Neighbours confident of Deep River reactor

By Toronto Star


CSA Z463 Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
Vance Gutzman stands on the frigid shoreline of the Ottawa River as a spooky mist rises from the water, partly masking the scenic backdrop of low-lying mountains that assert Quebec's border with Ontario.

He takes a drag from a cigarette and pauses. "There is no concern at all," says Gutzman, 40, as tranquil as the Laurentians behind him and the community he calls home.

The "concern" in question centres on a nuclear research reactor – hidden and fortified about 15 kilometres down the river – that produces most of the world's medical radioisotopes. These include the Molybdenum-99 isotope that's crucial to detection and treatment of serious diseases such as cancer.

The National Research Universal, or "NRU," reactor was shut down Nov. 18, creating a worldwide shortage of isotopes and putting Canada under the spotlight of an international controversy.

The federal nuclear watchdog said the NRU was unsafe, and had been operating that way for 17 months in violation of its licence. It argued the local community would be put at "significant risk" if an earthquake or some other disaster struck.

So when the federal government bypassed the regulator, pushing through emergency legislation requiring the restart of the NRU, environmental groups protested it as a "dangerous precedent." Opposition parties, which eventually supported the legislation, questioned whether Atomic Energy of Canada Ltd., the Crown corporation that owns and operates the 50-year-old NRU reactor, was committed enough to safety.

"This issue didn't happen overnight. It's an outcome of failure and negligence over the last 17 months," says Liberal MP Omar Alghabra (Mississauga-Erindale), the party's natural resources critic. "How can you have confidence in that?"

But in Deep River, home to AECL's famed Chalk River Laboratories and ground zero to any potential nuclear disaster affecting the NRU, the reaction has been muted. AECL is the town's main employer. Most residents work for the company or its suppliers.

"You would not believe how calm people are around here about this," says Gutzman. "The people starting up the reactor are part of our community, they live in our community, they're my neighbours, and the people I work with, so I have full confidence in what they can do."

Gutzman, in many respects, is the voice of his community. He is half Algonquin Indian; his ancestors predate the town of Deep River, while his German-born father has a street named after him that runs along a subdivision he built.

Four years ago, Gutzman successfully ran for mayor of Laurentian Hills, a township 180 kilometres northwest of Ottawa that surrounds Deep River. It was an unusual move, given he was and remains associate editor of the North Renfrew Times newspaper.

In 1967, the year Gutzman was born, the NRU reactor at Chalk River had been operating for 10 years. Most of the 7,000 people in Deep River and Laurentian Hills have never known the community without the reactor, and are resigned to the fact it's there.

"If it blows, it blows," said a deliveryman at the Shemron Suites Hotel in downtown Deep River. A waitress at the Tree Top Restaurant, about a kilometre from the entrance of Chalk River Labs, shrugs when asked about safety.

"People want to compare it to Chernobyl, and that's just crazy," says Shemron manager Ron Perron, who praises the government for forcing the reactor back online.

Ann Aikens, the mayor of Deep River, says her office hasn't had any calls from citizens worried about their safety. "We have all grown up with AECL," she says. Adds Gutzman: "AECL isn't just a part of the community, they have a vested interest in the community."

Understanding this unwavering allegiance means understanding the history of Deep River and the surrounding area. The Chalk River Labs predate the town, which was a planned community built in 1944 by the federal government to house scientists and other lab workers.

In a 1958 Maclean's magazine article, Peter C. Newman called it a "utopian town" with "no crime, no slums, no unemployment and few mothers-in-law." He also described it as a suburb without a city. "Its 16 miles of asphalt terminate abruptly at a barrier of virgin jack pine."

The community's first task was building Chalk River's NRX nuclear reactor, which when completed in 1947 was the most powerful research facility in the world. One of its uses was to produce radioactive isotopes, giving life to an emerging field of medical applications where Canadian scientists developed expertise.

Having established its leadership in the area of nuclear research and medicine, the federal government aimed higher. In the late 1940s it began building the NRU, a more powerful successor to the NRX that was put into operation in 1957.

On top of producing medical isotopes, the NRU was the early testing ground for Candu reactor technology and fuels now used in Ontario's nuclear power plants.

There have been accidents. On Dec. 12, 1952, a power surge in the NRX reactor allowed release of dangerous radioactive neutrons and damaged the reactor core, forcing an evacuation of the area.

In 1959, a uranium fuel rod being removed from the NRU reactor caught fire and radioactive dust was spread through the 12-storey reactor building. It is estimated that nearly 200 workers were exposed to radiation from the two events as part of cleanup efforts.

In 1999, workers were exposed to significant radiation after entering a plutonium-contaminated building at Chalk River. AECL also has a history of dumping low-level radioactive sludge into on-site sand trenches.

Ole Hendrickson, a scientist and researcher who lives in neighbouring Pembroke, leads a group called the Concerned Citizens of Renfrew County and Area. He says radioactive waste from Chalk River's operations remains on site without proper treatment or storage, though he acknowledged recent attempts to clean it up.

"There's a pretty serious plume of contaminated sediment right in the river," says Hendrickson.

He calls it a "worrying situation" when a prime minister overrides a safety regulator and puts political pressure on a Crown corporation to quick-start a Cold-War-era nuclear reactor – one that's in violation of its operating licence. "Although the probability of an earthquake or something like this happening is pretty low, the consequences of something are pretty horrific."

But ask those on the streets of Deep River and the fears are overblown. "If I see a mushroom cloud overhead then I might worry," says a firefighter who lives two blocks from Chalk River Labs' main gate.

"This is the most unique community in probably all of Canada in terms of not having a not-in-my-backyard system," says Gutzman.

"We welcome nuclear development here. If there's any frustration at all, it's probably not with AECL, but with the regulator.

"The reactor has been going fine. It will go fine."

Related News

Roads Need More Electricity: They Will Make It Themselves

Electrically Smart Roads integrate solar road surfaces, inductive charging, IoT sensors, AI analytics, and V2X to power lighting, deicing, and monitoring, reducing grid dependence while enabling dynamic EV charging and real-time traffic management.

 

Key Points

Electrically smart roads generate power, sense conditions, and charge EVs using solar, IoT, AI, and dynamic infrastructure.

✅ Solar surfaces, verges, and gantries generate on-site electricity

✅ Inductive lanes enable dynamic EV charging at highway speeds

✅ Embedded IoT sensors and AI deliver real-time traffic insights

 

As more and more capabilities are added to roads instead of simply covering a country with extra roads, they are starting to make their own electricity, notably as solar road surface but then with added silent wind turbines, photovoltaic verges and barriers and more.

That toll gate, street light and traffic monitoring system all need electricity. Later, roads that deice and charge vehicles at speed will need huge amounts of electricity. For now, electricity for road systems is provided by very expensive infrastructure to the grid, and grid flexibility for EVs remains a concern, except for a few solar/ wind street lights in China and Korea for example. However, as more and more capabilities are added to roads instead of simply covering a country with extra roads, they are starting to make their own electricity, notably as solar road surface but then with added silent wind turbines, photovoltaic verges and barriers and more. There is also highly speculative work in the USA and UK on garnering power from road surface movement using piezoelectrics and electrodynamics and even its heat. 

#google#

China plans to create an intelligent transport system by 2030. The country hopes to build smart roads that will not only be able to charge electric cars as they drive but also monitor temperature, traffic flow and weight load using artificial intelligence. Indeed, like France, the Netherlands and the USA, where U.S. EV charging capacity is under scrutiny, it already has trials of extended lengths of solar road which cost no more than regular roads. In an alternative approach, vehicles go under tunnels of solar panels that also support lighting, light-emitting signage and monitoring equipment using the electricity made where it is needed. See the IDTechEx Research report, Electrically Smart Roads 2018-2028 for more.

Raghu Das, CEO of IDTechEx says, "The spiral vertical axis wind turbines VAWT in Asia rarely rotate because they are too low but much higher versions are planned on large UK roadside vehicle charging centres that should work well. H shaped VAWT is also gaining traction - much slower and quieter than the propeller shape which vibrates and keeps you awake at night in an urban area.

The price gap between the ubiquitous polycrystalline silicon solar cell and the much more efficient single crystal silicon is narrowing. That means that road furniture such as bus shelters and smart gantries will likely go for more solar rather than adding wind power in many cases, a shift mirrored by connected solar tech in homes, because wind power needs a lot of maintenance and its price is not dropping as rapidly."

The IDTechEx Research report, Off Grid Electric Vehicle Charging: Zero Emission 2018-2028 analyses that aspect, while vehicle-to-grid strategies may complement grid resources. The prototype of a smart road is already in place on an expressway outside of Jinan, providing better traffic updates as well as more accurate mapping. Verizon's IoT division has launched a project around intelligent asphalt, which it thinks has the potential to significantly reduce fossil fuel emissions and save time by reducing up to 44% of traffic backups. It has partnered with Sacramento, California, to test this theory.

"By embedding sensors into the pavement as well as installing cameras on traffic lights, we will be able to study and analyze the flow of traffic. Then, we will take all of that data and use it to optimize the timing of lights so that traffic flows easier and travel times are shorter," explains Sean Harrington, vice president of Verizon Smart Communities.

Colorado's Department of Transportation has recently announced its intention to be the first state to pilot smart roads by striking a five-year deal with a smart road company to test the technology. Like planned auto-deicing roads elsewhere, the aim of this project is, first and foremost, to save lives. The technology will detect when a car suddenly leaves a road and send emergency assistance to the area. The IDTechEx Research report Electrically Smart Roads 2018-2028 describes how others work on real time structural monitoring of roads and embedded interactive lighting and road surface signage.

"Smart pavement can make that determination and send that information directly into a vehicle," Peter Kozinski, director of CDOT's RoadX division, tells the Denver Post. "Data is the new asphalt of transportation."   Sensors, processors and other technology are embedded in the Colorado road to extend capability beyond accidents and reach into better road maintenance. Fast adoption relies on the ability to rapidly install sensor-laden pavement or lay concrete slabs. Attention therefore turns to fast adaptation of existing roads. Indeed, even for the heavy coil arrays used for dynamic vehicle charging, even as state power grids face new challenges, in Israel there are machines that can retrofit into the road surface at a remarkable two kilometres of cut and insert in a day.

"It's hard to imagine that these things are inexpensive, with all the electronics in them," Charles Schwartz, a professor of civil and environmental engineering at the University of Maryland, tells the Denver Post concerning the vehicle sensing project, "but CDOT is a fairly sophisticated agency, and this is an interesting pilot project. We can learn a lot, even if the test is only partially successful."

 

Related News

View more

Failed PG&E power line blamed for Drum fire off Hwy 246 last June

PG&E Drum Fire Cause identified as a power line failure in Santa Barbara County, with arcing electricity igniting vegetation near Buellton on Drum Canyon Road; 696 acres burned as investigators and CPUC review PG&E safety.

 

Key Points

A failed PG&E power line sparked the 696-acre Drum Fire near Buellton; the utility is conducting its own probe.

✅ Power line failed between poles, arcing ignited vegetation.

✅ 696 acres burned; no structures damaged or injuries.

✅ PG&E filed CPUC incident report; ongoing investigation.

 

A downed Pacific Gas and Electric Co. power line was the cause of the Drum fire that broke out June 14 on Drum Canyon Road northwest of Buellton, a reminder that a transformer explosion can also spark multiple fires, the Santa Barbara County Fire Department announced Thursday.

The fire broke out about 12:50 p.m. north of Highway 246 and burned about 696 acres of wildland before firefighters brought it under control, although no structures were damaged or mass outages like the Los Angeles power outage occurred, according to an incident summary.

A team of investigators pinpointed the official cause as a power line that failed between two utility poles and fell to the ground, and as downed line safety tips emphasize, arcing electricity ignited the surrounding vegetation, said County Fire Department spokesman Capt. Daniel Bertucelli.

In response, a PG&E spokesman said the utility is conducting its own investigation and does not have access to whatever data investigators used, and, as the ATCO regulatory penalty illustrates, such matters can draw significant oversight, but he noted the company filed an electric incident report on the wire with the California Public Utilities Commission on June 14.

"We are grateful to the first responders who fought the 2020 Drum fire in Santa Barbara County and helped make sure that there were no injuries or fatalities, outcomes not always seen in copper theft incidents, and no reports of structures damaged or burned," PG&E spokesman Mark Mesesan said.

"While we are continuing to conduct our own investigation into the events that led to the Drum fire, and as the Site C watchdog inquiry shows, oversight bodies can seek more transparency, PG&E does not have access to the Santa Barbara County Fire Department's report."

He said PG&E remains focused on reducing wildfire risk across its service area while limiting the scope and duration of public safety power shutoffs, including strategies like line-burying decisions adopted by other utilities, and that the safety of customers and communities it serves are its most important responsibility.

 

Related News

View more

UN: Renewable Energy Ambition in NDCs must Double by 2030

NDC Renewable Energy Ambition drives COP25 calls to align with the Paris Agreement, as IRENA urges 2030 targets toward 7.7 TW, accelerating decarbonization, energy transition, socio-economic benefits, and scalable renewables in Nationally Determined Contributions.

 

Key Points

Raised 2030 renewable targets in NDCs to meet Paris goals, reaching 7.7 TW efficiently and speeding decarbonization.

✅ Double current NDC renewables to align with 7.7 TW by 2030

✅ Cost effective pathway with jobs, growth, welfare gains

✅ Accelerates decarbonization and energy access per UN goals

 

We need an oracle to get us out of this debacle. The UN climate group has met for the 25th time. Will anything ever change?

Countries are being urged to significantly raise renewable energy ambition and adopt targets to transform the global energy system in the next round of Nationally Determined Contributions (NDCs), according to a new IRENA report by the International Renewable Energy Agency (IRENA) that will be released at the UN Climate Change Conference (COP25) in Madrid.

The report will show that renewable energy ambition within NDCs would have to more than double by 2030 to put the world in line with the Paris Agreement goals, cost-effectively reaching 7.7 terawatts (TW) of globally installed capacity by then. Today’s renewable energy pledges under the NDCs are falling short of this, targeting only 3.2 TW, even as over 30% of global electricity is already generated from renewables.

The reportNDCs in 2020: Advancing Renewables in the Power Sector and Beyondwill be released at IRENA’s official side event on enhancing NDCs and raising ambition on 11 December 2019.It will state that with over 2.3 TW installed renewable capacity today, following a record year for renewables in 2016, almost half of the additional renewable energy capacity foreseen by current NDCs has already been installed.

The analysis will also highlight that delivering on increased renewable energy ambition can be achieved in a cost-effective way and with considerable socio-economic benefits across the world.

“Increasing renewable energy targets is absolutely necessary,” said IRENA’s Director-General Francesco La Camera. “Much more is possible. There is a decisive opportunity for policy makers to step up climate action, including a fossil fuel lockdown, by raising ambition on renewables, which are the only immediate solution to meet rising energy demand whilst decarbonizing the economy and building resilience.

“IRENA’s analysis shows that a pathway to a decarbonised economy is technologically possible and socially and economically beneficial,” continued Mr. La Camera.

“Renewables are good for growth, good for job creation and deliver significant welfare benefits. With renewables, we can also expand energy access and help eradicate energy poverty by ensuring clean, affordable and sustainable electricity for all in line with the UN Sustainable Development Agenda 2030.

IRENA will promote knowledge exchange, strengthen partnerships and work with all stakeholders to catalyse action on the ground. We are engaging with countries and regions worldwide, from Ireland's green electricity push to other markets, to facilitate renewable energy projects and raise their ambitions”.

NDCs must become a driving force for an accelerated global energy transformation toward 100% renewable energy globally. The current pledges reflect neither the past decade’s rapid growth nor the ongoing market trends for renewables. Through a higher renewable energy ambition, NDCs could serve to advance multiple climate and development objectives.

 

Related News

View more

Brand New Renewable Technology Harnesses Electricity From The Cold, Dark Night

Nighttime Thermoelectric Generator converts radiative cooling into renewable energy, leveraging outer space cold; a Stanford-UCLA prototype complements solar, serving off-grid loads with low-power output during peak evening demand, using simple materials on a rooftop.

 

Key Points

A device converting nighttime radiative cooling into electricity, complementing solar for low-power evening needs.

✅ Uses thermocouples to convert temperature gradients to voltage.

✅ Exploits radiative cooling to outer space for night power.

✅ Complements solar; low-cost parts suit off-grid applications.

 

Two years ago, one freezing December night on a California rooftop, a tiny light shone weakly with a little help from the freezing night air. It wasn't a very bright glow. But it was enough to demonstrate the possibility of generating renewable power after the Sun goes down.

Working with Stanford University engineers Wei Li and Shanhui Fan, University of California Los Angeles materials scientist Aaswath Raman put together a device that produces a voltage by channelling the day's residual warmth into cooling air, effectively generating electricity from thin air with passive heat exchange.

"Our work highlights the many remaining opportunities for energy by taking advantage of the cold of outer space as a renewable energy resource," says Raman.

"We think this forms the basis of a complementary technology to solar. While the power output will always be substantially lower, it can operate at hours when solar cells cannot."

For all the merits of solar energy, it's just not a 24-7 source of power, although research into nighttime solar cells suggests new possibilities for after-dark generation. Sure, we can store it in a giant battery or use it to pump water up into a reservoir for later, but until we have more economical solutions, nighttime is going to be a quiet time for renewable solar power. 

Most of us return home from work as the Sun is setting, and that's when energy demands spike to meet our needs for heating, cooking, entertaining, and lighting.

Unfortunately, we often turn to fossil fuels to make up the shortfall. For those living off the grid, it could require limiting options and going without a few luxuries.

Shanhui Fan understands the need for a night time renewable power source well. He's worked on a number of similar devices, including carbon nanotube generators that scavenge ambient energy, and a recent piece of technology that flipped photovoltaics on its head by squeezing electricity from the glow of heat radiating out of the planet's Sun-warmed surface.

While that clever item relied on the optical qualities of a warm object, this alternative device makes use of the good old thermoelectric effect, similar to thin-film waste-heat harvesting approaches now explored.

Using a material called a thermocouple, engineers can convert a change in temperature into a difference in voltage, effectively turning thermal energy into electricity with a measurable voltage. This demands something relatively toasty on one side and a place for that heat energy to escape to on the other.

The theory is the easy part – the real challenge is in arranging the right thermoelectric materials in such a way that they'll generate a voltage from our cooling surrounds that makes it worthwhile.

To keep costs down, the team used simple, off-the-shelf items that pretty much any of us could easily get our hands on.

They put together a cheap thermoelectric generator and linked it with a black aluminium disk to shed heat in the night air as it faced the sky. The generator was placed inside a polystyrene enclosure sealed with a window transparent to infrared light, and linked to a single tiny LED.


 

For six hours one evening, the box was left to cool on a roof-top in Stanford as the temperature fell just below freezing. As the heat flowed from the ground into the sky, the small generator produced just enough current to make the light flicker to life.

At its best, the device generated around 0.8 milliwatts of power, corresponding to 25 milliwatts of power per square metre.

That might just be enough to keep a hearing aid working. String several together and you might just be able to keep your cat amused with a simple laser pointer. So we're not talking massive amounts of power.

But as far as prototypes go, it's a fantastic starting point. The team suggests that with the right tweaks and the right conditions, 500 milliwatts per square metre isn't out of the question.

"Beyond lighting, we believe this could be a broadly enabling approach to power generation suitable for remote locations, and anywhere where power generation at night is needed," says Raman.

While we search for big, bright ideas to drive the revolution for renewables, it's important to make sure we don't let the smaller, simpler solutions like these slip away quietly into the night.

This research was published in Joule.

 

Related News

View more

EDF and France reach deal on electricity prices-source

EDF Nuclear Power Price Deal sets a 70 euros/MWh reference price, adds consumer protection if wholesale electricity prices exceed 110 euros/MWh, and outlines taxation mechanisms to shield bills while funding nuclear investment.

 

Key Points

A government-EDF deal setting 70 euros/MWh with safeguards above 110 euros/MWh to protect consumers.

✅ Reference price fixed at 70 euros/MWh, near EDF costs.

✅ Consumer shield above 110 euros/MWh; up to 90% extra-revenue tax.

✅ Review clauses maintain 70 euros/MWh through market swings.

 

State-controlled power group EDF and the French government have reached a tentative deal on future nuclear power prices, echoing a new electricity pricing scheme France has floated, a source close to the government said on Monday, ending months of tense negotiations.

The two sides agreed on 70 euros per megawatt hour (MWH) as a reference level for power prices, aligning with EU plans for more fixed-price contracts for consumers, the source said, cautioning that details of the deal are still being finalised.

The negotiations aimed to find a compromise between EDF, which is eager to maximise revenues to fund investments, and the government, keen to keep electricity bills for French households and businesses as low as possible, amid ongoing EU electricity reform debates across the bloc.

EDF declined to comment.

The preliminary deal sets out mechanisms that would protect consumers if power market prices rise above 110 euros/MWH, similar to potential emergency electricity measures being weighed in Europe, the source said, adding that the deal also includes clauses that would provide a price guarantee for EDF.

The 70 euros/MWH agreed reference price level is close to EDF's nuclear production costs, as Europe moves to revamp its electricity market more broadly. The nuclear power produced by the company provides 70% of France's electricity.

The agreement would allow the government to tax EDF's extra revenues at 90% if prices surpass 110 euros/MWH, in order to offset the impact on consumers. It would also enable a review of conditions in case of market fluctuations to safeguard the 70 euro level for EDF, reflecting how rolling back electricity prices is tougher than it appears, the source said.

French wholesale electricity prices are still above 100 euros/MWH, after climbing to 1,200 euros during last year's energy crisis, even as diesel prices have returned to pre-conflict levels.

A final agreement should be officially announced on Tuesday after a meeting between Finance Minister Bruno Le Maire, Energy Transition Minister Agnes Pannier-Runacher and EDF chief Luc Remont.

That meeting will work out the final details on price thresholds and tax rates between the reference level and the upper limit, the source said.

Negotiations between the two sides were so fraught that at one stage they raised questions about the future of EDF chief Luc Remont, who was appointed by President Emmanuel Macron a year ago to turn around EDF.

The group ended 2022 with a 18 billion-euro loss and almost 65 billion euros of net debt, hurt by a record number of reactor outages that coincided with soaring energy prices in the wake of Russia's invasion of Ukraine.

With its output at a 30-year low, EDF was forced to buy electricity on the market to supply customers. The government, meanwhile, imposed a cap on electricity prices, leaving EDF selling power at a discount.

 

Related News

View more

Biden administration pushes to revitalize coal communities with clean energy projects

Coal-to-Clean Energy Hubs leverage Bipartisan Infrastructure Law and Inflation Reduction Act funding to repurpose mine lands with microgrids, advanced nuclear, carbon capture, and rare earth processing, boosting energy security, jobs, and grid modernization.

 

Key Points

They are federal projects converting coal communities and mine lands into clean energy hubs, repurposing infrastructure.

✅ DOE demos on mine lands: microgrids, nuclear, carbon capture.

✅ Funding from BIL, CHIPS and IRA targets energy communities.

✅ Rare earths from coal waste bolster EV supply chains.

 

The Biden administration is channeling hundreds of millions of dollars in clean energy funding from recent legislation into its efforts to turn coal communities into clean energy hubs, the White House said.

The administration gave an update on its push across agencies to kick-start projects nationwide with funding Congress approved during Biden’s first two years in office. The effort includes $450 million from the Bipartisan Infrastructure Law that the Department of Energy will allocate to an array of new clean energy demonstration projects on former mine lands.

“These projects could focus on a range of technologies from microgrids to advanced nuclear to power plans with carbon capture,” Energy Secretary Jennifer Granholm said on a call with reporters Monday. “They’ll prove out the potential to reactivate or repurpose existing infrastructure like transmission lines and substations across an aging U.S. power grid, and these projects could spur new economic development in these communities.”

Among the projects the White House highlighted, it said $16 million from the infrastructure law will go to the University of North Dakota and West Virginia University to create design studies for the first-ever full-scale refinery facility in the U.S. that could extract and separate rare earth elements and minerals from coal mine waste streams. The materials are critical for electric vehicle-battery components that are currently heavily sourced from outside the U.S.

“Those efforts will pave the way toward building a first of its kind facility that produces essential materials for solar panels, wind turbines, EVs and more while cleaning up polluted land and water and creating good-paying jobs for local workers,” Granholm said.

Biden created an interagency working group focused on revitalizing coal-power communities through federal investments when he took office. In 2021, the group selected 25 priority areas ranging from West Virginia to Wyoming to focus on development, as high natural gas prices strengthened the case for clean electricity. There are nearly 18,000 identified mine sites across 1.5 million acres in the United States, according to the White House.

The massive effort fits into a broader Biden administration push to both fight climate change and support communities that have lost economic activity during a transition away from fossil fuel sources such as coal. While Biden’s most ambitious clean energy plans fell flat in Congress in the face of opposition from Republicans and some Democrats after the previous administration’s power plant overhaul, three major laws still unlocked funding for his administration to deploy.

Many of the initiatives are made possible through the Bipartisan Infrastructure Law, Chips and Science Act and the Inflation Reduction Act, even without a clean electricity standard on the books. The task force aims to make sure communities most affected by the changing energy landscape are taking maximum advantage of the federal benefits.

“Those new and expanded operations are coming to energy communities and creating good paying jobs,” Biden’s senior advisor for clean energy innovation and implementation John Podesta said on the call. “These laws can provide substantial federal support to energy communities like capping abandoned oil and gas wells, extracting critical minerals, building battery factories and launching demonstration projects in carbon capture or green hydrogen.”

The administration touted the potential benefits of the Inflation Reduction Act, a bill passed by Democrats to spur clean energy investments last year, even as early assessments show mixed results to date. At the time, U.S. consumers were dealing with decades-high inflation fueled in part by an energy crisis and high gas prices that drove debate — a point Republicans emphasized as the plan moved through Congress.

Deputy Treasury Secretary Wally Adeyemo said the Inflation Reduction Act aims to both “lower the deficit, as well as promote our energy security, lowering energy costs for consumers and combatting climate change.”

“As the Treasury works to implement the law, we’re focused on ensuring that all Americans benefit from the growth of the clean energy economy, particularly those who live in communities that have been dependent on the energy sector for job for a long time,” Adeyemo told reporters. “Economic growth and productivity are higher when all communities are able to reach their full potential.”

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified