Even as more than 1,000 workers get ready to walk out of Chrysler LLC's Newark car plant for the final time in January, state economic development officials and some business leaders think manufacturing still has a future in Delaware.
With a growing number of states along the Eastern Seaboard turning to wind power for a portion of their electricity needs, the demand for the parts that make up wind turbines — the tower, gearbox and blades — is rising much faster than supply.
That is doubly true for the huge turbine structures needed for offshore wind farms such as the one Bluewater Wind plans to build off Rehoboth Beach, or farms developers want to erect in ocean waters off New Jersey, Rhode Island and Massachusetts.
The parts for offshore wind turbines right now would need to be imported from Europe, because there are no U.S. production facilities making the equipment. The leading manufacturers are Vestas in Denmark and Siemens in Germany.
Delaware officials say that creates a market opportunity — for a U.S. firm to enter to challenge the foreign manufacturers, or even for a local plant operated by a foreign firm.
"You've got to think there's an opportunity here," said Philip Cherry, a state Department of Natural Resources and Environmental Control policy manager. "We'd be fools not to grasp at this, and let the Europeans get all this economic activity."
Some onshore work would be generated by Delaware's own plans.
When Bluewater Wind won its contract with Delmarva Power enabling the upstart to build a wind farm off the coast of Rehoboth Beach, it promised it would put a regional assembly hub in Delaware where the parts of a wind turbine would be put together.
But Jim Lanard, a Bluewater Wind spokesman, said that is just the tip of an iceberg of business that is likely to develop in the coming decade.
As of the end of next year, the number of East Coast wind farms under development should be 11, he said, with $15 billion worth of assets to be installed as part of those projects.
He urges governments to take the lead in trying to attract foreign turbine manufacturers to set up shop in the United States. "It goes right into keeping the U.S. energy dollars in the U.S.," Lanard said.
Brian Yerger, a renewable-energy analyst in Wilmington, said the impact of a manufacturing facility for offshore wind turbine components would be considerable.
"You're talking hundreds of jobs for a long time, a lot of ancillary businesses," he said.
Manufacturing of turbines and parts for onshore wind farms is gradually shifting to domestic factories, mainly for ease of transportation and to avoid an unpredictable exchange rate for the euro, said Jodie Jodziewicz, American Wind Energy Association manager of sting policy. About half the components in a domestic onshore wind farm are now made in the U.S., up from 30 percent in 2005, according to the association.
Still, demand far outstrips supply, and there is a two-year backlog for onshore wind turbines.
Gov.-elect Jack Markell said the idea of attracting wind power manufacturers fits into his economic development plans. "It would be a big opportunity in the sense that Delaware would be on the ground floor, so I look forward to pursuing it," he said.
Willett Kempton, an associate professor at the University of Delaware, said current state businesses also have an opportunity.
ITER Nuclear Fusion advances tokamak magnetic confinement, heating deuterium-tritium plasma with superconducting magnets, targeting net energy gain, tritium breeding, and steam-turbine power, while complementing laser inertial confinement milestones for grid-scale electricity and 2025 startup goals.
Key Points
ITER Nuclear Fusion is a tokamak project confining D-T plasma with magnets to achieve net energy gain and clean power.
✅ Tokamak magnetic confinement with high-temp superconducting coils
✅ Deuterium-tritium fuel cycle with on-site tritium breeding
✅ Targets net energy gain and grid-scale, low-carbon electricity
It sounds like the stuff of dreams: a virtually limitless source of energy that doesn’t produce greenhouse gases or radioactive waste. That’s the promise of nuclear fusion, often described as the holy grail of clean energy by proponents, which for decades has been nothing more than a fantasy due to insurmountable technical challenges. But things are heating up in what has turned into a race to create what amounts to an artificial sun here on Earth, one that can provide power for our kettles, cars and light bulbs.
Today’s nuclear power plants create electricity through nuclear fission, in which atoms are split, with next-gen nuclear power exploring smaller, cheaper, safer designs that remain distinct from fusion. Nuclear fusion however, involves combining atomic nuclei to release energy. It’s the same reaction that’s taking place at the Sun’s core. But overcoming the natural repulsion between atomic nuclei and maintaining the right conditions for fusion to occur isn’t straightforward. And doing so in a way that produces more energy than the reaction consumes has been beyond the grasp of the finest minds in physics for decades.
But perhaps not for much longer. Some major technical challenges have been overcome in the past few years and governments around the world have been pouring money into fusion power research as part of a broader green industrial revolution under way in several regions. There are also over 20 private ventures in the UK, US, Europe, China and Australia vying to be the first to make fusion energy production a reality.
“People are saying, ‘If it really is the ultimate solution, let’s find out whether it works or not,’” says Dr Tim Luce, head of science and operation at the International Thermonuclear Experimental Reactor (ITER), being built in southeast France. ITER is the biggest throw of the fusion dice yet.
Its $22bn (£15.9bn) build cost is being met by the governments of two-thirds of the world’s population, including the EU, the US, China and Russia, at a time when Europe is losing nuclear power and needs energy, and when it’s fired up in 2025 it’ll be the world’s largest fusion reactor. If it works, ITER will transform fusion power from being the stuff of dreams into a viable energy source.
Constructing a nuclear fusion reactor ITER will be a tokamak reactor – thought to be the best hope for fusion power. Inside a tokamak, a gas, often a hydrogen isotope called deuterium, is subjected to intense heat and pressure, forcing electrons out of the atoms. This creates a plasma – a superheated, ionised gas – that has to be contained by intense magnetic fields.
The containment is vital, as no material on Earth could withstand the intense heat (100,000,000°C and above) that the plasma has to reach so that fusion can begin. It’s close to 10 times the heat at the Sun’s core, and temperatures like that are needed in a tokamak because the gravitational pressure within the Sun can’t be recreated.
When atomic nuclei do start to fuse, vast amounts of energy are released. While the experimental reactors currently in operation release that energy as heat, in a fusion reactor power plant, the heat would be used to produce steam that would drive turbines to generate electricity, even as some envision nuclear beyond electricity for industrial heat and fuels.
Tokamaks aren’t the only fusion reactors being tried. Another type of reactor uses lasers to heat and compress a hydrogen fuel to initiate fusion. In August 2021, one such device at the National Ignition Facility, at the Lawrence Livermore National Laboratory in California, generated 1.35 megajoules of energy. This record-breaking figure brings fusion power a step closer to net energy gain, but most hopes are still pinned on tokamak reactors rather than lasers.
In June 2021, China’s Experimental Advanced Superconducting Tokamak (EAST) reactor maintained a plasma for 101 seconds at 120,000,000°C. Before that, the record was 20 seconds. Ultimately, a fusion reactor would need to sustain the plasma indefinitely – or at least for eight-hour ‘pulses’ during periods of peak electricity demand.
A real game-changer for tokamaks has been the magnets used to produce the magnetic field. “We know how to make magnets that generate a very high magnetic field from copper or other kinds of metal, but you would pay a fortune for the electricity. It wouldn’t be a net energy gain from the plant,” says Luce.
One route for nuclear fusion is to use atoms of deuterium and tritium, both isotopes of hydrogen. They fuse under incredible heat and pressure, and the resulting products release energy as heat
The solution is to use high-temperature, superconducting magnets made from superconducting wire, or ‘tape’, that has no electrical resistance. These magnets can create intense magnetic fields and don’t lose energy as heat.
“High temperature superconductivity has been known about for 35 years. But the manufacturing capability to make tape in the lengths that would be required to make a reasonable fusion coil has just recently been developed,” says Luce. One of ITER’s magnets, the central solenoid, will produce a field of 13 tesla – 280,000 times Earth’s magnetic field.
The inner walls of ITER’s vacuum vessel, where the fusion will occur, will be lined with beryllium, a metal that won’t contaminate the plasma much if they touch. At the bottom is the divertor that will keep the temperature inside the reactor under control.
“The heat load on the divertor can be as large as in a rocket nozzle,” says Luce. “Rocket nozzles work because you can get into orbit within minutes and in space it’s really cold.” In a fusion reactor, a divertor would need to withstand this heat indefinitely and at ITER they’ll be testing one made out of tungsten.
Meanwhile, in the US, the National Spherical Torus Experiment – Upgrade (NSTX-U) fusion reactor will be fired up in the autumn of 2022, while efforts in advanced fission such as a mini-reactor design are also progressing. One of its priorities will be to see whether lining the reactor with lithium helps to keep the plasma stable.
Choosing a fuel Instead of just using deuterium as the fusion fuel, ITER will use deuterium mixed with tritium, another hydrogen isotope. The deuterium-tritium blend offers the best chance of getting significantly more power out than is put in. Proponents of fusion power say one reason the technology is safe is that the fuel needs to be constantly fed into the reactor to keep fusion happening, making a runaway reaction impossible.
Deuterium can be extracted from seawater, so there’s a virtually limitless supply of it. But only 20kg of tritium are thought to exist worldwide, so fusion power plants will have to produce it (ITER will develop technology to ‘breed’ tritium). While some radioactive waste will be produced in a fusion plant, it’ll have a lifetime of around 100 years, rather than the thousands of years from fission.
At the time of writing in September, researchers at the Joint European Torus (JET) fusion reactor in Oxfordshire were due to start their deuterium-tritium fusion reactions. “JET will help ITER prepare a choice of machine parameters to optimise the fusion power,” says Dr Joelle Mailloux, one of the scientific programme leaders at JET. These parameters will include finding the best combination of deuterium and tritium, and establishing how the current is increased in the magnets before fusion starts.
The groundwork laid down at JET should accelerate ITER’s efforts to accomplish net energy gain. ITER will produce ‘first plasma’ in December 2025 and be cranked up to full power over the following decade. Its plasma temperature will reach 150,000,000°C and its target is to produce 500 megawatts of fusion power for every 50 megawatts of input heating power.
“If ITER is successful, it’ll eliminate most, if not all, doubts about the science and liberate money for technology development,” says Luce. That technology development will be demonstration fusion power plants that actually produce electricity, where advanced reactors can build on decades of expertise. “ITER is opening the door and saying, yeah, this works – the science is there.”
Spain Wind Turbine Factory Shutdowns disrupt manufacturing as Vestas, Siemens Gamesa, and Nordex halt Spanish plants amid COVID-19 lockdowns, straining supply chains and renewables projects across Europe, with partial operations and maintenance continuing.
Key Points
COVID-19 lockdowns pause Spanish wind factories by Vestas, Siemens Gamesa, and Nordex, disrupting supply chains.
✅ Vestas, Siemens Gamesa, Nordex halt Spanish manufacturing
✅ Service and maintenance continue under safety protocols
✅ Supply chain and project timelines face delays in Europe
Europe’s largest wind turbine makers on Wednesday said they had shut down more factories in Spain, a major hub for the continent’s renewables sector, in response to an almost total lockdown in the country to contain the coronavirus outbreak as the Covid-19 crisis disrupts the sector.
Denmark’s Vestas, the world No.1, has suspended production at its two Spanish plants, a spokesman told Reuters, adding that its service and maintenance business was still working. Vestas has also paused manufacturing and construction in India, which is under a nationwide lockdown too, he said, and similar disruptions could stall U.S. utility solar projects this year.
Top rival Siemens Gamesa, known for its offshore wind turbine lineup, suspended production at six Spanish factories on Monday, bringing total closures there to eight, a spokeswoman said.
Four components factories are still partially up and running, at Reinosa on the north coast, Cuenca near Madrid, Mungia and Siguiero, she added.
Germany’s Nordex, the No.8 globally which is 36% owned by Spain’s Acciona, has now shuttered all of its production in Spain, even as new projects like Enel’s 90MW build move ahead, including two nacelle casing factories in Barasoain and Vall d’Uixo, as well as a rotor blade site in Lumbier.
“Production is no longer active,” a spokeswoman said in response to a Reuters query.
The new closures take the number of idled wind power factories on the continent to 19, all in Spain and Italy, the European countries worst hit by the pandemic, with investments at risk across the sector.
Spain is second only to Italy in terms of numbers of coronavirus-related fatalities and restrictions have become even stricter in the country’s third week of lockdown at a time when renewables surpassed fossil fuels for the first time in Europe.
“Some factories have temporarily paused activity as a precautionary step to strengthen sanitary measures within the sites and guarantee full compliance with government recommendations,” industry association WindEurope said, noting that wind power grows in some markets despite the pandemic.
Ontario Clean Electricity Regulations accelerate renewable energy adoption, drive emissions reduction, and modernize the smart grid with energy storage, efficiency targets, and reliability upgrades to support decarbonization and a stable power system for Ontario.
Key Points
Standards to cut emissions, grow renewables, improve efficiency, and modernize the grid with storage and smart systems.
✅ Phases down fossil generation and invests in storage.
✅ Sets utility efficiency targets to curb demand growth.
✅ Upgrades to smart grid for reliability and resiliency.
Ontario has taken a significant step forward in its energy transition with the introduction of new clean electricity regulations. These regulations, complementing federal Clean Electricity Regulations, aim to reduce carbon emissions, promote sustainable energy sources, and ensure a cleaner, more reliable electricity grid for future generations. This article explores the motivations behind these regulations, the strategies being implemented, and the expected impacts on Ontario’s energy landscape.
The Need for Clean Electricity
Ontario, like many regions around the world, is grappling with the effects of climate change, including more frequent and severe weather events. In response, the province has set ambitious targets to reduce greenhouse gas emissions and increase the use of renewable energy sources, reflecting trends seen in Alberta’s path to clean electricity across Canada. The electricity sector plays a central role in this transition, as it is responsible for a significant portion of the province’s carbon footprint.
For years, Ontario has been moving away from coal as a source of electricity generation, and now, with the introduction of these new regulations, the province is taking a step further in decarbonizing its grid, including its largest competitive energy procurement to date. By setting clear goals and standards for clean electricity, the province hopes to meet its environmental targets while ensuring a stable and affordable energy supply for all Ontarians.
Key Aspects of the New Regulations
The regulations focus on encouraging the use of renewable energy sources such as wind, solar, hydroelectric, and geothermal power. One of the key elements of the plan is the gradual phase-out of fossil fuel-based energy sources. This shift is expected to be accompanied by greater investments in energy storage solutions, including grid batteries, to address the intermittency issues often associated with renewable energy sources.
Ontario’s new regulations also emphasize the importance of energy efficiency in reducing overall demand. As part of this initiative, utilities and energy providers will be required to meet strict energy-saving targets and participate in new electricity auctions designed to reduce costs, ensuring that both consumers and businesses are incentivized to use energy more efficiently.
In addition, the regulations promote technological innovation in the electricity sector. By supporting the development of smart grids, energy storage technologies, and advanced power management systems, Ontario is positioning itself to become a leader in the global energy transition.
Impact on the Economy and Jobs
One of the anticipated benefits of the clean electricity regulations is their positive impact on Ontario’s economy. As the province invests in renewable energy infrastructure and clean technologies, new job opportunities are expected to arise in industries such as manufacturing, construction, and research and development. These regulations also encourage innovation in energy services, which could lead to the growth of new companies and industries, while easing pressures on industrial ratepayers through complementary measures.
Furthermore, the transition to cleaner energy is expected to reduce the long-term costs associated with climate change. By investing in sustainable energy solutions now, Ontario will help mitigate the financial burdens of environmental damage and extreme weather events in the future.
Challenges and Concerns
While the new regulations have been widely praised for their environmental benefits, they are not without their challenges. One of the primary concerns is the potential cost to consumers, and some Ontario hydro policy critique has called for revisiting legacy pricing approaches to improve affordability. While renewable energy sources have become more affordable over the years, transitioning from fossil fuels could still result in higher electricity prices in the short term. Additionally, the implementation of new technologies, such as smart grids and energy storage, will require substantial upfront investment.
Moreover, the intermittency of renewable energy generation poses a challenge to grid stability. Ontario’s electricity grid must be able to adapt to fluctuations in energy supply as more variable renewable sources come online. This challenge will require significant upgrades to the grid infrastructure and the integration of storage solutions to ensure reliable energy delivery.
The Road Ahead
Ontario’s clean electricity regulations represent an important step in the province’s commitment to combating climate change and transitioning to a sustainable, low-carbon economy. While there are challenges to overcome, the benefits of cleaner air, reduced emissions, and a more resilient energy system will be felt for generations to come. As the province continues to innovate and lead in the energy sector, Ontario is positioning itself to thrive in the green economy of the future.
Duke Energy Florida battery storage will add 22 MW across Trenton, Cape San Blas and Jennings, improving grid reliability, outage resilience, enabling peak shaving and deferring distribution upgrades to increase efficiency and customer value.
Key Points
Three lithium battery projects totaling 22 MW to improve Florida grid reliability, outage resilience and efficiency.
✅ 22 MW across Trenton, Cape San Blas and Jennings sites
✅ Enhances outage resilience and grid reliability
✅ Defers costly distribution upgrades and improves efficiency
Duke Energy Florida (DEF) has announced three battery energy storage projects, totaling 22 megawatts, that will improve overall reliability and support critical services during power outages.
Duke Energy, the nation's largest electric utility, unveils its new logo. (PRNewsFoto/Duke Energy) (PRNewsfoto/Duke Energy)
Collectively, the storage facilities will enhance grid operations, increase efficiencies and improve overall reliability for surrounding communities, with virtual power plant programs offering a model for coordinating distributed resources.
They will also provide important backup generation during power outages, a service that is becoming increasingly important with the number and intensity of storms that have recently impacted the state.
As the grid manager and operator, DEF can maximize the versatility of battery energy storage systems (BESS) to include multiple customer and electric system benefits such as balancing energy demand, managing intermittent resources, increasing energy security and deferring traditional power grid upgrades.
These benefits help reduce costs for customers and increase operational efficiencies.
The 11-megawatt (MW) Trenton lithium-based battery facility will be located 30 miles west of Gainesville in Gilchrist County. The energy storage project will continue to improve power reliability using newer technologies.
The 5.5-MW Cape San Blas lithium-based battery facility will be located approximately 40 miles southeast of Panama City in Gulf County. The project will provide additional power capacity to meet our customers' rising energy demand in the area. This project is an economical alternative to replacing distribution equipment necessary to accommodate local load growth.
The 5.5-MW Jennings lithium-based battery facility will be located 1.5 miles south of the Florida-Georgia border in Hamilton County. The project will continue to improve power reliability through energy storage as an alternative solution to installing new and more costly distribution equipment.
Currently the company plans to complete all three projects by the end of 2020.
"These battery projects provide electric system benefits that will help improve local reliability for our customers and provide significant energy services to the power grid," said Catherine Stempien, Duke Energy Florida state president. "Duke Energy Florida will continue to identify opportunities in battery storage technology which will deliver efficiency improvements to our customers."
Additional renewables projects
As part of DEF's commitment to renewables, the company is investing an estimated $1 billion to construct or acquire a total of 700 MW of cost-effective solar power facilities and 50 MW of battery storage through 2022.
Duke Energy is leading the industry deployment of battery technology, with SDG&E's Emerald Storage project underscoring broader adoption across the sector today. Last fall, the company and University of South Florida St. Petersburg unveiled a Tesla battery storage system that is connected to a 100-kilowatt (kW) solar array – the first of its kind in Florida.
This solar-battery microgrid system manages the energy captured by the solar array, situated on top of the university's parking garage, and similar low-income housing microgrid financing efforts are expanding access. The solar array was constructed three years ago through a $1 million grant from Duke Energy. The microgrid provides a backup power source during a power outage for the parking garage elevator, lights and electric vehicle charging stations. Click here to learn more.
In addition to expanding its battery storage technology and solar investments, DEF is investing in transportation electrification to support the growing U.S. adoption of electric vehicles (EV), including EV charging infrastructure, 530 EV charging stations and a modernized power grid to deliver the diverse and reliable energy solutions customers want and need.
BC Hydro Trespassing Surge highlights risky social media stunts at dams and power stations, with restricted areas breached for selfies, electrocution hazards ignored, and safety signage violated across Buntzen Lake, Jones Lake, and Jordan River.
Key Points
A spike in illegal entries at BC Hydro sites for social media, increasing electrocution and drowning risks.
✅ 200% rise in trespassing over five years
✅ Risks: electrocution, drowning, deadly falls
✅ Obey signage; avoid restricted dam and substation areas
More and more daredevils are climbing onto dangerous dams and power stations to gain likes and social media followers, according to a new report from BC Hydro.
The power provider says it's seen a 200 per cent uptick in trespassing into restricted areas over the past five years, with many of the incidents posted onto sites like YouTube, Facebook and Instagram.
"It's concerning for us because our infrastructure has risk with it," said David Conway, a community relations manager for BC Hydro.
"There's a risk of electrocution in regards to our transmission towers and our substations ... and people can be severely injured, as seen in serious injuries cases, or killed," he said.
The company released a report Tuesday, noting specific incidents of users trespassing onto sites at Buntzen Lake in Anmore, Jones Lake in the Fraser Valley and Jordan River near Victoria; it has also been issuing Site C updates during the pandemic. The incidents ranged from climbing transmission towers to swimming in restricted areas at dam sites.
Conway says annual incidents climbed from a handful to about one dozen, but BC Hydro expects the figures to be even higher. He says many more events likely go unreported.
The report ties the increase in incidents to the pursuit of "social media glory." Between 2011 and 2017, at least 259 people were killed worldwide in selfie-related incidents, according to the Journal of Family Medicine and Primary Care, and a knowledge gap in electrical safety remains a factor. Many of the incidents involved water, electrical equipment or dangerous heights.
In 2018, three social media personalities died after falling off a cliff at Shannon Falls near Squamish, B.C.
North Shore Rescue attributes about 30 per cent of its calls to outdoor users attempting to capture content for social media.
Survey results highlighted in the BC Hydro report show that 15 per cent of British Columbians admit to putting themselves in a dangerous position "to achieve the 'perfect' shot."
Awareness also influences careers, as many young Canadians say they would work in electricity if they knew more.
The survey was conducted online by 800 B.C. residents. For comparison purposes, a probability sample of the same size would yield a margin of error of plus or minus 3.5 per cent, 19 times out of 20.
During the pandemic, the U.S. grid overseer issued a coronavirus warning to highlight operational risks.
Risky activities include standing at the edge of a cliff, knowingly disobeying safety signage or trespassing, or taking a selfie from a dangerous height.
Two per cent of British Columbians admit to injuring themselves in the name of a selfie.
"We want people to stay safe. We want to remind the public to stay a safe distance away from our infrastructure, and follow safety guidance near downed lines, as electricity and generating facilities can be dangerous," said Conway.
BC Hydro is urging all visitors to obey signage, steer clear of power-generating equipment and to stay on designated trails.
Electricity Grid Flow Prediction leverages big data, machine learning, and weather analytics to forecast power flows across smart grids, enhancing reliability, reducing blackouts and curtailment, and optimizing renewable integration under EU Horizon 2020 innovation.
Key Points
Short-term forecasting of power flows using big data, weather inputs, and machine learning to stabilize smart grids.
✅ Uses big data, weather, and ML for 6-hour forecasts
✅ Improves reliability, cuts blackouts and energy waste
✅ Supports smart grids, renewables, and grid balancing
Three European prediction specialists have won prizes worth €2 million for developing the most accurate predictions of electricity flow through a grid
The three winners of the Big Data Technologies Horizon Prize received their awards at a ceremony on 12th November in Austria.
The first prize of €1.2 million went to Professor José Vilar from Spain, while Belgians Sofie Verrewaere and Yann-Aël Le Borgne came in joint second place and won €400,000 each.
The challenge was open to individuals groups and organisations from countries taking part in the EU’s research and innovation programme, Horizon 2020.
Carlos Moedas, Commissioner for Research, Science and Innovation, said: “Energy is one of the crucial sectors that are being transformed by the digital grid worldwide.
“This Prize is a good example of how we support a positive transformation through the EU’s research and innovation programme, Horizon 2020.
“For the future, we have designed our next programme, Horizon Europe, to put even more emphasis on the merger of the physical and digital worlds across sectors such as energy, transport and health.”
The challenge for the applicants was to create AI-driven software that could predict the likely flow of electricity through a grid taking into account a number of factors including the weather and the generation source (i.e. wind turbines, solar cells, etc).
Using a large quantity of data from electricity grids, EU smart meters, combined with additional data such as weather conditions, applicants had to develop software that could predict the flow of energy through the grid over a six-hour period.
Commissioner for Digital Economy and Society Mariya Gabriel said: “The wide range of possible applications of these winning submissions could bring tangible benefits to all European citizens, including efforts to tackle climate change with machine learning across sectors.”
The decision to focus on energy grids for this particular prize was driven by a clear market need, including expanding HVDC technology capabilities.
Today’s energy is produced at millions of interconnected and dispersed unpredictable sites such as wind turbines, solar cells, etc., so it is harder to ensure that electricity supply matches the demand at all times.
This complexity means that huge amounts of data are produced at the energy generation sites, in the grid and at the place where the energy is consumed.
Being able to make accurate, short-term predictions about power grid traffic is therefore vital to reduce the risks of blackouts or, by enabling utilities to use AI for energy savings, limit waste of energy.
Reliable predictions can also be used in fields such as biology and healthcare. The predictions can help to diagnose and cure diseases as well as to allocate resources where they are most needed.
Ultimately, the winning ideas are set to be picked up by the energy sector in the hopes of creating smarter electricity infrastructure, more economic and more reliable power grids.
Whether you would prefer Live Online or In-Person
instruction, our electrical training courses can be
tailored to meet your company's specific requirements
and delivered to your employees in one location or at
various locations.