Lowering the “doom”

By John Allemang, Globe and Mail


CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
Changing our climate for the worse? That's the easy part. But changing human minds and behaviour — that turns out to be much, much harder.

No matter how much confidence scientists have in the truth of their global warnings, getting the message out to the folks who are actually wrecking the planet has proved to be a far more challenging proposition. Cars still jam the streets, energy consumption increases, polluters sow doubt and denial and, as the Copenhagen summit on climate change nears, politicians still prevaricate as if there were an endless succession of tomorrows.

While there may well be an apocalypse looming on the far horizon, dire prophecies just don't cut it in the here-and-now of consumer culture. So forget the grim 100-year predictions for a second. The crisis at this very moment seems more like a crisis of communication.

Even the chair of the David Suzuki Foundation, James Hoggan, agrees: "Whether it's the scientific community, environmental groups, politicians, the media or business leaders, we haven't done a great job of conveying accurate scientific information to the public on the risks of climate change — or, indeed, of even conveying what climate change is."

Over the decades the climate-change war has been waged, many tactics used to soften up the masses have been unproductive at best and downright discouraging at worst. Even if you believe doomsday is coming, is it really such a good idea to talk it up and wallow in the death and destruction that will result if we don't change our awful ways and acknowledge Al Gore's inconvenient truth?

Such pessimistic predictions may have seemed effective as a way of winning attention (and the Nobel). But if the goal is to motivate people to useful action, say those who are experienced in environmental communication, it calls for something new.

"People have a finite capacity for worry," says Mr. Hoggan, the author of Do the Right Thing: PR Tips for a Skeptical Public . "When you overwhelm people with catastrophe, you don't actually engage them — you just produce an emotional numbness."

That's an intellectual evolution that Mr. Suzuki himself has gone through. His widely viewed TV series The Nature of Things once tended to depict nature as a beautiful pristine thing that bad humans habitually destroyed. Even now, his enemies feel able to undermine his mainstream scientific views by dismissing him as a merchant of doom.

Yet the current incarnation of Mr. Suzuki, in keeping with his foundation's communication techniques, has shifted from the dependable jeremiads of old to a message of everyday hope and more immediate usefulness. Last year, he co-wrote David Suzuki's Green Guide, a book that comes to grips with climate change through small-scale lifestyle adjustments such as biodegradable carpeting and energy-efficient appliances.

"I believe that one has to keep warning [that] the signs are there, the science is in," Mr. Suzuki said when the book came out. "But I realized years ago that you can get people to respond to fear, but you can't sustain it, because it's too soul-destroying."

So what will people respond to when fear doesn't do it? Mark van Vugt is a psychologist who teaches at VU University Amsterdam, and he's part of an emerging group of cognitive scientists studying the sometimes uneasy relationship between climate-change messaging and the workings of the brain.

He says the announcements to be made by global leaders in Copenhagen are of much less consequence than the decisions that are being shaped in the complex minds of ordinary human beings.

"It's very hard to look at a climate-change conference as a primary driver of individual behaviour," Dr. van Vugt says. "Copenhagen is about political solutions, but the environmental issues remain inherently uncertain for most people. So what we have to do is translate these issues into something meaningful at the individual level."

Acquiring information is the basic way the brain deals with uncertainty, and with a subject as complex and contested as long-term climate change, Dr. van Vugt believes the best approach is to localize the discussion: Make it less about far-off glaciers, because people find it hard to cope with a problem they can't easily influence, and more about local parks, forests or air quality.

Any kind of message for change, he believes, must focus on personal identity and our need to belong: "We're influenced by significant others and want to look good to our neighbours and friends."

So a good way to persuade people to reduce electrical consumption is to let them compare their rates with the rest of the community: Have utility bills award a smiley face to those whose consumption is lower than their neighbours and a frowning face to those who are profligate. People then will reduce without any other external motivator, Dr. van Vugt says.

But good behaviour at the individual level won't last if institutional behaviour is untrustworthy — environmental groups must not overstate a threat; scientists can't be seen to adjust data, even in a good cause (as researchers from the International Panel on Climate Change were recently accused of doing); businesses must not act as though they're a law onto themselves; and governments can't preach one thing and then do another.

"Suppose it turns out that the recyclables and organics we've been sorting and separating are just being tossed into one big garbage heap — well, that's a recipe for disaster," Dr. van Vugt says. "You've created goodwill only to destroy it."

While environmentally friendly behaviours are often presented as something altruistic and selfless, he suggests that incentives are key to any successful strategy. "Our primary motivation is to get ahead of others, to see ourselves rewarded for good behaviour while bad behaviour gets punished." So it doesn't hurt to awaken some of this potential goodness by, say, offering a free bus pass for those prepared to be wooed to public transit.

At the same time, it's useful to make green products more luxurious rather than crafting an image of asceticism and self-conscious suffering. "A nice, well-made mountain bike can cost as much as a car and may become a status symbol for just that reason," Dr. van Vugt says. This is what psychologists refer to as signaling potential: Look at me, I'm green and rich and sexy.

Orthodox environmentalists may shudder at the thought, and question the ability of sexy status symbols to stop the seas from rising. Yet the attractiveness of self-denial has proved to be a hard sell to those used to the comforts of our present wastefulness.

"The evidence so far is profoundly against the notion of sacrifice as a success strategy," designer Bruce Mau says. "We've been saying for decades, 'Get out of your cars,' but in not one of those years have there been fewer cars."

For Mr. Mau, solving the problems of climate starts with smart design — carpeting with its own 1-800 number that you call when it needs recycling, a Tesla electric car that looks more beautiful than a Ferrari, and buses that come with cup holders so you don't feel like you're downgrading quite so much from your car.

"If you describe a sustainable future in negative terms," he says, "and if you highlight what it's going to cost them, people aren't going to move there. Doom-and-gloom is a dead end."

The beauty of sustainability has an undeniable appeal. But between the aesthetics and the ascetics of climate change, there's still a lot of room to manoeuvre. A considerable amount of public goodwill was arguably wasted by the campaign to switch from incandescent bulbs to stylish compact fluorescents, a relatively low-impact improvement.

Those who listened attentively to the noisy messaging that promoted the switch to the compact fluorescents may well feel like their effort was wasted — and their commitment could be harder to summon for a more significant shift, such as reducing beef consumption by half. Politicians, after all, fear beef-industry interests, while the incandescent-bulb lobby is relatively powerless.

As the director of the Center for Climate Change Communication at George Mason University in Virginia, Edward Maibach has studied the diverse effects of environmental messaging. He is convinced that changing human behaviour isn't as challenging as many people — certainly many politicians — now believe.

He can tell you from his polling data that when people are asked about changing their behaviour and reducing energy use in response to climate change, 40 per cent of those surveyed report it had no negative impact on their lives — and 30 per cent actually say it improved their quality of life.

From this, he concludes that "there's a collectivist spirit out there that's waiting to be reactivated. People are waiting to be asked to sacrifice. By and large, politicians are fearful about doing the right thing about greenhouses gases because they think they'll be thrown out of office. Yet we've shown that for every one person who'll get upset if you reduce emissions, two and a half will stand up and applaud."

Political leaders who resist the gospel of self-sacrifice like to talk instead about lucrative opportunities — all those Obama-esque "green jobs" to be found in building solar panels and wind farms, retrofitting drafty houses and remaking cities for public transit while (bonus points here) ending dependence on foreign oil.

They don't bother pointing out that our democracy-driven tentativeness has allowed a more decisive China to begin setting itself up as the leading producer of wind energy, solar-panel equipment and electric vehicles.

While waiting for our politicians to see the light, Dr. Maibach encourages citizens to take actions that make green behaviour appear to be the rule, not the exception. Individuals will give up in despair if they think they're engaged in a thankless task of changing the world on their own.

Hope and optimism come from a public display of commitment — Dr. Maibach cites simple school-based programs where parents ask fellow parents not to idle their cars while waiting for their children, explain the reasoning behind their request and perhaps offer a stick-on decal to those who will take the non-idling pledge.

He says the public pledge by itself makes it three times more likely that potential do-gooders will follow through on their good intentions. And from creating that kind of group effect, it then becomes easier to change public policy. "Once you can develop this behaviour and show it to be the social norm, it enables politicians to change the laws more easily."

That is certainly a tactic the David Suzuki Foundation is turning to in its messaging, especially as the Stephen Harper government has shied away from a commitment to environmentalists' cause. The foundation aims to work with government in a non-partisan way, and yet Mr. Hoggan says that when he goes to Copenhagen, "I'm going to tell the media exactly what I think about our government's failure on climate change."

Though the Prime Minister purports to speak for Canada, polls show that a majority of Canadians want stronger action from the government, and this allows groups such as the David Suzuki Foundation to appropriate the Team Canada brand — drawing attention to the negative international response Canada's policies generate internationally (Canadians hate being seen as bad guys) while featuring concerned athletes on the Suzuki website who will challenge Conservative climate policies from an educated-jock perspective (global warming means cancelled ski races).

And thus the Canadian environmental movement, far from being marginal or radical, is seen at its most patriotic and mainstream.

All these feel-good tactics may be useful in garnering more widespread support. But will they genuinely be effective in combating climate change?

The Young Greens of the Green Party don't seem to think so. They recently mounted a more outraged and outrageous 1960s-style campaign, with the support of Green Party Leader Elizabeth May, that used the attention-getting slogan, "Your parents f*cked up the planet — it's time to do something about it. Live green, vote Green."

So it's not all happy faces out there. David McKnight, a journalism professor at the University of New South Wales, criticizes environmentalists for being "a rather elite movement, aimed at symbolic actions to attract media attention and at lobbying government."

He believes (and many in the environmental movement would agree) that the most effective messaging will come from a broader-based movement, similar to the anti-war campaign of the 1960s, that puts hundreds of thousands of people on the streets.

Milan Ilnyckyj, an Ottawa-based blogger on environmental issues, argues that there should be a greater focus on the issue of morality, which is to say immorality.

"If we can accept that climate change causes harm to current and future generations," he writes, "the argument that polluters have some right to keep behaving as they have in the past weakens considerably."

Echoing that thought, William Rees of the University of British Columbia's School of Community and Regional Planning suggests that the international community should develop ways to prosecute governments for criminal negligence on environmental issues.

Still, even this approach presupposes that science and politics in the end can speak the same language. And that's an assumption that doesn't sit well with Kevin DeLuca, a professor of communications at the University of Utah.

"The raison d'être of science is doubt," he says. "But doubt is fatal in politics." Doubt opens the doors for debate about climate change, and endless debate prolongs inaction indefinitely.

Environmentalists look for ways to appeal to a mass audience, and come up with an upbeat message about satisfying self-interest and feeling good. "And so you end up with a spirit-of-the-apocalypse message veiled in a 'don't worry, be happy' conclusion," Prof. DeLuca notes.

He has no confidence in such a contrivance and, unlike most environmentalists, he says he can't put on a happy face even if strategy seems to demand it.

"The problem with the happy-face message is that the future isn't going to be happy. The Earth can get along without people - people can't get along without the Earth."

But that's a message no one wants to hear.

Related News

Beating Covid Is All About Electricity

Hospital Electricity Reliability underpins ICU operations, ventilators, medical devices, and diagnostics, reducing power outages risks via grid power and backup generators, while energy poverty and blackouts magnify COVID-19 mortality in vulnerable regions.

 

Key Points

Hospital electricity reliability is steady power that keeps ICU care, ventilators and medical devices operating.

✅ ICU loads: ventilators, monitors, infusion pumps, diagnostics

✅ Grid power plus backup generators minimize outage risk

✅ Energy poverty increases COVID-19 mortality and infection

 

Robert Bryce, Contributor

During her three-year career as a registered nurse, my friend, C., has cared for tuberculosis patients as well as ones with severe respiratory problems. She’s now caring for COVID-19 patients at a hospital in Ventura County, California, where debates about keeping the lights on continue amid the state’s energy transition. Is she scared about catching the virus? “No,” she replied during a phone call on Thursday. “I’m pretty unflappable.”

What would scare her? She quickly replied, “a power outage,” a threat that grows during summer blackouts when heat waves drive demand. About a year ago, while working in Oregon, the hospital she was working in lost power for about 45 minutes. “It was terrifying,” she said. 

C., who wasn’t authorized by her hospital to talk to the media, and thus asked me to only use the initial of her first name, said that COVID-19 patients are particularly reliant on electrical devices. She quickly ticked off the machines: “The bed, the IV machine, vital signs monitor, heart monitor, the sequential compression devices...” COVID-19 patients are hooked up to a minimum of five electrical devices, she said, and if the virus-stricken patient needs high-pressure oxygen or a ventilator, the number of electrical devices could be two or three times that number. “You name it, it plugs in,” she said.  

Today In: Energy

The virus has infected some 2.2 million people around the world and killed more than 150,000,including more than 32,000 people here in the U.S. While those numbers are frightening, it is apparent that the toll would be far higher without adequate supplies of reliable electricity. Modern healthcare systems depend on electricity. Hospitals are particularly big consumers. Power demand in hospitals is about 36 watts per square meter, which is about six times higher than the electricity load in a typical American home, and utilities are turning to AI to adapt to electricity demands during surges. 

Beating the coronavirus is all about electricity. Indeed, nearly every aspect of coronavirus detection, testing, and treatment requires juice. Second, it appears that the virus is more deadly in places where electricity is scarce or unreliable. Finally, if there are power outages in virus hotspots or hospitals, a real risk in a grid with more blackouts than other developed countries, the damage will be even more severe. 

As my nurse friend in Ventura County made clear, her ability to provide high-quality care for patients is wholly dependent on reliable electricity. The thermometers used to check for fever are powered by electricity. The monitors she uses to keep track of her patients, as well as her Vocera, the walkie-talkie that she uses to communicate with her colleagues, runs on batteries. Testing for the virus requires electricity. One virus-testing machine, Abbott Labs’ m2000, is a 655-pound appliance that, according to its specification sheet, runs on either 120 or 240 volts of electricity. The operating manual for a ventilator made by Hamilton Medical is chock full of instructions relating to electricity, including how to manage the machine’s batteries and alarms. 

While it may be too soon to make a direct connection between lack of electricity and the lethality of the coronavirus, the early signs from the Navajo reservation indicate that energy poverty amplifies the danger. The sprawling reservation has about 175,000 residents, but it has a higher death toll from the virus than 13 states. About 10 percent of Navajos do not have electricity in their homes and more than 30 percent lack indoor plumbing. 

The death rate from the virus on the reservation now stands at 3.4 percent, which is nearly twice the global average. In the middle of last week, the entire population of Native American tribes in the U.S. accounted for about 1,100 confirmed cases of the virus and about 44 deaths. Navajos accounted for the majority of those, with 830 confirmed cases of coronavirus and 28 deaths. 

On Saturday night, the Navajo Times reported a major increase, with 1,197 positive cases of COVID-19 on the reservation and 44 deaths. Other factors may contribute to the high infection and mortality rates on the reservation, including  high rates of diabetes, obesity, and crowded residential living situations. That said, electricity and water are essential to good hygiene and health authorities say that frequent hand washing helps cut the risk of contracting the virus. 

The devastation happening on Navajoland provides a window into what may happen in crowded, electricity-poor countries like India, Pakistan, and Bangladesh. It also shows what could happen if a tornado or hurricane were to wipe out the electric grid in virus hotspots like New Orleans, as extreme weather increasingly afflicts the grid nationwide. Sure, most American hospitals have backup generators to help assure reliable power. But those generators can fail. Further, they usually burn diesel fuel which needs to be replenished every few days. 

The essential point here is that our hospitals and critical health care machines aren’t running on solar panels and batteries. Instead, they are running on grid power that’s being provided by reliable sources — coal, natural gas, hydro, and nuclear power — which together produce about 89 percent of the electricity consumed in this country, even as Russian hacking of utilities highlights cyber risks. The pandemic — which is inflicting trillions of dollars of damage on our economy and tens of thousands of deaths — underscores the criticality of abundant and reliable electricity to our society and the tremendous damage that would occur if our health care infrastructure were to be hit by extended blackouts during the fight to stop COVID-19.

In a follow-up interview on Saturday with my friend, C., she told me that while caring for patients, she and her colleagues “are entirely dependent on electricity. We take it for granted. It’s a hidden assumption in our work,” a reminder echoed by a grid report card that warns of dangerous vulnerabilities. She quickly added she and her fellow nurses “aren’t trained or equipped to deal with circumstances that would come with shoddy power. If we lost power completely, people will die.”

 

Related News

View more

NB Power launches public charging network for EVs

NB Power eCharge Network expands EV charging in New Brunswick with fast chargers, level 2 stations, Trans-Canada Highway coverage, and green infrastructure, enabling worry-free electric vehicle travel and lower emissions across the province.

 

Key Points

NB Power eCharge Network is a provincewide EV charging system with fast and level 2 stations for reliable travel.

✅ 15 fast-charging sites on Trans-Canada and northern New Brunswick

✅ Level 2 stations at highways, municipalities, and businesses

✅ 20-30 minute DC fast charging; cut emissions ~80% and fuel ~75%

 

NB Power announced Friday the eCharge Network, the province’s first electric vehicle charging network aimed at giving drivers worry-free travel everywhere in the province.

The network includes 15 locations along the province’s busiest highways where both fast-chargers and level-2 chargers will be available. In addition, nine level-2 chargers are already located at participating municipalities and businesses throughout the province. The new locations will be installed by the end of 2017.

NB Power is working with public and private partners to add to the network to enable electric vehicle owners to drive with confidence and to encourage others to make the switch from gas to electric vehicles, supported by a provincial rebate program now available.

“We are incredibly proud to offer our customers and visitors to New Brunswick convenient charging with the launch of our eCharge Network,” said Gaëtan Thomas, president and CEO of NB Power. “Our goal is to make it easy for owners of electric vehicles to drive wherever they choose in New Brunswick, and to encourage more drivers to consider an electric vehicle for their next purchase.”

An electric vehicle owner in New Brunswick can shrink their vehicle carbon footprint by about 80 per cent while reducing their fuel-related costs by about 75 per cent, according to NB Power, and broader grid benefits are being explored through Nova Scotia's vehicle-to-grid pilot across the region.

In addition to the network of standard charging stations, the eCharge network will also include 400 volt fast-charging stations along the Trans-Canada Highway and in the northern parts of New Brunswick. The first of their kind in New Brunswick, these 15 fast-charging stations, similar to Newfoundland and Labrador's newly completed fast-charging network connecting communities, will enable all-electric vehicles to recharge in as little as 20 to 30 minutes. Fast-charge sites will include standard level-2 stations for both battery electric vehicles and plug-in hybrids.

NB Power will install fast-charge and level-2 sites at five locations throughout northern New Brunswick, addressing northern coverage challenges seen elsewhere, such as Labrador's infrastructure gaps today, which will be cost-shared with government. Locations include the areas of Saint-Quentin/Kedgwick, Campbellton, Bathurst, Tracadie, and Miramichi.

“Our government understands that embracing the green economy and reducing our carbon footprint is a priority for New Brunswickers,” said Environment and Local Government Minister Serge Rousselle. “Our climate change action plan calls for a collaborative approach to creating the strategic infrastructure to support electric vehicles throughout all regions in the province, and we are pleased to see this important step underway. New Brunswickers will now have the necessary network to adopt new methods of transportation and contribute to our provincial plan to increase the number of electric vehicles on the road and will help meet emission reduction targets as we work to combat climate change.”

An investment of $500,000 from Natural Resources Canada will go towards purchasing and installing the charging stations for the 10 fast-charging stations along the Trans-Canada Highway.

“The eCharge Network will make it easier for Canadians to choose cleaner options and helps put New Brunswick’s transportation system on a path to a lower-carbon future,” said Moncton-Riverview-Dieppe MP Ginette Petitpas Taylor. “The Government of Canada continues to support green infrastructure in the transportation sector that will advance Canada’s efforts to build a clean economy, create well-paying jobs, and achieve our climate change goals.”

Petitpas Taylor attended for federal Natural Resources Minister Jim Carr.

Fast chargers are being installed at the following locations along the Trans-Canada Highway across New Brunswick:

– Irving Big Stop, Aulac

– Edmundston Truck Stop

– Irving Big Stop, Saint-André

– Johnson Guardian, Perth-Andover

– Murray’s Irving, Woodstock

– Petro-Canada / Acorn Restaurant, Prince William

– Irving Big Stop, Waasis

 

Related News

View more

Berlin Geothermal Plant in El Salvador Set to Launch This Year

El Salvador Geothermal Expansion boosts renewable energy with a 7 MW Berlin binary ORC plant, upgrades at Ahuachapan, and pipeline projects, strengthening clean power capacity, grid reliability, and sustainable growth in Central America.

 

Key Points

A national push adding binary-cycle capacity at Berlin and Ahuachapan, boosting geothermal supply and advancing sites.

✅ 7 MW Berlin binary ORC plant entering service.

✅ Ahuachapan upgrade adds 2 MW, total geothermal 204 MW.

✅ Next: Chinameca, San Miguel, San Vicente, World Bank backed.

 

El Salvador is set to expand its renewable energy capacity with the inauguration of the 7-MW Berlin binary geothermal power plant, slated to go online later this year. This new addition marks a significant milestone in the country’s geothermal energy development, highlighting its commitment to sustainable energy solutions. The plant, which has already been installed and is currently undergoing testing, is expected to boost the nation’s geothermal capacity, contributing to its growing renewable energy portfolio.

The Role of Geothermal Energy in El Salvador’s Energy Mix

Geothermal energy plays a pivotal role in El Salvador's energy landscape. With the combined output from the Ahuachapan and Berlin geothermal plants, geothermal energy now accounts for about 21% of the country's net electricity supply. This makes geothermal the second-largest source of energy generation in El Salvador, underscoring its importance as a reliable and sustainable energy resource alongside emerging options like advanced nuclear microreactor technologies in the broader low-carbon mix.

In addition to the Berlin plant, El Salvador has made significant improvements to its Ahuachapan geothermal power plant. Recent upgrades have increased its generation capacity by 2 MW, further enhancing the country’s geothermal energy output. Together, the Ahuachapan and Berlin plants bring the total installed geothermal capacity to 204 MW, positioning El Salvador as a regional leader in geothermal energy development.

The Berlin Binary Geothermal Plant: A Technological Milestone

The Berlin binary geothermal power plant is especially noteworthy for several reasons. It is the first geothermal power plant to be constructed in El Salvador since 2007, marking a significant step in the country's ongoing efforts to expand its renewable energy infrastructure while reinforcing attention to risk management in light of Hawaii geothermal safety concerns reported elsewhere. The plant utilizes a binary cycle geothermal system, which is known for its efficiency in extracting energy from lower temperature geothermal resources, making it an ideal solution for regions like Berlin, where geothermal resources are abundant but at lower temperatures.

The plant was built by Turboden, an Italian company specializing in organic Rankine cycle (ORC) technology. The binary cycle system operates by transferring heat from the geothermal fluid to a secondary fluid, which then drives a turbine to generate electricity. This system allows for the efficient use of geothermal resources that might otherwise be too low in temperature for traditional geothermal plants, enabling pairing with thermal storage demonstration solutions to optimize output.

Future Geothermal Developments in El Salvador

El Salvador is not stopping with the Berlin geothermal plant. The country is actively working on other geothermal projects, including those in Chinameca, San Miguel, and San Vicente. These developments are expected to add 50 MW of additional capacity in their first phase, reflecting a broader shift as countries pursue hydrogen-ready power plants to reduce emissions, with a second phase, supported by the World Bank, planned to add another 100 MW.

The Chinameca, San Miguel, and San Vicente projects represent the next wave of geothermal development in El Salvador. When completed, these plants will significantly increase the country’s geothermal capacity, further diversifying its energy mix and reducing reliance on fossil fuels, and will require ongoing grid upgrades, a task complicated elsewhere by Germany grid expansion challenges highlighted in Europe.

International Support and Collaboration

El Salvador’s geothermal development efforts are supported by various international partners, including the World Bank, which has been instrumental in financing the expansion of geothermal projects, as utilities such as SaskPower geothermal plans in Canada explore comparable pathways. This collaboration highlights the global recognition of El Salvador’s potential in geothermal energy and its efforts to position itself as a hub for geothermal energy development in Central America.

Additionally, the country’s expertise in geothermal energy, especially in binary cycle technology, has attracted international attention. El Salvador’s progress in the geothermal sector could serve as a model for other countries in the region that are looking to harness their geothermal resources to reduce energy costs and promote sustainable energy development.

The upcoming launch of the Berlin binary geothermal power plant is a testament to El Salvador’s commitment to sustainable energy. As the country continues to expand its geothermal capacity, it is positioning itself as a leader in renewable energy in the region. The binary cycle technology employed at the Berlin plant not only enhances energy efficiency but also demonstrates El Salvador’s ability to adapt and innovate within the renewable energy sector.

With the continued development of projects in Chinameca, San Miguel, and San Vicente, and ongoing international collaboration, El Salvador’s geothermal energy sector is set to play a crucial role in the country’s energy future. As global demand for clean energy grows, exemplified by U.S. solar capacity additions this year, El Salvador’s investments in geothermal energy are helping to build a more sustainable, resilient, and energy-independent future.

 

Related News

View more

Ontario Government Consults On Changes To Industrial Electricity Pricing And Programs

Ontario electricity pricing consultations will gather business input on OEB rate design, Industrial Conservation Initiative, dynamic pricing, global adjustment, and system costs through online feedback and sector-specific in-person sessions province-wide.

 

Key Points

Consultations gathering business input on rates, programs, and OEB policy to improve fairness and reduce system costs.

✅ Consults on ICI, GA, dynamic pricing structures

✅ Seeks views on OEB C&I rate design changes

✅ In-person sessions across key industrial sectors

 

The Ontario government has announced plans to hold consultations to seek input from businesses about industrial electricity pricing and programs. This will be done through Ontario's online consultations directory and though in-person sector-specific consultation sessions across the province. The in-person sessions will be held in all areas of Ontario, and will target "key industries," including automotive and the build-out of electric vehicle charging stations infrastructure, forestry, mining, agriculture, steel, manufacturing and chemicals.

On April 1, 2019, the Ontario government published a consultation notice for this process, confirming that it is looking for input on "electricity rate design, existing tax-based incentives, reducing system costs and regulatory and delivery costs," including related proposals such as the hydrogen rate reduction proposal under discussion. The consultation process includes a list of nine questions for respondents (and presumably participants in the in-person sessions) to address. These include questions about:

The benefits of the Industrial Conservation Initiative (described below), including how it could be changed to improve fairness and industrial competitiveness, and how it could complement programs like the Hydrogen Innovation Fund that support industrial innovation.

Dynamic pricing structures that allow for lower rates in return for responding to price signals versus a flat rate structure that potentially costs more, but is more stable and predictable, as Ontario's energy storage expansion accelerates.

Interest in an all-in commodity contract with an electricity retailer, even if it involves a risk premium.

Interested parties are invited to submit their comments before May 31, 2019.

The government's consultation announcement follows recent developments in the Ontario Energy Board's (OEB) review of electricity ratemaking for commercial and industrial customers, and intertie projects such as the Lake Erie Connector that could affect market dynamics.

In December 2018, the OEB published a paper from its Market Surveillance Panel (MSP) examining the Industrial Conservation Initiative (ICI), and potential alternative approaches. The ICI is a program that allows qualifying large industrial customers to base their global adjustment (GA) payments on their consumption during five peak demand hours in a year. Customers who find ways to reduce consumption at those times, perhaps through DERs and enabling energy storage options, will reduce their electricity costs. This shifts GA costs to other customers. The MSP found that the ICI does not fairly allocate costs to those who cause them and/or benefit from them, and recommends that a better approach should be developed.

In February 2019, the OEB released its Staff Report to the Board on Rate Design for Commercial and Industrial Electricity Customers, setting out recommendations for new rate designs for electricity commercial and industrial (C&I) rate classes as Ontario increasingly turns to battery storage to meet rising demand. As described in an earlier post, the Staff Report includes recommendations to: (i) establish a fixed distribution charge for commercial customers with demands under 10 kW; (ii) implement a demand charge (rather than the current volumetric charge) for C&I customers with demands between 10kW and 50kW; and (iii) introduce a "capacity reserve charge" for customers with load displacement generation to replace stand-by charges and provide for recognition of the benefits of this generation on the system. The OEB held a stakeholder information session in mid-March on this initiative, and interested parties are now filing submissions in response to the Staff Report.

Whether and how the OEB's processes will fit together with the government's consultation process remains to be seen.

 

Related News

View more

Solar Plus Battery Storage Cheaper Than Conventional Power in Germany

Germany Solar-Plus-Storage Cost Parity signals grid parity as solar power with battery storage undercuts conventional electricity. Falling LCOE, policy incentives, and economies of scale accelerate the energy transition and decarbonization across Germany's power market.

 

Key Points

The point at which solar power with battery storage is cheaper than conventional grid electricity across Germany.

✅ Lower LCOE from tech advances and economies of scale

✅ EEG incentives and streamlined installs cut total costs

✅ Enhances energy security, reduces fossil fuel dependence

 

Germany, a global leader in renewable energy adoption, with clean energy supplying about half of its electricity in recent years, has reached a significant milestone: the cost of solar power combined with battery storage has now fallen below that of conventional electricity sources. This development marks a transformative shift in the energy landscape, showcasing the increasing affordability and competitiveness of renewable energy technologies and reinforcing Germany’s position as a pioneer in the transition to sustainable energy.

The decline in costs for solar power paired with battery storage represents a breakthrough in Germany’s energy sector, especially amid the recent solar power boost during the energy crisis, where the transition from traditional fossil fuels to cleaner alternatives has been a central focus. Historically, conventional power sources such as coal, natural gas, and nuclear energy have dominated electricity markets due to their established infrastructure and relatively stable pricing. However, the rapid advancements in solar technology and energy storage solutions are altering this dynamic, making renewable energy not only environmentally preferable but also economically advantageous.

Several factors contribute to the cost reduction of solar power with battery storage:

  1. Technological Advancements: The technology behind solar panels and battery storage systems has evolved significantly over recent years. Solar panel efficiency has improved, allowing for greater energy generation from smaller installations. Similarly, cheaper batteries have advanced, with reductions in cost and increases in energy density and lifespan. These improvements mean that solar installations can produce more electricity and store it more effectively, enhancing their economic viability.

  2. Economies of Scale: As demand for solar and battery storage systems has grown, manufacturers have scaled up production, leading to economies of scale. This scaling has driven down the cost of both solar panels and batteries, making them more affordable for consumers. As the market for these technologies expands, prices are expected to continue decreasing, further enhancing their competitiveness.

  3. Government Incentives and Policies: Germany’s commitment to renewable energy has been supported by robust government policies and incentives. The country’s Renewable Energy Sources Act (EEG) and other supportive measures, alongside efforts to remove barriers to PV in Berlin that could accelerate adoption, have provided financial incentives for the adoption of solar power and battery storage. These policies have encouraged investment in renewable technologies and facilitated their integration into the energy market, contributing to the overall reduction in costs.

  4. Falling Installation Costs: The cost of installing solar power systems and battery storage has decreased as the industry has matured. Advances in installation techniques, increased competition among service providers, and streamlined permitting processes have all contributed to lower installation costs. This reduction in upfront expenses has made solar with battery storage more accessible and financially attractive to both residential and commercial consumers.

The economic benefits of solar power with battery storage becoming cheaper than conventional power are substantial. For consumers, this shift translates into lower electricity bills and reduced reliance on fossil fuels. Solar installations with battery storage allow households and businesses to generate their own electricity, store it for use during times of low sunlight, and even sell excess power back to the grid, reflecting how solar is reshaping electricity prices in Northern Europe as markets adapt. This self-sufficiency reduces exposure to fluctuating energy prices and enhances energy security.

For the broader energy market, the decreasing cost of solar power with battery storage challenges the dominance of conventional power sources. As renewable energy becomes more cost-effective, it creates pressure on traditional energy providers to adapt and invest in cleaner technologies, including responses to instances of negative electricity prices during renewable surpluses. This shift can accelerate the transition to a low-carbon energy system and contribute to the reduction of greenhouse gas emissions.

Germany’s achievement also has implications for global energy markets. The country’s success in making solar with battery storage cheaper than conventional power serves as a model for other nations pursuing similar energy transitions. As the cost of renewable technologies continues to decline, other countries can leverage these advancements to enhance their own energy systems, reduce carbon emissions, and achieve energy independence amid over 30% of global electricity now from renewables trends worldwide.

The impact of this development extends beyond economics. It represents a significant step forward in addressing climate change and promoting sustainability. By reducing the cost of renewable energy technologies, Germany is accelerating the shift towards a cleaner and more resilient energy system. This progress aligns with the country’s ambitious climate goals and reinforces its role as a leader in global efforts to combat climate change.

Looking ahead, several challenges remain. The integration of renewable energy into existing energy infrastructure, grid stability, and the management of energy storage are all areas that require continued innovation and investment. However, the decreasing cost of solar power with battery storage provides a strong foundation for addressing these challenges and advancing the transition to a sustainable energy future.

In conclusion, the fact that solar power with battery storage in Germany has become cheaper than conventional power is a groundbreaking development with wide-ranging implications. It underscores the technological advancements, economic benefits, and environmental gains associated with renewable energy technologies. As Germany continues to lead the way in clean energy adoption, this achievement highlights the potential for renewable energy to drive global change and reshape the future of energy.

 

Related News

View more

Electric Ferries Power Up B.C. with CIB Help

BC Ferries Electrification accelerates zero-emission vessels, Canada Infrastructure Bank financing, and fast charging infrastructure to cut greenhouse gas emissions, lower operating costs, and reduce noise across British Columbia's Island-class routes.

 

Key Points

BC Ferries Electrification is the plan to deploy zero-emission ferries and charging, funded by CIB, to reduce emissions.

✅ $75M CIB loan funds four electric ferries and chargers

✅ Cuts 9,000 tonnes CO2e annually on short Island-class routes

✅ Quieter service, lower operating costs, and redeployed hybrids

 

British Columbia is taking a significant step towards a cleaner transportation future with the electrification of its ferry fleet. BC Ferries, the province's ferry operator, has secured a $75 million loan from the Canada Infrastructure Bank (CIB) to fund the purchase of four zero-emission ferries and the necessary charging infrastructure to support them.

This marks a turning point for BC Ferries, which currently operates a fleet reliant on diesel fuel. The new Island-class electric ferries will be deployed on shorter routes, replacing existing hybrid ships on those routes. These hybrid ferries will then be redeployed on routes that haven't yet been converted to electric, maximizing their lifespan and efficiency.

Environmental Benefits

The transition to electric ferries is expected to deliver significant environmental benefits. The new vessels are projected to eliminate an estimated 9,000 tonnes of greenhouse gas emissions annually, and electric ships on the B.C. coast already demonstrate similar gains, contributing to British Columbia's ambitious climate goals. Additionally, the quieter operation of electric ferries will create a more pleasant experience for passengers and reduce noise pollution for nearby communities.

Economic Considerations

The CIB loan plays a crucial role in making this project financially viable. The low-interest rate offered by the CIB will help to keep ferry fares more affordable for passengers. Additionally, the long-term operational costs of electric ferries are expected to be lower than those of diesel-powered vessels, providing economic benefits in the long run.

Challenges and Opportunities

While the electrification of BC Ferries is a positive development, there are some challenges to consider. The upfront costs of electric ferries and charging infrastructure are typically higher than those of traditional options, though projects such as the Kootenay Lake ferry show growing readiness. However, advancements in battery technology are constantly lowering costs, making electric ferries a more cost-effective choice over time.

Moreover, the transition presents opportunities for job creation in the clean energy sector, with complementary initiatives like the hydrogen project broadening demand. The development, construction, and maintenance of electric ferries and charging infrastructure will require skilled workers, potentially creating a new avenue for economic growth in British Columbia.

A Pioneering Example

BC Ferries' electrification initiative sets a strong precedent for other ferry operators worldwide, including Washington State Ferries pursuing hybrid-electric upgrades. This project demonstrates the feasibility and economic viability of transitioning to cleaner marine transportation solutions. As battery technology and charging infrastructure continue to develop, we can expect to see more widespread adoption of electric ferries across the globe.

The collaboration between BC Ferries and the CIB paves the way for a greener future for BC's transportation sector, where efforts like Harbour Air's electric aircraft complement marine electrification. With cleaner air, quieter operation, and a positive impact on climate change, this project is a win for the environment, the economy, and British Columbia as a whole.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified