Power plant to be fueled by wood waste

By Poten & Partners


High Voltage Maintenance Training Online

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
A $250-million electric power plant, fueled by wood waste, is being planned in Shelton by a consortium of companies.

The 55-megawatt plant is large enough to serve 40,000 average homes, according to Jarret Adams, media representative for Areva, Inc., an energy firm involved in the joint venture.

The plant will be fueled with 500,000 to 600,000 tons of green wood waste each year, Adams said. Agreements for feedstock are being worked out with area timber companies, but contracts have not yet been signed.

Agreements also need to be completed for selling the energy produced, and environmental permits must be completed before construction can begin.

"When we announce these things, we have a fairly high level of confidence that they will go forward," Adams said. "Of course, you can't say anything definitely."

The company in charge of the project is called Adage, owned 50-50 by Areva and Duke Energy. Also involved in the project is John Deere, which has already developed special equipment for bundling and stacking the wood waste for delivery to the plant.

Areva has more than 100 nuclear reactors in operation or under construction worldwide. Duke is one of the largest power companies in the U.S., serving some 4 million customers nationwide, mainly in the Midwest and Carolinas.

The joint venture is planning two nearly identical plants in Florida, with the Shelton plant also based on the standard design. It would use a "fluidized bed combustion" process that suspends material for more efficient burning. The heat is used to create steam to run turbines. The control system is designed to minimize air emissions and water usage.

"There are a few odd biomass plants around, but nothing like what we're doing here — building a fleet of carbon-copy plants," Adams said. "It is also unique to have two major energy companies behind them."

Biomass is considered renewable energy, and energy from the new plant could help a utility meet a state requirement that 15 percent of its energy come from renewable sources by 2020. Biomass is considered renewable — even though burning releases carbon dioxide — because an equivalent amount of carbon is locked up by growing trees and other plants.

Unlike wind and solar power plants, biomass plants have the capability to operate around the clock, day after day, no matter the weather conditions, Adams said.

During the 2 1/2-year construction period for the Shelton plant, about 700 direct and indirect jobs may be created, Adams said.

In Florida, a similar plant in Hamilton County is expected to be under construction in a few months, he noted, placing it slightly ahead of the Shelton plant. In Gadsden County, Fla., a similar plant is in the initial stages of planning.

Related News

Ontario’s Electricity Future: Balancing Demand and Emissions 

Ontario Electricity Transition faces surging demand, GHG targets, and federal regulations, balancing natural gas, renewables, battery storage, and grid reliability while pursuing net-zero by 2035 and cost-effective decarbonization for industry, EVs, and growing populations.

 

Key Points

Ontario Electricity Transition is the province's shift to a reliable, low-GHG grid via renewables, storage, and policy.

✅ Demand up 75% by 2050; procurement adds 4,000 MW capacity.

✅ Gas use rises to 25% by 2030, challenging GHG goals.

✅ Tripling wind and solar with storage can cut costs and emissions.

 

Ontario's electricity sector stands at a pivotal crossroads. Once a leader in clean energy, the province now faces the dual challenge of meeting surging demand while adhering to stringent greenhouse gas (GHG) reduction targets. Recent developments, including the expansion of natural gas infrastructure and proposed federal regulations, have intensified debates about the future of Ontario's energy landscape, as this analysis explains in detail.

Rising Demand and the Need for Expansion

Ontario's electricity demand is projected to increase by 75% by 2050, equivalent to adding four and a half cities the size of Toronto to the grid. This surge is driven by factors such as industrial electrification, population growth, and the transition to electric vehicles. In response, as Ontario confronts a looming shortfall in the coming years, the provincial government has initiated its most ambitious energy procurement plan to date, aiming to secure an additional 4,000 megawatts of capacity by 2030. This includes investments in battery storage and natural gas generation to ensure grid reliability during peak demand periods.

The Role of Natural Gas: A Controversial Bridge

Natural gas has become a cornerstone of Ontario's strategy to meet immediate energy needs. However, this reliance comes with environmental costs. The Independent Electricity System Operator (IESO) projects that by 2030, natural gas will account for 25% of Ontario's electricity supply, up from 4% in 2017. This shift raises concerns about the province's ability to meet its GHG reduction targets and to embrace clean power in practice. 

The expansion of gas-fired plants, including broader plans for new gas capacity, such as the Portlands Energy Centre in Toronto, has sparked public outcry. Environmental groups argue that these expansions could undermine local emissions reduction goals and exacerbate health issues related to air quality. For instance, emissions from the Portlands plant have surged from 188,000 tonnes in 2017 to over 600,000 tonnes in 2021, with projections indicating a potential increase to 1.65 million tonnes if the expansion proceeds as planned. 

Federal Regulations and Economic Implications

The federal government's proposed clean electricity regulations aim to achieve a net-zero electricity sector by 2035. However, Ontario's government has expressed concerns that these regulations could impose significant financial burdens. An analysis by the IESO suggests that complying with the new rules would require doubling the province's electricity generation capacity, potentially adding $35 billion in costs by 2050, while other estimates suggest that greening Ontario's grid could cost $400 billion over time. This could result in higher residential electricity bills, ranging from $132 to $168 annually starting in 2033.

Pathways to a Sustainable Future

Experts advocate for a diversified approach to decarbonization that balances environmental goals with economic feasibility. Investments in renewable energy sources, such as new wind and solar resources, along with advancements in energy storage technologies, are seen as critical components of a sustainable energy strategy. Additionally, implementing energy efficiency measures and modernizing grid infrastructure can enhance system resilience and reduce emissions. 

The Ontario Clean Air Alliance proposes phasing out gas power by 2035 through a combination of tripling wind and solar capacity and investing in energy efficiency and storage solutions. This approach not only aims to reduce emissions but also offers potential cost savings compared to continued reliance on gas-fired generation. 

Ontario's journey toward a decarbonized electricity grid is fraught with challenges, including balancing reliability, clean, affordable electricity, and environmental sustainability. While natural gas currently plays a significant role in meeting the province's energy needs, its long-term viability as a bridge fuel remains contentious. The path forward will require careful consideration of technological innovations, regulatory frameworks, and public engagement to ensure a clean, reliable, and economically viable energy future for all Ontarians.

 

 

Related News

View more

China aims to reduce coal power production

China Coal-Fired Power Consolidation targets capacity cuts through mergers, SASAC-led restructuring, debt reduction, asset optimization, and retiring inefficient plants across state-owned utilities to improve efficiency, stabilize liabilities, and align with energy transition policies.

 

Key Points

A SASAC-driven plan merging utility assets to cut coal capacity, reduce debt, and retire outdated, loss-making plants.

✅ Merge five central utilities' coal assets to streamline operations

✅ Target 25-33% capacity cuts and >50% loss reduction by 2021

✅ Prioritize debt-ridden regions: Gansu, Shaanxi, Xinjiang, Qinghai, Ningxia

 

China plans to slash coal-fired power capacity at its five biggest utilities by as much as a third in two years by merging their assets, amid broader power-sector strains that reverberate globally, according to a document seen by Reuters and four sources with knowledge of the matter.

The move to shed older and less-efficient capacity is being driven by pressure to cut heavy debt levels at the utilities. China, is, however, building more coal-fired power plants and approving dozens of new mines to bolster a slowing economy, even as recent power cuts highlight grid imbalances.

The five utilities, which are controlled by the central government, accounted for around 44% of China’s total coal-fired power capacity at the end of 2018, a share likely to be tested by rising electrification goals, with electricity to meet 60% by 2060 according to industry forecasts.

“(The utilities) will strive to reduce coal-fired power capacity by one quarter to one third ...cutting total losses by more than 50% from the current level to achieve a significant decline in debt-to-asset ratios by the end of 2021,” the document said.

The plan, initiated and overseen by the State-owned Assets Supervision and Administration Commission of the State Council (SASAC), follows heavy losses at some of the utilities, amid a pandemic-era demand drop that hit industrial consumption.

Some of their coal-fired power stations have filed for bankruptcy in recent years as Beijing promotes the use of renewable energy and advances its nuclear program while opening up the state-controlled power market.

The SASAC did not immediately respond to a fax seeking comment and the sources declined to be identified as they were not authorised to speak to the media.

The utilities - China Huaneng Group Co, China Datang Corp, China Huadian Corp, State Power Investment Corp and China Energy Group - did not respond to faxes requesting comment.

Together, they had 474 coal-fired power plants with combined power generation capacity of 520 gigawatts (GW) at the end of last year.

Their coal-fired power assets came to 1.5 trillion yuan ($213 billion) while total coal-fired power liabilities were 1.1 trillion yuan, the document said.

The document was seen by two people at two of the utilities and was also verified by a source at SASAC and a government researcher.

It was not clear when the document was published but it said the merging and elimination of outdated capacity would start from 2019 and be achieved within three years, aiming to improve the efficiency and operations at the companies, reflecting a broader electricity sector mystery that policymakers are trying to resolve.

Utilities with debt-ridden operations in the northwestern regions of Gansu, Shaanxi, Xinjiang, Qinghai and Ningxia would be the first to carry out the plan, it said, even as India ration coal supplies during demand surges.

The government researcher said the SASAC has been researching possible consolidation in the coal-fired power sector since 2017, but added: “It’s easier said than done.”

“No one is willing to hand in their high quality assets and there is no point in merging the bad assets,” the government researcher said.

 

Related News

View more

Bangladesh develops nuclear power with IAEA Assistance

Bangladesh Rooppur Nuclear Power Plant advances nuclear energy with IAEA support and ROSATOM construction, boosting energy security, baseload capacity, and grid reliability; 2400 MW units aid development, regulatory compliance, and newcomer infrastructure milestones.

 

Key Points

A 2400 MW nuclear project in Rooppur, built with IAEA guidance and ROSATOM, to boost Bangladesh's reliable power.

✅ Two units totaling 2400 MW for stable baseload supply

✅ IAEA Milestones and INIR reviews guide safe deployment

✅ ROSATOM builds; national regulator strengthens oversight

 

The beginning of construction at Bangladesh’s first nuclear power reactor on 30 November 2017 marked a significant milestone in the decade-long process to bring the benefits of nuclear energy to the world’s eighth most populous country. The IAEA has been supporting Bangladesh on its way to becoming the third ‘newcomer’ country to nuclear power in 30 years, following the United Arab Emirates in 2012 and Belarus in 2013.

Bangladesh is in the process of implementing an ambitious, multifaceted development programme to become a middle-income country by 2021 and a developed country by 2041. Vastly increased electricity production, with the goal of connecting 2.7 million more homes to the grid by 2021, is a cornerstone of this push for development, and nuclear energy will play a key role in this area, said Mohammad Shawkat Akbar, Managing Director of Nuclear Power Plant Company Bangladesh Limited. Bangladesh is also working to diversify its energy supply to enhance energy security, reduce its dependence on imports and on its limited domestic resources, he added.

#google# In the region, India's nuclear program is taking steps to get back on track, underscoring broader momentum.

“Bangladesh is introducing nuclear energy as a safe, environmentally friendly and economically viable source of electricity generation,” said Akbar.  The plant in Rooppur, 160 kilometres north-west of Dhaka, will consist of two units, with a combined power capacity of 2400 MW(e). It is being built by a subsidiary of Russia’s State Atomic Energy Corporation ROSATOM. The first unit is scheduled to come online in 2023 and the second in 2024, reflecting progress similar to the UK's latest nuclear power station developments.  “This project will enhance the development of the social, economic, scientific and technological potential of the country,” Akbar said.

The country’s goal of increased electricity production via nuclear energy will soon be a reality, Akbar said. “For 60 years, Bangladesh has had a dream of building its own nuclear power plant. The Rooppur Nuclear Power Plant will provide not only a stable baseload of electricity, but it will enhance our knowledge and allow us to increase our economic efficiency.

 

Milestones for nuclear

Bangladesh is among around 30 countries that are considering, planning or starting the introduction of nuclear power, with milestones at nuclear projects worldwide offering context for this progress. The IAEA assists them in developing their programmes through the Milestones Approach — a methodology that provides guidance on working towards the establishment of nuclear power in a newcomer country, including the associated infrastructure. It focuses on pointing out gaps, if any, in countries’ progress towards the introduction of nuclear power.

The IAEA has been supporting Bangladesh in developing its nuclear power infrastructure, including in establishing a regulatory framework and developing a radioactive waste-management system. This support has been delivered under the IAEA technical cooperation programme and is partially funded through the Peaceful Uses Initiative.

Nuclear infrastructure is multifaceted, containing governmental, legal, regulatory and managerial components, in addition to the physical infrastructure. The Milestones Approach consists of three phases, with a milestone to be reached at the end of each.

The first phase involves considerations before a decision is taken to start a nuclear power programme and concludes with the official commitment to the programme. The second phase entails preparatory work for the contracting and construction of a nuclear power plant, as seen in Bulgaria's nuclear project planning, ending with the commencement of bids or contract negotiations for the construction. The final phase includes activities to implement the nuclear power plant, such as the final investment decision, contracting and construction. The duration of these phases varies by country, but they typically take between 10 and 15 years.

“The IAEA Milestones Approach is a guiding document and the Integrated Work Plan (IWP) is the important means of bringing all of the stakeholders in Bangladesh together to ensure the fulfilment of all safety, security, and safeguards requirements of the Rooppur NPP project,” said Akbar. “This IWP enabled Bangladesh to develop a holistic approach to implementing IAEA guidance as well as cooperating with national stakeholders and other bilateral partners towards the development of a national nuclear power programme.”

When completed, the two units of the Rooppur Nuclear Power Plant will have a combined power capacity of 2400 MW(e). (Photo: Arkady Sukhonin/Rosatom)

 

INIR Mission

The Integrated Nuclear Infrastructure Review (INIR) is a holistic peer review to assist Member States in assessing the status of their national infrastructure for introducing nuclear power. The IAEA completed its first INIR mission to Bangladesh in November 2011, making recommendations on how to develop a plan to establish the nuclear infrastructure. Nearly five years later, in May 2016, a follow-up mission was conducted, which noted the progress made — Bangladesh had established a nuclear regulatory body, had chosen a site for the power plant and had completed site characterization and environmental impact assessment.

“The IAEA and other bodies, including those from experienced countries, can and do provide support, but the responsibility for safety and security will lie with the Government,” said Dohee Hahn, Director of the IAEA’s Division of Nuclear Power, at the ceremony for the pouring of the first nuclear safety-related concrete at Rooppur on 30 November 2017. “The IAEA stands ready to continue supporting Bangladesh in developing a safe, secure, peaceful and sustainable nuclear power programme.”

Supporting Infrastructure for Introducing a Nuclear Power Plant in Bangladesh: the IAEA Assists with the Review of Regulatory Guidance on Site Evaluation

How the IAEA Assists Newcomer Countries in Building Their Way to Sustainable Energy

"Exciting times for nuclear power," IAEA Director General Says

 

Related News

View more

Electricity prices in Germany nearly doubled in a year

Germany Energy Price Hikes are driving electricity tariffs, gas prices, and heating costs higher as wholesale markets surge after the Ukraine invasion; households face inflationary pressure despite relief measures and a renewables levy cut.

 

Key Points

Germany Energy Price Hikes reflect surging power and gas tariffs from wholesale spikes, prompting relief measures.

✅ Electricity tariffs to rise 19.5% in Apr-Jun

✅ Gas tariffs up 42.3%; heating and fuel costs soar

✅ Renewables levy ends July; saves €6.6 billion yearly

 

Record prices for electricity and gas in Germany will continue to rise in the coming months, the dpa agency, citing estimates from the consumer portal Verivox.

According to him, electricity suppliers and local utilities, in whose area of ​​responsibility there are 13 million households, made an announcement of tariff increases in April, May and June by 19.5%. Gas tariffs increased by an average of 42.3%.

According to Verivox, electricity prices in Germany have approximately doubled over the year - a pattern seen as European electricity prices rose more than double the EU average - if previously a household with a consumption of 4,000 kWh paid 1,171 euros a year, now the amount has risen to 1,737 euros. Gas prices have risen even more, though European gas prices later returned to pre-Ukraine war levels: last year, a household with a consumption of 20,000 kWh paid 1,184 euros in annual terms, and now it is 2,787 euros. 

Energy costs for the average German household are 52 percent higher than a year ago, adding to EU inflation pressures, according to energy contract sales website Check24. In a press release, the company said the wholesale electricity price was at €122.93 per megawatt-hour in February 2022, compared to €49 this time last year, while in the United States US electricity prices climbed at the fastest pace in 41 years. In addition, electricity prices on the power exchange haven been rising rapidly since Russian troops invaded Ukraine, comparison portal Strom Report said. Costs for heating rose the most, triggered by the high gas price (105 euros per megawatt-hour on the wholesale market) and around 100 USD per barrel of oil – its highest price since 2014. Driving also became more expensive with costs for petrol up 25 percent and diesel 30 percent, Check24 said.

The German government has decided on relief measures for low-income households, including a 200 billion euro energy shield, in response to high consumer energy costs. In July, it will abolish the renewables levy on the power price, saving consumers around €6.6 billion annually. In a reform proposal released this week, the ministry for economy and climate also detailed how it will legally oblige power suppliers to reduce their power bills when the levy is abolished.

 

Related News

View more

Canada's Electricity Exports at Risk Amid Growing U.S.-Canada Trade Tensions

US-Canada Electricity Tariff Dispute intensifies as proposed tariffs spur Canadian threats to restrict hydroelectric exports, risking cross-border energy supply, grid reliability, higher electricity prices, and clean energy goals in the Northeast and Midwest.

 

Key Points

Trade clash over tariffs and hydroelectric exports that threatens power supply, prices, and grid reliability.

✅ Potential export curbs on Canadian hydro to US markets

✅ Risks: higher prices, strained grids, reduced clean energy

✅ Diplomacy urged to avoid retaliatory trade measures

 

In early February 2025, escalating trade tensions between the United States and Canada have raised concerns about the future of electricity exports from Canada to the U.S. The potential imposition of tariffs by the U.S. has prompted Canadian officials to consider retaliatory measures, including restricting electricity exports and pursuing high-level talks such as Ford's Washington meeting with federal counterparts.

Background of the Trade Dispute

In late November 2024, President-elect Donald Trump announced plans to impose a 25% tariff on all Canadian products, citing issues related to illegal immigration and drug trafficking. This proposal has been met with strong opposition from Canadian leaders, who view such tariffs as unjustified and detrimental to both economies, even as tariff threats boost support for Canadian energy projects among some stakeholders.

Canada's Response and Potential Retaliatory Measures

In response to the proposed tariffs, Canadian officials have discussed various countermeasures. Ontario Premier Doug Ford has threatened to cut electricity supplies to 1.5 million Americans and ban imports of U.S.-made beer and liquor. Other provinces, such as Quebec and Alberta, are also considering similar actions, though experts advise against cutting Quebec's energy exports due to reliability concerns.

Impact on U.S. Energy Supply

Canada is a significant supplier of electricity to the United States, particularly in regions like the Northeast and Midwest. A reduction or cessation of these exports could lead to energy shortages and increased electricity prices in affected U.S. states, with New York especially vulnerable according to regional assessments. For instance, Ontario exports substantial amounts of electricity to neighboring U.S. states, and any disruption could strain local energy grids.

Economic Implications

The imposition of tariffs and subsequent retaliatory measures could have far-reaching economic consequences. In Canada, industries such as agriculture, manufacturing, and energy could face significant challenges due to reduced access to the U.S. market, even as many Canadians support energy and mineral tariffs as leverage. Conversely, U.S. consumers might experience higher prices for goods and services that rely on Canadian imports, including energy products.

Environmental Considerations

Beyond economic factors, the trade dispute could impact environmental initiatives. Canada's hydroelectric power exports are a clean energy source that helps reduce carbon emissions in the U.S., where policymakers look to Canada for green power to meet targets. A reduction in these exports could lead to increased reliance on fossil fuels, potentially hindering environmental goals.

The escalating trade tensions between the United States and Canada, particularly concerning electricity exports, underscore the complex interdependence of the two nations. While the situation remains fluid, it highlights the need for diplomatic engagement to resolve disputes and maintain the stability of cross-border energy trade.

 

Related News

View more

Berlin urged to remove barriers to PV

Germany Solar Cap Removal would accelerate photovoltaics, storage, and renewables, replacing coal and nuclear during phaseout with 10GW per year toward 162GW by 2030, boosting grid resilience, O&M jobs, and domestic clean energy growth.

 

Key Points

A policy change to scrap the 52GW limit, enabling 10GW/year PV and storage to replace coal and nuclear capacity.

✅ Scrap 52GW cap to prevent post-2020 market slump

✅ Add 10GW PV annually; scale residential, commercial, grid storage

✅ Create jobs in planning, installation, and O&M through 2030

 

The German Solar Association (BSW) has called on the government to remove barriers to the development of new solar power capacity in Germany and storage capacity needed to replace coal and nuclear generation that is being phased out.

A 52GW cap should be scrapped, otherwise there is a risk that a market slump will occur in the solar industry after 2020, BSW said, especially as U.S. solar expansion plans signal accelerating global demand.

BSW managing director Carsten Körnig said: “Time is running out, and further delays are irresponsible. The 52GW mark will already be reached within a few months.”
A new report from BSW, in cooperation with Bonn-based marketing and social research company EuPD Research and The smarter E Europe initiative, said 10GW a year is needed as well as an increase in battery storage capacity.

This would lead to cumulative photovoltaic capacity of 162GW and 15GW residential, commercial and grid storage systems by 2030, in line with global renewable records being set, leading to new job opportunities.

The number of jobs in the domestic photovoltaic and storage industries could increase to 78,000 by the end of the next decade from today’s level of 26,400, aligning with forecasts of wind and solar reaching 50% by mid-century, said 'The Energy Transition in the Context of the Nuclear and Coal Phaseout – Perspectives in the Electricity Market to 2040' study.

Job growth would take place for the most part in the fields of planning, installation and operations and maintenance of PV systems, as solar uptake in Poland increases, the report said.

In maintenance alone, employment would increase from 9,200 to 26,000, with additional opened up by tapping into the market potential of medium- to long-term storage systems, alongside changing electricity prices in Northern Europe that favor flexibility, it said.

The report added that industry revenue could grow from €5bn to €12.5bn in the coming decade.

The report was supported by BayWa Re E3/DC, Fronius, Goldbeck Solar, IBC Solar, Panasonic, Sharp, Siemens, Sonnen, Suntech, Tesvolt and Varta.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.