generation.

✅ PSPS mitigates ignition from damaged transmission infrastructure.

✅ Baseload diversity improves resilience during high-wind events.

 

According to the official, widely reported story, Pacific Gas & Electric (PG&E) initiated power shutoffs across substantial portions of its electric transmission system in northern California as a precautionary measure.

Citing high wind speeds they described as “historic,” the utility claims that if it didn’t turn off the grid, wind-caused damage to its infrastructure could start more wildfires.

Perhaps that’s true. Perhaps. This tale presumes that the folks who designed and maintain PG&E’s transmission system are unaware of or ignored the need to design it to withstand severe weather events, and that the Federal Energy Regulatory Commission (FERC) and North American Electric Reliability Corp. (NERC) allowed the utility to do so.

Ignorance and incompetence happens, to be sure, but there’s much about this story that doesn’t smell right—and it’s disappointing that most journalists and elected officials are apparently accepting it without question.

Take, for example, this statement from a Fox News story about the Kincade Fires: “A PG&E meteorologist said it’s ‘likely that many trees will fall, branches will break,’ which could damage utility infrastructure and start a fire.”

Did you ever notice how utilities cut wide swaths of trees away when transmission lines pass through forests? There’s a reason for that: When trees fall and branches break, the grid can still function, and even as the electric rhythms of New York City shifted during COVID-19, operators planned for variability.

So, if badly designed and poorly maintained infrastructure isn’t the reason PG&E cut power to millions of Californians, what might have prompted them to do so? Could it be that PG&E’s heavy reliance on renewable energy means they don’t have the power to send when a “historic” weather event occurs, especially as policymakers weigh the postponed closure of three power plants elsewhere in California?

 

Wind Speed Limits

The two most popular forms of renewable energy come with operating limitations, which is why some energy leaders urge us to keep electricity options open when planning the grid. With solar power, the constraint is obvious: the availability of sunlight. One doesn’t generate solar power at night and energy generation drops off with increasing degrees of cloud cover during the day.

The main operating constraint of wind power is, of course, wind speed, and even in markets undergoing 'transformative change' in wind generation, operators adhere to these technical limits. At the low end of the scale, you need about a 6 or 7 miles-per-hour wind to get a turbine moving. This is called the “cut-in speed.” To generate maximum power, about a 30 mph wind is typically required. But, if the wind speed is too high, the wind turbine will shut down. This is called the “cut-out speed,” and it’s about 55 miles per hour for most modern wind turbines.

It may seem odd that wind turbines have a cut-out speed, but there’s a very good reason for it. Each wind turbine rotor is connected to an electric generator housed in the turbine nacelle. The connection is made through a gearbox that is sized to turn the generator at the precise speed required to produce 60 Hertz AC power.

The blades of the wind turbine are airfoils, just like the wings of an airplane. Adjusting the pitch (angle) of the blades allows the rotor to maintain constant speed, which, in turn, allows the generator to maintain the constant speed it needs to safely deliver power to the grid. However, there’s a limit to blade pitch adjustment. When the wind is blowing so hard that pitch adjustment is no longer possible, the turbine shuts down. That’s the cut-out speed.

Now consider how California’s power generation profile has changed. According to Energy Information Administration data, the state generated 74.3 percent of its electricity from traditional sources—fossil fuels and nuclear, amid debates over whether to classify nuclear as renewable—in 2001. Hydroelectric, geothermal, and biomass-generated power accounted for most of the remaining 25.7 percent, with wind and solar providing only 1.98 percent of the total.

By 2018, the state’s renewable portfolio had jumped to 43.8 percent of total generation, with clean power increasing and wind and solar now accounting for 17.9 percent of total generation. That’s a lot of power to depend on from inherently unreliable sources. Thus, it wouldn’t be at all surprising to learn that PG&E didn’t stop delivering power out of fear of starting fires, but because it knew it wouldn’t have power to deliver once high winds shut down all those wind turbines

 

Related News

View more

Coalition pursues extra $7.25B for DOE nuclear cleanup, job creation

DOE Environmental Management Funding Boost seeks $7.25B to accelerate nuclear cleanup, upgrade Savannah River Site infrastructure, create jobs, and support small businesses, echoing ARRA 2009 results and expediting DOE EM waste remediation nationwide.

 

Key Points

A proposed $7.25B stimulus for DOE's EM to accelerate nuclear cleanup, modernize infrastructure, and create jobs.

✅ $7.25B one-time stimulus for DOE EM cleanup and infrastructure.

✅ Targets Savannah River Site; supports jobs and small businesses.

✅ Builds on ARRA 2009; accelerates nuclear waste remediation.

 

A bloc of local governments and nuclear industry, nuclear innovation efforts, labor and community groups are pressing Congress to provide a one-time multibillion-dollar boost to the U.S. Department of Energy Office of Environmental Management, the remediation-focused Savannah River Site landlord.

The organizations and officials -- including Citizens For Nuclear Technology Awareness Executive Director Jim Marra and Savannah River Site Community Reuse Organization President and CEO Rick McLeod -- sent a letter Friday to U.S. House and Senate leadership "strongly" supporting a $7.25 billion funding injection, even as ACORE challenges coal and nuclear subsidies in separate regulatory proceedings, arguing it "will help reignite the national economy," help revive small businesses and create thousands of new jobs despite the novel coronavirus crisis.

More than 30 million Americans have filed unemployment claims in the past two months, with additional clean energy job losses reported, too. Hundreds of thousands of claims have been filed in South Carolina since mid-March, compounding issues like unpaid utility bills in neighboring states.

The requested money could, too, speed Environmental Management's nuclear waste cleanup missions and be used to fix ailing infrastructure and strengthen energy security for rural communities nationwide -- some of which dates back to the Cold War -- at sites across the country. That's a "rare" opportunity, reads the letter, which prominently features the Energy Communities Alliance logo and its chairman's signature.

Similar funding programs, like what was done with the 2009 American Recovery and Reinvestment Act and recent clean energy funding initiatives, have been successful.

At the time, amid a staggering economic downturn nationwide, Environmental Management contractors "hired over 20,000 new workers," putting them "to work to reduce the overall cleanup complex footprint by 688 square miles while strengthening local economies," the Friday letter reads.

The Energy Department's cleanup office estimates the $6 billion investment years ago reduced its environmental liability by $13 billion, according to a 2012 report.

Such a leap forward, the coalition believes, is repeatable, a view reflected in current plans to revitalize coal communities with clean energy projects across the country.

"We are confident that DOE can successfully manage increased funding and leverage it for future economic development as it has in the past," the letter states. It continues: "We take pride in working together to support jobs and development of infrastructure and work that make our country stronger and assists us to recover from the impacts of COVID-19."

As of Monday afternoon, 8,942 cases of COVID-19, the disease caused by the novel coronavirus, have been logged in South Carolina. Aiken County is home to 155 of those cases.

 

Related News

View more

5,000 homes would be switched to geothermal energy free of charge

Manitoba NDP Geothermal Conversion Program offers full-cost heat pump installation for 5,000 homes, lowering electricity bills, funding contractor training and rebates, and cutting greenhouse gas emissions via geothermal energy administered by Efficiency Manitoba.

 

Key Points

A plan funding 5,000 home heat pump conversions to cut electricity bills, reduce emissions, and expand installer capacity.

✅ Covers equipment and installation for 5,000 homes

✅ Cuts electricity bills up to 50% vs electric heat

✅ Administered by Efficiency Manitoba; trains contractors

 

An NDP government would cover the entire cost for 5,000 families to switch their homes to geothermal energy, New Democrats have promised.

If elected on Oct. 3, the NDP will pay for the equipment and installation of new geothermal systems at 5,000 homes, St. James candidate Adrien Sala announced outside a St. Boniface home that previously made the switch. 

The homes that switch to geothermal energy could save as much as 50 per cent on their electricity bills, Sala said.

"It will save you money, it will grow our economy and it will reduce greenhouse gas emissions. And I think we can safely call that a win, win, win," Sala said.

Geothermal energy is derived from heat that is generated within the Earth.

The NDP said each conversion to geothermal heating and cooling would cost an estimated $26,000, and comes as new turbine investments advance in Manitoba, and it would take four years to complete all 5,000 conversions.

The program would be administered through Efficiency Manitoba, the Crown corporation responsible for conserving energy, as Manitoba Hydro's new president navigates changes at the utility. The NDP estimates it will cost $32.5 million annually over the four years, at a time of red ink at Manitoba Hydro as new power generation needs loom. Some of that money would support the training of more contractors who could install geothermal systems.


Subsidies get low pickup: NDP
Sala wouldn't say Wednesday which homeowners or types of homes would be eligible.

He said the NDP's plan would be a first in Canada, even as Ontario's energy plan seeks to address growing demand elsewhere.

"What we've seen elsewhere is where other jurisdictions have used a strict subsidy model, where they try to reduce the cost of geothermal, and while Ontario reviews a halt to natural gas generation to cut emissions, approaches differ across provinces. We really haven't seen a lot of uptake in those other jurisdictions," Sala said.

"This is an attempt at dealing with one of those key barriers for homeowners."

Efficiency Manitoba runs a subsidy program for geothermal energy through ground source heat pumps, supporting using more electricity for heat across the province, valued at up to $2.50 per square foot. It is estimated a 1,600 sq. ft. home switching from an electric furnace to geothermal will receive a rebate of around $4,000 and save around $900 annually on their electricity bills, the Crown corporation said.anitoba homeProgressive Conservative spokesperson Shannon Martin questioned how NDP Leader Wab Kinew can afford his party's numerous election promises.

"He will have no choice but to raise taxes, and history shows the NDP will raise them all," said Martin, the McPhillips MLA who isn't seeking re-election.

Wednesday's announcement was the first for the NDP in which Kinew wasn't present. The party has criticized the Progressive Conservatives for leader Heather Stefanson showing up for only a few announcements a week.

Sala said Kinew was busy preparing for the debate later in the day.

"This stuff is near and dear to Wab's heart, and frankly, I think he's probably hurting that he's not here with us right now."

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified