Utility bankrolls efficiencies

By London Free Press


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
London businesses got more than $7 million from London Hydro in 2010 — and that will grow to more than $10 million this year — as the utility writes more cheques to make workplaces energy efficient.

More and more industries are asking the electricity provider to help pay for revamping their workplaces — for everything from changing light bulbs to revamping power systems.

And thatÂ’s just fine with London Hydro, says program manager Hans Schreff.

“We want to write cheques. The more cheques the better,” he said at a manufacturers’ convention at the London Convention Centre. “There has never been a better time to look at electricity costs.”

Schreff was speaking at For Manufacturers Only, a conference at which manufacturers gather to discuss pressing issues for industries, and how best to tackle them. The rising cost of energy was top of mind.

Electricity bills will rise more than 40 over the next five years because the province needs to invest in improving its power grid, as well as in new green technology such as solar and wind power.

Industry needs a break from those prices and the utility can help, Schreff said.

“It is an easy way to lower operating costs — be competitive, do the right thing for the environment. And we have done lots of it in London. The payback is often less than a year,” he said.

In London, medium-sized businesses got $2.3 million back and small business about $5 million.

“People are taking their savings and reinvesting in their business,” Schreff said.

The agency often pays half the cost of a new system and the energy savings make it a moneymaker within a few years, depending on the job, he added.

He has already installed energy-saving systems at major industries here including Kellogg, Electro-Motive, Accuride, and a host of offices and multi-residential homes.

“You have to take advantage of this opportunity,” he added. “Once you see the math you will have to do this.”

For example, a new light system at a major industry may cost $125, but London Hydro will pay a $105 incentive to install it. That system will cut energy costs 50, and offer better, brighter light with lower maintenance costs. It will also last longer, 40,000 hours as opposed to the 20,000 hours most fluorescent light systems last.

“It is amazing quality,” Schreff said.

The conference kicked off with David Gurnham, a partner at Deloitte, saying manufacturing remains a critical industry to the national economy — and London and Southwestern Ontario are the heartland of the sector.

“Economies based on the service sector become second-tier economies. A service sector not built on the back of a manufacturing sector... will not lift or sustain a national, provincial or local economy,” said Gurnham.

“It is crucial to the overall well- being of an economy.”

He pointed to strengths this area has when competing globally, pointing to a skilled, talented workforce, innovation, solid infrastructure, good health care, low business taxes and a well educated population.

Canada also has the best research and development tax incentives in the world, he said.

“But talent and innovation are what we have in abundance,” he said.

Still recovering from the worst recession in 70 years, exports have increased 50. Of all of Canadian exports, 75 still go the U.S., but there also is a “dramatic increase” in trade with Brazil and Mexico, he added.

“Canadian manufacturers are, on the whole, performing quite well,” Gurnham said.

In the morning session, about 300 London and area manufacturers heard from keynote speakers about pressing issues for manufacturing.

Related News

Alberta Introduces New Electricity Rules

Alberta Rate of Last Resort streamlines electricity regulations to stabilize the default rate, curb price volatility, and protect rural communities, low-income households, and seniors while preserving competition in the province's energy market.

 

Key Points

Alberta's Rate of Last Resort sets biennial default electricity prices, curbing volatility and protecting customers.

✅ Biennial default rate to limit price spikes

✅ Focus on rural, senior, and low-income customers

✅ Encourages competitive contracts and market stability

 

The Alberta government is overhauling its electricity regulations as part of a market overhaul aimed at reducing spikes in electricity prices for consumers and businesses. The new rules, set to be introduced this spring, are intended to stabilize the default electricity rate paid by many Albertans.


Background on the Rate of Last Resort

Albertans currently have the option to sign up for competitive contracts with electricity providers. These contracts can sometimes offer lower rates than the default electricity rate, officially known as the Regulated Rate Option (RRO). However, these competitive rates can fluctuate significantly. Currently, those unable to secure these contracts or those who are on the default rate are experiencing rising electricity prices and high levels of price volatility.

To address this, the Alberta government is renaming the default rate as the Rate of Last Resort designation (RoLR) under the new framework. This aims to reduce the sense of security that some consumers might associate with the current name, which the government feels is misleading.


