Failed experimental energy plant costs millions

By Canadian Business Magazine


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
A major Nevada utility got more than $200 million in taxpayer and ratepayer dollars for an experimental clean-coal generating plant that wouldn't run reliably and was mothballed. Now, Sierra Pacific Power Co. wants $42 million more from its customers.

More than half of the funding targeted for the Pinon Pine gasified coal project came from the federal Department of Energy, according to Sierra Pacific documents.

An Associated Press survey of Energy Department records shows it's a prime example of investments of public funds in failed alternative energy ventures around the nation.

Construction on the Pinon Pine project, part of the utility's Tracy power station east of Reno, began in early 1995. The project, plagued by cost overruns, came on line in late 1996 — but as a conventional, gas-fired power plant. The experimental gasified coal system was shut down. Total costs for the entire plant ran more than $340 million.

The gasification process converts solid coal to a synthetic natural gas that can be burned as a fuel to turn electricity-generating turbines. The idea was to create more efficiency and less pollution, but a series of equipment problems resulted in aborting all startup attempts, according to PUC records.

A gray dome and steel framework that were part of the experimental Pinon Pine project are still standing and will have to be torn down. Sierra Pacific Power continues to run the conventional side of the plant, and is expanding other gas-fired generating facilities at its Tracy station.

Besides the $168 million the Reno-based utility got from the federal Energy Department, Sierra Pacific already has been authorized by the PUC to collect more than $110 million from its ratepayers for both the conventional and experimental Pinon Pine projects.

The state Public Utilities Commission has scheduled a Jan. 9-11 hearing on the bid by Sierra Pacific Power to get the additional $42 million. The commission previously denied the request but the utility appealed and won a court order in 2006 that led to the new commission hearings.

Because the money to be collected is being spread over several years, the impact on customers' monthly bills has been slight. If the company wins its latest request, the average residential customer would pay about $2 to $3 a month for the failed part of the Pinon Pine project, according to the company.

Still, the state's consumer advocate for utility customers says enough is enough and the request should be rejected.

"I think they've already been allowed enough recovery on this project, and more recovery would be excessive and I don't think it's justified," Eric Witkoski said.

Witkoski said Sierra Pacific Power is filing another rate increase request, for costs related to another gas-fired generating plant, for millions of dollars more, and regulators "need to be diligent and not allow requested increases that can't be justified."

Sierra Pacific Power attorneys, in a brief filed in support of the $42 million request, say the utility's decision to try the gasification technology was "prudent as a matter of law" and Sierra is entitled to recover all its "just and reasonable costs."

Attorneys Elizabeth Elliot and Julia Sullivan said Sierra Pacific made extensive efforts to closely monitor the project and try to control its costs.

They said Witkoski's office and the PUC's own regulatory operations staff "focused upon narrow, technical arguments" to press for disallowing the $42 million.

Mary Simmons, vice president of external affairs for Sierra Pacific, says the experimental project isn't viewed by the utility as a total failure because "it advanced the country's knowledge and the world's knowledge about what works and what doesn't."

Simmons also said the utility is hoping the technology that didn't work for the Pinon Pine project a decade ago will improve so that it might be used in future years at a proposed coal-fired Ely power plant. Sierra Pacific's parent company, Sierra Pacific Resources, announced this week that it was pushing back the target date for the Ely plant and accelerating plans to expand a natural gas-fired power plant near Las Vegas.

The $168 million in federal Department of Energy funding for the failed Pinon Pine project is among tens of billions of dollars in government spending on alternative energy and energy conservation ventures since 1980 — including many that the department's own inspector general found to be poorly overseen.

Besides the $168 million to Sierra Pacific Power, an AP review of records on such "demonstration" grants shows the Energy Department paid out about $70 million to private lenders after the parent company of an ethanol-refining firm in Louisiana went bankrupt. The DOE sold the plant for scrap for $3 million.

In Tennessee, the Energy Department paid out about $68 million to lenders that backed an ethanol plant that could generate only about half of its expected production. The plant was dismantled and sold for about $10 million.

In another example of green energy gone wrong, the DOE spent nearly $40 million to launch a biomass project in Vermont. The plants operators declared bankruptcy and the 10-story structure now stands abandoned.

Related News

WY Utility's First Wind Farm Faces Replacement

Foote Creek I Wind Farm Repowering upgrades Wyoming turbines with new nacelles, towers, and blades, cutting 68 units to 12 while sustaining 41.6 MW, under PacifiCorp and Rocky Mountain Power's Energy Vision 2020 plan.

 

Key Points

Replacement at Foote Creek Rim I, cutting to 12 turbines while sustaining about 41.6 MW using modern 2-4.2 MW units.

✅ 12 turbines replace 68, output steady near 41.6 MW

✅ New nacelles, towers, blades; taller 500 ft turbines

✅ Part of PacifiCorp Energy Vision 2020 and Gateway West

 

A Wyoming utility company has filed a permit to replace its first wind farm—originally commissioned in 1998, composed of over 65 turbines—amid new gas capacity competing with nuclear in Ohio, located at Foote Creek Rim I. The replacement would downsize the number of turbines to 12, which would still generate roughly the same energy output.

According to the Star Tribune, PacifiCorp’s new installation would involve new nacelles, new towers and new blades. The permit was filed with Carbon County.

 

New WY Wind Farm

The replacement wind turbines will stand more than twice as tall as the old: Those currently installed stand 200 feet tall, whereas their replacements will tower closer to 500 feet. Though this move is part of the company’s overall plan to expand its state wind fleet as some utilities respond to declining coal returns in the Midwest, the work going into the Foote Creek site is somewhat special, noted David Eskelsen, spokesperson for Rocky Mountain Power, the western arm of PacifiCorp.

“Foote Creek I repowering is somewhat different from the repowering projects announced in the (Energy Vision) 2020 initiative,” he said. “Foote Creek is a complete replacement of the existing 68 foundations, towers, turbine nacelles and rotors (blades).”

Currently, the turbines at Foote Creek have 600 kilowatts capacity each; the replacements’ maximum production ranges from 2 megawatts to 4.2 megawatts each, with the total output remaining steady at 41.4 megawatts, a scale similar to a 30-megawatt wind expansion in Eastern Kings, though there will be a slight capacity increase to 41.6 megawatts, according to the Star Tribune.

As part of the wind farm repowering initiative, PacifiCorp is to become full owner and operator of the Foote Creek site. When the farm was originally built, an Oregon-based water and electric board was 21 percent owner; 37 percent of the project’s output was tied into a contract with the Bonneville Power Administration.

Otherwise, PacifiCorp is moving to further expand its state wind fleet in line with initiatives like doubling renewable electricity by 2030 in Saskatchewan, with the addition of three new wind farms—to be located in Carbon, Albany and Converse counties—which may add up to 1,150 megawatts of power.

According to PacifiCorp, the company has more than 1,000 megawatts of owned wind generation capability, along with long-term purchase agreements for more than 600 megawatts from other wind farms owned by other entities. Energy Vision 2020 refers to a $3.5 billion investment and company move that is looking to upgrade the company's existing wind fleet with newer technology, adding 1,150 megawatts of new wind resources by 2020 and a a new 140-mile Gateway West transmission segment in Wyoming, comparable to a transmission project in Missouri just energized.

 

 

Related News

View more

N.L. premier says Muskrat Falls costs are too great for optimism about benefits

Muskrat Falls financial impact highlights a hydro megaproject's cost overruns, rate mitigation challenges, and inquiry findings in Newfoundland and Labrador, with power exports, Churchill River generation, and subsea cables shaping long-term viability.

 

Key Points

It refers to the project's burden on provincial finances, driven by cost overruns, rate hikes, and debt risks.

✅ Costs rose to $12.7B from $6.2B; inquiry cites suppressed risks.

✅ Rate mitigation needed to offset power bill shocks.

✅ Exports via subsea cables may improve long-term viability.

 

Newfoundland and Labrador's premier says the Muskrat Falls hydro megaproject is currently too much of a massive financial burden for him to be optimistic about its long-term potential.

"I am probably one of the most optimistic people in this room," Liberal Premier Dwight Ball told the inquiry into the project's runaway cost and scheduling issues, echoing challenges at Manitoba Hydro that have raised similar concerns.

"I believe the future is optimistic for Newfoundland Labrador, of course I do. But I'm not going to sit here today and say we have an optimistic future because of the Muskrat Falls project."

Ball, who was re-elected on May 16, has been critical of the project since he was opposition leader around the time it was sanctioned by the former Tory government.

He said Friday that despite his criticism of the Labrador dam, which has seen costs essentially double to more than $12.7 billion, he didn't set out to celebrate a failed project.

He said he still wants to see Muskrat Falls succeed someday through power sales outside the province, but there are immediate challenges -- including mitigating power-rate hikes once the dam starts providing full power and addressing winter reliability risks for households.

"We were told the project would be $6.2 billion, we're at $12.7 (billion). We were never told this project would be nearly 30 per cent of the net debt of this province just six, seven years later," the premier said.

"I wanted this to be successful, and in the long term I still want it to be successful. But we have to deal with the next 10 years."

The nearly complete dam will harness Labrador's lower Churchill River to provide electricity to the province as well as Nova Scotia and potentially beyond through subsea cables, while the legacy of Churchill Falls continues to shape regional power arrangements.

Ball's testimony wraps up a crucial phase of hearings in the extensive public inquiry.

The inquiry has heard from dozens of witnesses, with current and former politicians, bureaucrats, executives and consultants, amid debates over Quebec's electricity ambitions in the region, shedding long-demanded light on what went on behind closed doors that made the project go sideways.

Some witnesses have suggested that estimates were intentionally suppressed, and many high-ranking officials, including former premiers, have denied seeing key information about risk.

On Thursday, Ball testified to his shock when he began to understand the true financial state of the project after he was elected premier in 2015.

On Friday, Ball said he has more faith in future of the offshore oil and gas industry, and emerging options like small nuclear reactors, for example, than a mismanaged project that has put immense pressure on residents already struggling to make ends meet.

After his testimony, Ball said he takes some responsibility for a missed opportunity to mitigate methylmercury risks downstream from the dam through capping the reservoir, in parallel with debates over biomass power in electricity generation, something he had committed to doing before it is fully flooded this summer.

Still to come is a third phase of hearings on future best practices for issues like managing large-scale projects and independent electricity planning, two public feedback sessions and closing submissions from lawyers.

The final report from the inquiry is due before Dec. 31.

 

Related News

View more

A tenth of all electricity is lost in the grid - superconducting cables can help

High-Temperature Superconducting Cables enable lossless, high-voltage, underground transmission for grid modernization, linking renewable energy to cities with liquid nitrogen cooling, boosting efficiency, cutting emissions, reducing land use, and improving resilience against disasters and extreme weather.

 

Key Points

Liquid-nitrogen-cooled power cables delivering electricity with near-zero losses, lower voltage, and greater resilience.

✅ Near-lossless transmission links renewables to cities efficiently

✅ Operate at lower voltage, reducing substation size and cost

✅ Underground, compact, and resilient to extreme weather events

 

For most of us, transmitting power is an invisible part of modern life. You flick the switch and the light goes on.

But the way we transport electricity is vital. For us to quit fossil fuels, we will need a better grid, with macrogrid planning connecting renewable energy in the regions with cities.

Electricity grids are big, complex systems. Building new high-voltage transmission lines often spurs backlash from communities, as seen in Hydro-Que9bec power line opposition over aesthetics and land use, worried about the visual impact of the towers. And our 20th century grid loses around 10% of the power generated as heat.

One solution? Use superconducting cables for key sections of the grid. A single 17-centimeter cable can carry the entire output of several nuclear plants. Cities and regions around the world have done this to cut emissions, increase efficiency, protect key infrastructure against disasters and run powerlines underground. As Australia prepares to modernize its grid, it should follow suit with smarter electricity infrastructure initiatives seen elsewhere. It's a once-in-a-generation opportunity.


What's wrong with our tried-and-true technology?
Plenty.

The main advantage of high voltage transmission lines is they're relatively cheap.

But cheap to build comes with hidden costs later. A survey of 140 countries found the electricity currently wasted in transmission accounts for a staggering half-billion tons of carbon dioxide—each year.

These unnecessary emissions are higher than the exhaust from all the world's trucks, or from all the methane burned off at oil rigs.

Inefficient power transmission also means countries have to build extra power plants to compensate for losses on the grid.

Labor has pledged A$20 billion to make the grid ready for clean energy, and international moves such as US-Canada cross-border approvals show the scale of ambition needed. This includes an extra 10,000 kilometers of transmission lines. But what type of lines? At present, the plans are for the conventional high voltage overhead cables you see dotting the countryside.

System planning by Australia's energy market operator shows many grid-modernizing projects will use last century's technologies, the conventional high voltage overhead cables, even as Europe's HVDC expansion gathers pace across its network. If these plans proceed without considering superconductors, it will be a huge missed opportunity.


How could superconducting cables help?
Superconduction is where electrons can flow without resistance or loss. Built into power cables, it holds out the promise of lossless electricity transfer, over both long and short distances. That's important, given Australia's remarkable wind and solar resources are often located far from energy users in the cities.

High voltage superconducting cables would allow us to deliver power with minimal losses from heat or electrical resistance and with footprints at least 100 times smaller than a conventional copper cable for the same power output.

And they are far more resilient to disasters and extreme weather, as they are located underground.

Even more important, a typical superconducting cable can deliver the same or greater power at a much lower voltage than a conventional transmission cable. That means the space needed for transformers and grid connections falls from the size of a large gym to only a double garage.

Bringing these technologies into our power grid offers social, environmental, commercial and efficiency dividends.

Unfortunately, while superconductors are commonplace in Australia's medical community (where they are routinely used in MRI machines and diagnostic instruments) they have not yet found their home in our power sector.

One reason is that superconductors must be cooled to work. But rapid progress in cryogenics means you no longer have to lower their temperature almost to absolute zero (-273℃). Modern "high temperature" superconductors only need to be cooled to -200℃, which can be done with liquid nitrogen—a cheap, readily available substance.

Overseas, however, they are proving themselves daily. Perhaps the most well-known example to date is in Germany's city of Essen. In 2014, engineers installed a 10 kilovolt (kV) superconducting cable in the dense city center. Even though it was only one kilometer long, it avoided the higher cost of building a third substation in an area where there was very limited space for infrastructure. Essen's cable is unobtrusive in a meter-wide easement and only 70cm below ground.

Superconducting cables can be laid underground with a minimal footprint and cost-effectively. They need vastly less land.

A conventional high voltage overhead cable requires an easement of about 130 meters wide, with pylons up to 80 meters high to allow for safety. By contrast, an underground superconducting cable would take up an easement of six meters wide, and up to 2 meters deep.

This has another benefit: overcoming community skepticism. At present, many locals are concerned about the vulnerability of high voltage overhead cables in bushfire-prone and environmentally sensitive regions, as well as the visual impact of the large towers and lines. Communities and farmers in some regions are vocally against plans for new 85-meter high towers and power lines running through or near their land.

Climate extremes, unprecedented windstorms, excessive rainfall and lightning strikes can disrupt power supply networks, as the Victorian town of Moorabool discovered in 2021.

What about cost? This is hard to pin down, as it depends on the scale, nature and complexity of the task. But consider this—the Essen cable cost around $20m in 2014. Replacing the six 500kV towers destroyed by windstorms near Moorabool in January 2020 cost $26 million.

While superconducting cables will cost more up front, you save by avoiding large easements, requiring fewer substations (as the power is at a lower voltage), and streamlining approvals.


Where would superconductors have most effect?
Queensland. The sunshine state is planning four new high-voltage transmission projects, to be built by the mid-2030s. The goal is to link clean energy production in the north of the state with the population centers of the south, similar to sending Canadian hydropower to New York to meet demand.

Right now, there are major congestion issues between southern and central Queensland, and subsea links like Scotland-England renewable corridors highlight how to move power at scale. Strategically locating superconducting cables here would be the best location, serving to future-proof infrastructure, reduce emissions and avoid power loss.

 

Related News

View more

'Unbelievably dangerous': NB Power sounds alarm on copper theft after vandalism, deaths

NB Power copper thefts highlight risks at high-voltage substations, with vandalism, fatalities, infrastructure damage, ratepayer costs, and law enforcement alerts tied to metal prices, stolen electricity, and safety concerns across New Brunswick and Nova Scotia.

 

Key Points

Substation metal thefts causing fatalities, outages, safety risks, and higher costs that impact NB ratepayers.

✅ Spike aligns with copper price near $3 per pound

✅ Fatal break-ins at high-voltage facilities in Bathurst

✅ Repairs, delays, and safety risks for crews, customers

 

New Brunswick's power utility is urging people to stay away from its substations, saying the valuable copper they contain is proving hard to resist for thieves.

NB Power has seen almost as many incidents of theft and vandalism to its property in April and May of this year, than in all of last year.

In the 2018-2019 fiscal year, the utility recorded 16 cases of theft and/or vandalism.

In April and May, there have already been 13 cases.

One of those was a fatal incident in Bathurst. On April 13, a 41-year-old man was found unresponsive and later died, after breaking into a substation. It was the second fatality linked to a break-in at an NB Power facility in 10 years.

The investigation is still ongoing, but NB Power believes the man was trying to steal copper.

The power utility has been ramping up its efforts -- finding alternate ways to secure its properties, and educate the public -- on the dangers of copper theft, as utilities work to adapt to climate change that can exacerbate severe weather.

“We really, really, really want to stress that if you’re hitting the wrong wire, cutting the wrong wire, breaking in to or cutting fences, a lot of very bad things can happen,” said NB Power spokesperson Marc Belliveau.

In the 2017-2018 fiscal year, there were 24 recorded cases of theft and/or vandalism.

It also comes at a financial cost for NB Power, and ratepayers -- on average, $330,000 a year. About two-thirds of that is copper. The rest is vehicle break-ins or stolen electricity.

“We’ve done analysis,” Belliveau said. “Often the number of break-ins correspond with the price spiking in copper. So, right now, copper’s about $3 a pound. If it was half of that, there might be half as many incidents.”

New Brunswick Public Safety Minister Carl Urquhart says he knows the utility and police are working to dissuade people from the dangers of the theft, and notes that debates around Site C dam stability issues reflect broader infrastructure safety concerns.

“We all know of incident after incident of major injuries and death caused by, simply by, copper,” he said.

Last November, a Dawson Settlement substation was targeted during a major, storm-related power outage in the province.

It meant NB Power had to divert crews to fix and secure the substation, delaying restoration times for some residents and underscoring efforts to improve local reliability across the grid.

Belliveau says that’s “most frustrating.”

“We’re really trying to take a more proactive approach. And certainly, we encourage people that if you know somebody who’s thinking of doing something like that, to really try and talk them out of it because it’s unbelievably dangerous to break in to a substation,” he said.

Nova Scotia Power, connected through the Maritime Link, was not able to provide details on thefts at their substations, but spokesman David Rodenhiser said "the value of the stolen copper is minor in comparison to the risk that’s created when thieves break into our high-voltage electrical substations."

It's not just risky for the people breaking in, and public opposition to projects like Site C underscores broader community safety concerns.

"It also puts the safety of the workers who maintain our substations at risk, because when thieves steal copper, the protective safety devices in the substations don’t work properly," Rodenhiser said.

Additionally, in Nova Scotia, projects like the Maritime Link have advanced regional transmission, and Nova Scotia Power’s copper components have identifying markers, which make that copper difficult to fence. Anyone who buys or sells stolen propery is at risk of criminal charges.

 

Related News

View more

Ontario prepares to extend disconnect moratoriums for residential electricity customers

Ontario Electricity Relief outlines an extended disconnect moratorium, potential time-of-use price changes, and Ontario Energy Board oversight to support residential customers facing COVID-19 hardship and bill payment challenges during the emergency in Ontario.

 

Key Points

Plan to extend disconnect moratorium and weigh time-of-use price relief for residential customers during COVID-19.

✅ Extends winter disconnect ban by 3 months

✅ Considers time-of-use price adjustments

✅ Requires Ontario Energy Board approval

 

The Ontario government is preparing to announce electricity relief for residential electricity users struggling because of the COVID-19 emergency, according to sources.

Sources close to those discussions say a decision has been made to lengthen the existing five-month disconnect moratorium by an additional three months.

Separately, Hydro One's relief fund has offered support to its customers during the pandemic.

News releases about the moratorium extension are currently being drafted and are expected to be released shortly, as the pandemic has reduced electricity usage across Ontario.

Electricity utilities in Ontario are currently prohibited from disconnecting residential customers for non-payment during the winter ban period from November 15 to April 30.

The province is also looking at providing further relief by adjusting time-of-use prices, such as off-peak electricity rates, which are designed to encourage shifting of energy use away from periods of high total consumption to periods of low demand.

For businesses, the province has provided stable electricity pricing to support industrial and commercial operations.

But that would require Ontario Energy Board approval and no decision has been finalized, our sources advise.

 

Related News

View more

Florida Court Blocks Push to Break Electricity Monopolies

Florida Electricity Deregulation Ruling highlights the Florida Supreme Court decision blocking a ballot measure on retail choice, preserving utility monopolies for NextEra and Duke Energy, while similar deregulation efforts arise in Virginia and Arizona.

 

Key Points

A high court decision removing a retail choice ballot measure, keeping Florida utility monopolies intact for incumbents.

✅ Petition language deemed misleading for 2020 ballot

✅ Preserves NextEra and Duke Energy market dominance

✅ Similar retail choice pushes in VA and AZ

 

Florida’s top court ruled against a proposed constitutional amendment that would have allowed customers to pick their electricity provider, even as Florida solar incentives face rejection by state leaders, threatening monopolies held by utilities such as NextEra Energy Inc. and Duke Energy Corp.

In a ruling Thursday, the court said the petition’s language is “misleading” and doesn’t comply with requirements to be included on the 2020 ballot, reflecting debates over electricity pricing changes at the federal level. The measure’s sponsor, Citizens for Energy Choice, said the move ends the initiative, even as electricity future advocacy continues nationwide.

“While we were confident in our plan to gather the remaining signatures required, we cannot overcome this last obstacle,” the group’s chair, Alex Patton, noting ongoing energy freedom in the South efforts, said in a statement.

The proposed measure was one of several efforts underway to deregulate U.S. electricity markets, including New York’s review of retail energy markets this year. Earlier this week, two Virginia state lawmakers unveiled a bill to allow residents and businesses to pick their electricity provider, threatening Dominion Energy Inc.’s longstanding local monopoly. And in Arizona, where Arizona Public Service Co. has long reigned, regulators are considering a similar move, while in New England Hydro-Quebec’s export bid has been energized by a court decision.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.