GEH introduces ESBWRs in India

INDIA - GE Hitachi Nuclear Energy Incorporated (GEH), a global nuclear power reactor manufacturing company, recently announced that it intends to introduce the 1,520-megawatt (MW) Generation III+ Economic Simplified Boiling Water Reactor (ESBWR) in India's upcoming atomic power projects.

According to Jack Fuller, the president and chief executive officer of GEH, projects developed in India would have a localization factor of about 65% after the first set of reactors begins operations in the country. India also could be used as a manufacturing base for parts and components for new reactor orders across the region.

The primary new generation reactor of GEH is the 1,350-MW Advanced Boiling Water Reactor (ABWR), but that is unlikely to be introduced in India since the reactor is largely assembled in Japan, which has no active civil nuclear pacts with India, making such a transaction difficult. However, the new ESBWR will be developed almost completely in the United States, and there should be no problems in using the technology in India if the design clearances are obtained.

GEH submitted its revised design documents for clearance to the U.S. nuclear regulator in September 2009, and the clearances are expected to require about 18 months to come through.

Fuller said that the design of the ESBWR incorporates an increased capacity factor and simpler systems, which translate to 35% to 40% lower operating and maintenance costs per kilowatt-hour (kWh). The ESBWR is a Generation III+ reactor and builds on GEH's existing boiling water reactors (BWRs). The advanced safety and cost-saving features in the reactor's design are expected to facilitate widespread use of the reactor.

The new reactor's features include faster construction time and the ability to provide higher safety, better economics, higher operational flexibility, and more location options. Some of the featured benefits of the reactor include the capacity to remove residual heat from the system to the atmosphere in a passive way, the elimination of 11 systems in comparison to earlier BWR designs, and a 25% reduction in the requirement of pumps, motors and valves.

The Indian government has earmarked two sites for reactor vendors from the U.S.: Chhayamithi Virdi in the western coast of Gujarat, and Kovvada in the eastern coast of Andhra Pradesh. Fuller says that while GEH is satisfied with both sites, the location in Gujarat is highly favored by his company's engineers because of some technical parameters. The other U.S. company in contention for the sites is Westinghouse.

India is working on plans to ramp up its nuclear power capacity almost tenfold over the next decade. While indigenous Pressurized Heavy Water Reactors of 700 MW each would account for about 20% of the total nuclear power capacity, the rest would be accounted for by 1,000-MW to 1,650-MW Light Water Reactors from France, Russia and the U.S. Each of the new ESBWR reactor units is expected to take about six years to complete. Work on the first pair of units is expected to begin in 2012.

Related News

power lines

Competition in Electricity Has Been Good for Consumers and Good for the Environment

WASHINGTON - By Bernard L. Weinstein

Electricity used to be boring.  Public utilities that provided power to homes and businesses were regulated monopolies and, by law, guaranteed a fixed rate-of-return on their generation, transmission, and distribution assets. Prices per kilowatt-hour were set by utility commissions after lengthy testimony from power companies, wanting higher rates, and consumer groups, wanting lower rates.

About 25 years ago, the electricity landscape started to change as economists and others argued that competition could lead to lower prices and stronger grid reliability. Opponents of competition argued that consumers weren’t knowledgeable enough about power markets to make intelligent choices…

READ MORE

Group to create Canadian cyber standards for electricity sector IoT devices

READ MORE

ev charging station

Electric Utilities Plot Bullish Course for EV Charging Infrastructure

READ MORE

climate change denial

$1 billion per year is being spent to support climate change denial

READ MORE

electricity consumption graph

Americans Keep Using Less and Less Electricity

READ MORE