Key Changes Under New Regulations

The new regulations, which include proposed market changes that affect pricing, focus on:

  • Price Stabilization: Default electricity rates will be set every two years for each utility provider, providing greater predictability by enabling a consumer price cap and reducing the potential for extreme price swings.
  • Rural and Underserved Communities: The changes are intended to particularly benefit rural Albertans and those on the default rate, including low-income individuals and seniors. These groups often lack access to the competitive rates offered by some providers and have been disproportionately affected by recent price increases.
  • Promoting Economic Stability: The goal is to lower the cost of utilities for all Albertans, leading to overall lower costs of living and doing business. The government anticipates these changes will create a more attractive environment for investment and job creation.


Opposition Views

Critics argue that limiting the flexibility of prices for the default electricity rate could interfere with market dynamics and stifle market competition among providers. Some worry it could ultimately lead to higher prices in the long term. Others advocate directly subsidizing low-income households rather than introducing broad price controls.


Balancing Affordability and the Market

The Alberta government maintains that the proposed changes will strike a balance between ensuring affordable electricity for vulnerable Albertans and preserving a competitive energy market. Provincial officials emphasize that the new regulations should not deter consumers from seeking out competitive rates if they choose to.


The Path Ahead

The new electricity regulations are part of the Alberta government's broader Affordable Utilities Program, alongside electricity policy changes across the province. The legislation is expected to be introduced and debated in the provincial legislature this spring with the potential of coming into effect later in the year. Experts expect these changes will significantly impact the Alberta electricity market and ignite further discussion about how best to manage rising utility costs for consumers and businesses.

 

Related News

View more

UK National Grid Commissions 2GW Substation

UK 2-GW Substation strengthens National Grid power transmission in Kent, enabling offshore wind integration, voltage regulation, and grid modernization to meet rising electricity demand and support the UK energy transition with resilient, reliable infrastructure.

 

Key Points

National Grid facility in Kent that steps voltage, regulates power, and connects offshore wind to strengthen UK grid.

✅ Adds 2 GW capacity to meet rising electricity demand

✅ Integrates offshore wind farms into transmission network

✅ Improves reliability, voltage control, and grid resilience

 

The United Kingdom has strengthened its national power grid with the commissioning of a major new 2-gigawatt capacity substation in Kent. This massive project, a key part of the National Grid's ongoing efforts to modernize and expand power transmission infrastructure, including plans to fast-track grid connections across critical projects, will play a critical role in supporting the UK's energy transition and growing electricity demands.


What is a Substation?

Substations are vital components of electricity grids. They serve as connection points, transforming high voltage electricity from power plants to lower voltages suitable for homes and businesses. They also help to regulate voltage levels, and, where appropriate, interface with expanding HVDC technology initiatives, ensuring stable electricity delivery.  Modern substations often act as hubs, supporting the integration of renewable power sources with the main electricity network.


Why This Substation Is Important

The new 2-gigawatt capacity substation is significant for several reasons:

  • Expanding Capacity: It adds significant capacity to the UK's grid, enabling the transmission of large amounts of electricity to where it's needed. This capacity boost is crucial for supporting growing electricity demand as the UK shifts its energy mix towards renewable sources.
  • Integrating Renewables: The substation will aid in integrating substantial amounts of offshore wind power, as projects like the Scotland-England subsea link illustrate, helping the UK achieve its ambitious clean energy goals. Offshore wind farms are a booming source of renewable energy in the UK, and ensuring reliable connections to the grid is essential in maximizing their potential.
  • Future-Proofing the Grid: The newly commissioned substation helps bolster the reliability and resilience of the UK's power transmission network, where reducing losses with superconducting cables could further enhance efficiency. It will play a key role in securing electricity supplies as older power plants are decommissioned and renewable energy sources become more dominant.


A Landmark Project

The commissioning of this substation is a major achievement for the National Grid, amid an independent operator transition underway in the sector, and UK energy infrastructure upgrades. The sheer scale of the project required extensive planning and collaboration with various stakeholders, underscoring the complexity of upgrading the nation's power grid to meet future needs.


The Path Towards a Cleaner Grid

The new substation is not an isolated project. It is part of a broader, multi-year effort by the National Grid to modernize and expand the country's power grid.  This entails building new transmission lines and urban conduits such as London's newest electricity tunnel now in service, investing in storage technologies, and adapting infrastructure to accommodate the shift towards distributed energy generation, where power is generated closer to the point of use.


Beyond Substations

While projects like the new 2-gigawatt substation are crucial, ensuring a successful energy transition requires more than just infrastructure upgrades. Continued support for renewable energy development, highlighted by recent offshore wind power milestones that demonstrate grid-readiness, investment in emerging energy storage solutions, and smart grid technology that leverages data for effective grid management are all important components of building a cleaner and more resilient energy future for the UK.

 

Related News

View more

Atlantica - Regulatory Reform To Bring Greener Power To Atlantic Canada

Atlantic Canada Energy Regulatory Reform accelerates smart grids, renewables, hydrogen, and small modular reactors to meet climate targets, enabling interprovincial transmission, EV charging, and decarbonization toward a net-zero grid by 2035 with agile, collaborative policies.

 

Key Points

A policy shift enabling smart grids, clean energy, and transmission upgrades to decarbonize Atlantic Canada by 2035.

✅ Agile rules for smart grids, EV load, and peak demand balancing

✅ Interprovincial transmission: Maritime Link, NB-PEI, Atlantic Loop

✅ Supports hydrogen, SMRs, and renewables to cut GHG emissions

 

Atlantica Centre for Energy Senior Policy Consultant Neil Jacobsen says the future of Atlantic Canada’s electricity grid depends on agile regulations, supported by targeted research such as the $2M Atlantic grid study, that match the pace at which renewable technologies are being developed in the race to meet Canada’s climate goals.

In an interview, Jacobsen stressed the need for a more modernized energy regulatory framework, so the Atlantic Provinces can collaborate to quickly develop and adopt cleaner energy.

To this end, Atlantica released a paper that makes the case for responsive smart grid technology, the adaptation of alternative forms of clean energy, the adaptation of hydrogen as an energy source, petroleum price regulation in Atlantic Canada and small modular reactors.

Jacobsen said regulations need to match Canada’s urgency around reducing greenhouse gas emissions by 40 to 45 percent by 2030, achieving a net-neutral national power grid by 2035 and ultimately a net-zero grid by 2050 in Canada – and the goal that 50 percent of Canadian vehicle sales being electric by 2030.

“It’s an evolution of policy and regulations to adapt to a very aggressive timeline of aggressive climate change and decarbonization targets,” said Jacobsen.

“These are transformational energy and environmental commitments, so the path forward really requires the ability to introduce and adapt and move forward with new clean renewable energy technologies.”

Jacobsen said Atlantica’s recommendations are not a criticism of existing regulations– but an acknowledgment that they need to evolve.

He noted newer, clearer regulations will make way for new energy sources – particularly a region that has the countries highest rates of dependency on fossil fuels and growing climate risks, with Atlantic grids under threat from more intense storms.

“We have a long way to go, but at the same time, we have a lot to celebrate. Atlantic Canada is leading the country in reducing greenhouse gas emissions,” said Jacobsen.

“There are new ways of producing energy that requires us to be able to be much more responsive and this is an opportunity to create a higher level of alignment here, in Atlantic Canada.”

Jacobsen said Atlantica is looking to aid interprovincial cooperation in providing power, echoing calls for a western Canadian grid elsewhere, through projects like the 500-megawatt, 170-kilometre Maritime Link that transports power from the Muskrat Falls hydroelectric dam in Labrador, through Newfoundland and across the Cabot Strait, to Nova Scotia – or NB Power’s export of electricity to P.E.I., via sub-sea cables crossing the Northumberland Strait.

He noted streamlined regulations may allow for more potential wider-scale partnerships, like the proposed Atlantic Loop project, aligning with macrogrid investments that would involve upgrading transmission capacity on the East Coast to allow hydroelectric power from Labrador and Quebec to displace coal use in the region.

Atlantic Canada has led the way with adaption new renewable technologies, noted Jacobsen, referring to nuclear startups Moltex Energy and ARC Nuclear Canada’s efforts to develop small modular nuclear reactor technology in New Brunswick, as well as the potential of adopting hydrogen fuel technology and Nova Scotia’s strides in developing offshore renewable energy.

“I don’t think we have any choice other than to be forceful and aggressive in driving forward a renewable energy agenda.”

Jacobsen said cooperation between the Atlantic provinces is crucial because of how challenging it is to meet energy demand with heavy seasonal and daily variations in energy demand in the region – something smart grid technology could address.

Smart Grid Atlantic is a four-year research and demonstration program testing technologies that provide cleaner local power, support a smarter electricity infrastructure across the region, more renewable power, more information and control over power use and more reliable electricity.

“It can be challenging for utilities to meet those cyclical demands, especially as grids are increasingly exposed to harsh weather across Canada. Smart girds add knowledge of the flow of electrons in a way that can help even out those electricity demands – and quite frankly, those demands will only increase when you look at the electrification of the transportation sector,” he said.

Jacobsen said Atlantica’s paper and call for modernized regulations are only the beginning of a conversation.

 

Related News

View more

Entergy Creates COVID-19 Emergency Relief Fund to Help Customers in Need

Entergy COVID-19 Emergency Relief Fund provides financial assistance to ALICE households, low-income seniors, and disabled customers via United Way grants for rent, mortgage, utilities, food, and bill payment support during COVID-19, alongside a disconnect moratorium.

 

Key Points

A shareholder-funded program offering essential grants and bill support to Entergy customers affected by COVID-19.

✅ Shareholders commit $700,000; grants distributed via United Way partners.

✅ Focus on ALICE families, low-income seniors, and disabled customers.

✅ Disconnects suspended; bill tools and LIHEAP advocacy underway.

 

In an effort to help working families experiencing financial hardships as a result of the coronavirus pandemic, the Entergy Charitable Foundation has established the COVID-19 Emergency Relief Fund, recognizing the need for electricity across communities.

"The health and safety of our customers, employees and communities is Entergy's top priority," said Leo Denault, chairman and CEO of Entergy Corporation. "For more than 100 years, Entergy has never wavered in our commitment to supporting our customers and the communities we serve. This pandemic is no different. During this challenging time, we are helping lessen the impact of this crisis on the most vulnerable in our communities. I strongly encourage our business partners to join us in this effort."

As devastating and disruptive as this crisis is for everyone, we know from past experience that those most heavily impacted are ALICE households (low-wage working families) and low-income elderly and disabled customers, who often face energy insecurity during such events - roughly 40%-50% of Entergy's customer base.

"We know from experience that working families and low-income elderly and disabled customers are hardest hit during times of crisis," said Patty Riddlebarger, vice president of Entergy's corporate social responsibility. "We are working quickly to make funds available to community partners that serve vulnerable households to lessen the economic impact of the COVID-19 crisis and ensure that families have the resources they need to get by during this time of uncertainty."

To support our most vulnerable customers, Entergy shareholders are committing $700,000 to the COVID-19 Emergency Relief Fund to help qualifying customers with basic needs such as food and nutrition, rent and mortgage assistance, and other critical needs, alongside measures like Texas utilities waiving fees that ease household costs, until financial situations become more stable. Grants from the fund will be provided to United Way organizations and other nonprofit partners across Entergy's service area that are providing services to impacted households.

Company shareholders will also match employee contributions to the COVID-19 relief efforts of local United Way organizations up to $100,000 to maximize impact.

In addition to establishing the COVID-19 Emergency Relief Fund, Entergy is taking additional steps to support and protect our customers during this crisis, similar to PG&E's pandemic response measures, including:

With support from our regulators, we are temporarily suspending customer disconnects, as seen in New Jersey and New York policies, as we continue to monitor the situation.

We are working with our network of community advocates, as the industry coordination with federal partners continues, to request a funding increase of the Low Income Home Energy Assistance Program to help alleviate financial hardships caused by COVID-19 on vulnerable households.

We are developing bill payment solutions and tools to help customers pay their accumulated balances once the disconnect moratorium is lifted.

Already in place to support vulnerable customers is Entergy's The Power to Care program, which provides emergency bill payment assistance to seniors and disabled individuals. To mark the 20th anniversary of Entergy's low-income customer initiative, the limit of shareholders' dollar for dollar match of customer donations was increased from $500,000 to $1 million per year. Shareholders continue to match employee donations dollar for dollar with no limit.

 

Related News

View more

Swiss Earthquake Service and ETH Zurich aim to make geothermal energy safer

Advanced Traffic Light System for Geothermal Safety models fracture growth and friction with rock physics, geophones, and supercomputers to predict induced seismicity during hydraulic stimulation, enabling real-time risk control for ETH Zurich and SED.

 

Key Points

ATLS uses rock physics, geophones, and HPC to forecast induced seismicity in real time during geothermal stimulation.

✅ Real-time seismic risk forecasts during hydraulic stimulation

✅ Uses rock physics, friction, and fracture modeling on HPC

✅ Supports ETH Zurich and SED field tests in Iceland and Bedretto

 

The Swiss Earthquake Service and ETH Zurich want to make geothermal energy safer, so news piece from Switzerland earlier this month. This is to be made possible by new software, including machine learning, and the computing power of supercomputers. The first geothermal tests have already been carried out in Iceland, and more will follow in the Bedretto laboratory.

In areas with volcanic activity, the conditions for operating geothermal plants are ideal. In Iceland, the Hellisheidi power plant makes an important contribution to sustainable energy use, alongside innovations like electricity from snow in cold regions.

Deep geothermal energy still has potential. This is the basis of the 2050 energy strategy. While the inexhaustible source of energy in volcanically active areas along fault zones of the earth’s crust can be tapped with comparatively little effort and, where viable, HVDC transmission used to move power to demand centers, access on the continents is often much more difficult and risky. Because the geology of Switzerland creates conditions that are more difficult for sustainable energy production.

Improve the water permeability of the rock

On one hand, you have to drill four to five kilometers deep to reach the correspondingly heated layers of earth in Switzerland. It is only at this depth that temperatures between 160 and 180 degrees Celsius can be reached, which is necessary for an economically usable water cycle. On the other hand, the problem of low permeability arises with rock at these depths. “We need a permeability of at least 10 millidarcy, but you can typically only find a thousandth of this value at a depth of four to five kilometers,” says Thomas Driesner, professor at the Institute of Geochemistry and Petrology at ETH Zurich.

In order to improve the permeability, water is pumped into the subsurface using the so-called “fracture”. The water acts against friction, any fracture surfaces shift against each other and tensions are released. This hydraulic stimulation expands fractures in the rock so that the water can circulate in the hot crust. The fractures in the earth’s crust originate from tectonic tensions, caused in Switzerland by the Adriatic plate, which moves northwards and presses against the Eurasian plate.

In addition to geothermal energy, the “Advanced Traffic Light System” could also be used in underground construction or in construction projects for the storage of carbon dioxide.

Quake due to water injection

The disadvantage of such hydraulic stimulations are vibrations, which are often so weak or cannot be perceived without measuring instruments. But that was not the case with the geothermal projects in St. Gallen 2013 and Basel 2016. A total of around 11,000 cubic meters of water were pumped into the borehole in Basel, causing the pressure to rise. Using statistical surveys, the magnitudes 2.4 and 2.9 defined two limit values ??for the maximum permitted magnitude of the earthquakes generated. If these are reached, the water supply is stopped.

In Basel, however, there was a series of vibrations after a loud bang, with a time delay there were stronger earthquakes, which startled the residents. In both cities, earthquakes with a magnitude greater than 3 have been recorded. Since then it has been clear that reaching threshold values ??determines the stop of the water discharge, but this does not guarantee safety during the actual drilling process.

Simulation during stimulation

The Swiss Seismological Service SED and the ETH Zurich are now pursuing a new approach that can be used to predict in real time, building on advances by electricity prediction specialists in Europe, during a hydraulic stimulation whether noticeable earthquakes are expected in the further course. This is to be made possible by the so-called “Advanced Traffic Light System” based on rock physics, a software developed by the SED, which carries out the analysis on a high-performance computer.

Geophones measure the ground vibrations around the borehole, which serve as indicators for the probability of noticeable earthquakes. The supercomputer then runs through millions of possible scenarios, similar to algorithms to prevent power blackouts during ransomware attacks, based on the number and type of fractures to be expected, the friction and tensions in the rock. Finally, you can filter out the scenario that best reflects the underground.

Further tests in the mountain

However, research is currently still lacking any real test facility for the system, because incorrect measurements must be eliminated and a certain data format adhered to before the calculations on the supercomputer. The first tests were carried out in Iceland last year, with more to follow in the Bedretto geothermal laboratory in late summer, where reliable backup power from fuel cell solutions can keep instrumentation running. An optimum can now be found between increasing the permeability of rock layers and an adequate water supply.

The new approach could make geothermal energy safer and ultimately help this energy source to become more accepted, while grid upgrades like superconducting cables improve efficiency. Research also sees areas of application wherever artificially caused earthquakes can occur, such as in underground mining or in the storage of carbon dioxide underground.

 

Related News

View more

Ontario's electricity operator kept quiet about phantom demand that cost customers millions

IESO Fictitious Demand Error inflated HOEP in the Ontario electricity market, after embedded generation was mis-modeled; the OEB says double-counted load lifted wholesale prices and shifted costs via the Global Adjustment.

 

Key Points

An IESO modeling flaw that double-counted load, inflating HOEP and charges in Ontario's wholesale market.

✅ Double-counted unmetered load from embedded generation

✅ Inflated HOEP; shifted costs via Global Adjustment

✅ OEB flagged transparency; exporters paid more

 

For almost a year, the operator of Ontario’s electricity system erroneously counted enough phantom demand to power a small city, causing prices to spike and hundreds of millions of dollars in extra charges to consumers, according to the provincial energy regulator.

The Independent Electricity System Operator (IESO) also failed to tell anyone about the error once it noticed and fixed it.

The error likely added between $450 million and $560 million to hourly rates and other charges before it was fixed in April 2017, according to a report released this month by the Ontario Energy Board’s Market Surveillance Panel.

It did this by adding as much as 220 MW of “fictitious demand” to the market starting in May 2016, when the IESO started paying consumers who reduced their demand for power during peak periods. This involved the integration of small-scale embedded generation (largely made up of solar) into its wholesale model for the first time.

The mistake assumed maximum consumption at such sites without meters, and double-counted that consumption.

The OEB said the mistake particularly hurt exporters and some end-users, who did not benefit from a related reduction of a global adjustment rate applicable to other customers.

“The most direct impact of the increase in HOEP (Hourly Ontario Energy Price) was felt by Ontario consumers and exporters of electricity, who paid an artificially high HOEP, to the benefit of generators and importers,” the OEB said.

The mix-up did not result in an equivalent increase in total system costs, because changes to the HOEP are offset by inverse changes to a electricity cost allocation mechanism such as the Global Adjustment rate, the OEB noted.


A chart from the OEB's report shows the time of day when fictitious demand was added to the system, and its influence on hourly rates.

Peak time spikes
The OEB said that the fictitious demand “regularly inflated” the hourly price of energy and other costs calculated as a direct function of it.

For almost a year, Ontario's electricity system operator @IESO_Tweets erroneously counted enough phantom demand to power a small city, causing price spikes and hundreds of millions in charges to consumers, @OntEnergyBoard says. @5thEstate reports.

It estimated the average increase to the HOEP was as much as $4.50/MWh, but that price spikes, compounded by scheduled OEB rate changes, would have been much higher during busier times, such as the mid-morning and early evening.

“In times of tight supply, the addition of fictitious demand often had a dramatic inflationary impact on the HOEP,” the report said.

That meant on one summer evening in 2016 the hourly rate jumped to $1,619/MWh, it said, which was the fourth highest in the history of the Ontario wholesale electricity market.

“Additional demand is met by scheduling increasingly expensive supply, thus increasing the market price. In instances where supply is tight and the supply stack is steep, small increases in demand can cause significant increases in the market price.

The OEB questioned why, as of September this year, the IESO had failed to notify its customers or the broader public, amid a broader auditor-regulator dispute that drew political attention, about the mistake and its effect on prices.

“It's time for greater transparency on where electricity costs are really coming from,” said Sarah Buchanan, clean energy program manager at Environmental Defence.

“Ontario will be making big decisions in the coming years about whether to keep our electricity grid clean, or burn more fossil fuels to keep the lights on,” she added. “These decisions need to be informed by the best possible evidence, and that can't happen if critical information is hidden.”

In a response to the OEB report on Monday, the IESO said its own initial analysis found that the error likely pushed wholesale electricity payments up by $225 million. That calculation assumed that the higher prices would have changed consumer behaviour, while upcoming electricity auctions were cited as a way to lower costs, it said.

In response to questions, a spokesperson said residential and small commercial consumers would have saved $11 million in electricity costs over the 11-month period, even as a typical bill increase loomed province-wide, while larger consumers would have paid an extra $14 million.

That is because residential and small commercial customers pay some costs via time-of-use rates, including a temporary recovery rate framework, the IESO said, while larger customers pay them in a way that reflects their share of overall electricity use during the five highest demand hours of the year.

The IESO said it could not compensate those that had paid too much, given the complexity of the system, and that the modelling error did not have a significant impact on ratepayers.

While acknowledging the effects of the mistake would vary among its customers, the IESO said the net market impact was less than $10 million, amid ongoing legislation to lower electricity rates in Ontario.

It said it would improve testing of its processes prior to deployment and agreed to publicly disclose errors that significantly affect the wholesale market in the future.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.