Project shelved in three valley counties

By Fresno Bee


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
An agency that planned to supply cheap electricity to 115,000 customers in three Valley counties has put the project on hold, saying it couldn't guarantee savings over the long term.

The San Joaquin Valley Power Authority said it also will halt plans to build a gas-fired power plant between Selma and Parlier that was opposed by nearby residents. The plant was part of the authority's plan to supply electricity.

The authority, comprised of local officials, will stay intact to promote other energy projects. One plan is to install rooftop solar equipment on local government buildings to cut energy costs, said David Orth, the authority's general manager.

The authority, created in 2002, was trying to become the first public agency in California to supply electricity under the state's Community Choice program. The law allows cities and counties to buy electricity in bulk for delivery to residents and businesses.

The authority's goal was to sell electricity to Valley residents at 5% below Pacific Gas & Electric Co.'s generation rates and save an average household about $3.50 a month. The authority hoped to limit rate increases to a maximum of 2% a year through 2015.

Kings County, Clovis, Hanford, Reedley, Sanger, Selma, Parlier, Kingsburg, Corcoran, Lemoore and Dinuba were lined up as customers.

In addition to making plans to build a power plant, the authority had an agreement with a CitiGroup energy subsidiary to supply electricity for 5% less than PG&E. But, after the economy collapsed, CitiGroup backed out of the deal. The authority sought other partners but could do no better than a three-year deal that would be open to renegotiation, Orth said.

"It's a different world than the world we designed our plan around," he said.

As a result, authority officials decided to postpone for now efforts to supply electricity to regional customers, said Kerman city manager Ron Manfredi, the authority's chairman.

"We said if we couldn't give our customers a better deal, why make the deal," Manfredi said.

In 2002, investor-owned utilities pledged to remain neutral if Community Choice programs started in their service areas. Five years later, PG&E officials decided to end their neutrality by mounting marketing efforts opposing the Valley project.

PG&E's campaign resulted in delays and legal battles, and also convinced Fresno city and Tulare County officials to quit the authority.

Jeff Smith, a Fresno-based PG&E spokesman, said the company supports Community Choice but didn't think the Valley program would work.

For example, PG&E disputed the rate projections that the authority had devised for comparison purposes, Smith said.

"We didn't view their program as a prudent economic decision for our customers," he said.

PG&E's marketing efforts led the authority to file a complaint with the state Public Utilities Commission in 2007, claiming PG&E broke state rules.

"We probably somewhat naively felt neutral meant neutral and expected something far different from them," Orth said of PG&E.

In a settlement of the PUC complaint, PG&E agreed to reveal the costs of its marketing efforts to oppose the authority's program: about $2.5 million from May 2007 to January 2009.

Orth said the authority spent $2.86 million in seven years to get the program under way. The bulk of the costs were paid by the Kings River Conservation District, which manages the authority.

Related News

Electricity rates are about to change across Ontario

Ontario Electricity Rate Changes lower OEB Regulated Price Plan costs, adjust Time-of-Use winter hours and tiered thresholds, and modify the Ontario Electricity Rebate, affecting off-peak, mid-peak, and on-peak pricing for households and small businesses.

 

Key Points

OEB updates lowering RPP prices, shifting TOU hours, adjusting tiers, and modifying the Ontario Electricity Rebate.

✅ Winter TOU: Off-peak 7 p.m.-7 a.m.; weekends, holidays all day.

✅ Tiered pricing adds 400 kWh at lower rate for residential users.

✅ Ontario Electricity Rebate falls to 11.7% from 17% on Nov 1.

 

Electricity rates are about to change for consumers across Ontario.

On November 1, households and small businesses will see their electricity rates go down under the Ontario Energy Board's (OEB) Regulated Price Plan framework.

Customer's on the OEB's tiered pricing plan will also see their bills lowered on November 1, a shift from the 2021 increase when fixed pricing ended, as winter time-of-use hours and the seasonal change in the killowatt-hour threshold take effect.

Off-peak time-of-use hours will run from 7 p.m. to 7 a.m. during weekdays, including the ultra-low overnight rates option for some customers, and all day on weekends and holidays. On-peak hours will be from 7 a.m. to 11 a.m. and 5 p.m. to 7 p.m. on weekdays, and mid-peak hours from 11 a.m. to 5 p.m. on weekdays.

The winter-tier threshold provides residential customers with an extra 400 kilowatt-hours per month at a lower price during the colder weather, alongside the off-peak price freeze in effect.

The Ontario Electricity Rebate - a pre-tax credit that shows up at the bottom of electricity bills - will also see changes as a hydro rate change takes effect on November 1. Starting next month, the rebate will drop from 17 per cent to 11.7 per cent.

For a typical residential customer, the credit will decrease electricity bills by about $13.91 per month, according to the OEB.

Under the board's winter disconnection ban, electricity providers can't turn off a residential customer's power between November 15, 2022 and April 30, 2023 for failing to pay, and earlier pandemic relief included a fixed COVID-19 hydro rate for customers.

 

Related News

View more

APS asks customers to conserve energy after recent blackouts in California

Arizona Energy Conservation Alert urges APS and TEP customers to curb usage during a heatwave, preventing rolling blackouts, easing peak demand, and supporting grid reliability by raising thermostats, delaying appliances, and pausing pool pumps.

 

Key Points

A utility request during extreme heat to cut demand and protect grid reliability, helping prevent outages.

✅ Raise thermostats to 80 F or higher during peak hours

✅ Delay washers, dryers, dishwashers until after 8 p.m.

✅ Pause pool pumps; switch off nonessential lights and devices

 

After excessive heat forced rolling blackouts for thousands of people across California Friday and Saturday, Arizona Public Service Electric is asking customers to conserve energy this afternoon and evening.

“Given the extended heat wave in the western United States and climate-related grid risks that utilities are monitoring, APS is asking customers to conserve energy due to extreme energy demand that is driving usage higher throughout the region with today’s high temperatures,” APS said in a statement.

Tucson Electric Power has made a similar request of customers in its coverage area.


APS is asking customers to conserve energy in the following ways Tuesday until 8 p.m.:

  • Raise thermostat settings to no lower than 80 degrees.
  • Turn off extra lights and avoid use of discretionary major appliances such as clothes washers, dryers and dishwashers.
  • Avoid operation of pool pumps.

The request from APS also came just hours after Arizona Corporation Commission Chairman Bob Burns sent a letter to electric utilities under the commission's umbrella, like APS, to see if they are in good shape or anticipate any problems given looming shortages in California. He requested the companies respond by noon Friday.


"The whole plan is to take a look at the system early in the Summer," Burns said. "Early May we look at the system, make sure we're ready and able to serve the public throughout the entire heat cycle."

Burns told ABC15 the Summer Preparedness workshop with utilities took place in May and the regulated utilities reported they were well equipped to meet the anticipated peaks of the Summer, even as supply-chain pressures mount across the industry. Tuesday's letter to the electric companies seeks to see if they are still able to "adequately, safely and reliably" serve customers through the heatwave, or if what happened in California could take place here.

"With the activities that are occurring over in California, including tight grid conditions that have repeatedly tested operators, we just want to double check," Burns said.

An APS representative told ABC15 they have adequate supply and reserve and don't anticipate any problems.

However, the rolling blackouts in California also caught the attention of Commissioner Lea Marquez Peterson. She is calling on the chairman to hold an emergency meeting amid wildfire concerns across California and the region.

"The risk to Arizonans and the fact that energy could be interrupted, that we had some kind of rolling blackout like California would have, would be really a public health issue," Peterson said. "It could be life and death in some cases for vulnerable populations."

 

Related News

View more

Bruce Power cranking out more electricity after upgrade

Bruce Power Capacity Uprate boosts nuclear output through generator stator upgrades, turbine and transformer enhancements, and cooling pump improvements at Bruce A and B, unlocking megawatts and efficiency gains from legacy heavy water design capacity.

 

Key Points

Upgrades that raise Bruce Power capacity via stator, turbine, transformer, and cooling enhancements.

✅ Generator stator replacement increases electrical conversion efficiency

✅ Turbine and transformer upgrades enable higher MW output

✅ Cooling pump enhancements optimize plant thermal performance

 

Bruce Power’s Unit 3 nuclear reactor will squeeze out an extra 22 megawatts of electricity, thanks to upgrades during its recent planned outage for refurbishment.

Similar gains are anticipated at its three sister reactors at Bruce A generating station, which presents the opportunity for the biggest efficiency gains and broader economic benefits for Ontario, due to a design difference over Bruce B’s four reactors, Bruce Power spokesman John Peevers said.

Bruce A reactor efficiency gains stem mainly from the fact Bruce A’s non-nuclear side, including turbines and the generator, was sized at 88 per cent of the nuclear capacity, Peevers said, while early Bruce C exploration work advances.

This allowed 12 per cent of the energy, in the form of steam, to be used for heavy water production, which was discontinued at the plant years ago. Heavy water, or deuterium, is used to moderate the reactors.

That design difference left a potential excess capacity that Bruce Power is making use of through various non-nuclear enhancements. But the nuclear operator, which also made major PPE donations during the pandemic, will be looking at enhancements at Bruce B as well, Peevers said.

Bruce Power’s efficiency gain came from “technology advancements,” including a “generator-stator improvement project that was integral to the uprate,” and contributed to an operating record at the site, a Bruce Power news release said July 11.

Peevers said the stationary coils and the associated iron cores inside the generator are referred to as the stator. The stator acts as a conductor for the main generator current, while the turbine provides the mechanical torque on the shaft of the generator.

“Some of the other things we’re working on are transformer replacement and cooling pump enhancements, backed by recent manufacturing contracts, which also help efficiency and contribute to greater megawatt output,” Peevers said.

The added efficiency improvements raised the nuclear operator’s peak generating capacity to 6,430 MW, as projects like Pickering life extensions continue across Ontario.

 

Related News

View more

Poland’s largest power group opts to back wind over nuclear

Poland Offshore Wind Energy accelerates as PGE exits nuclear leadership, PKN Orlen steps in, and Baltic Sea projects expand to cut coal reliance, meet EU emissions goals, attract investors, and bridge the power capacity gap.

 

Key Points

A shift from coal and nuclear to Baltic offshore wind to add capacity, cut EU emissions, and attract investment.

✅ PGE drops lead in nuclear; pivots $10bn to offshore wind.

✅ PKN Orlen may assume nuclear role; projects await approval.

✅ 6 GW offshore could add 60b zlotys and 77k jobs by 2030.

 

PGE, Poland’s biggest power group has decided to abandon a role in building the country’s first nuclear power plant and will instead focus investment on offshore wind energy.

Reuters reports state-run refiner PKN Orlen (PKN.WA) could take on PGE’s role, while the latter announces a $10bn offshore wind power project.

Both moves into renewables and nuclear represent a major change in Polish energy policy, diversifying away from the country’s traditional coal-fired power base, as regional efforts like the North Sea wind farms initiative expand, in a bid to fill an electricity shortfall and meet EU emission standards.

An unnamed source told the news agency, PGE could not fund both projects and cheap technology had swung the decision in favour of wind, with offshore wind competing with gas in some markets. PGE could still play a smaller role in the nuclear project which has been delayed and still needs government approval.

#google#

A proposed law is currently before the Polish parliament aiming at facilitating easy construction of wind turbines, mindful of Germany’s grid expansion challenges that have hindered rollout.

If the law is passed, as expected, several other wind farm projects could also proceed.

Polenergia has said it would like to build a wind farm in the Baltic by 2022. PKN Orlen is also considering building one.

PGE said in March that it wants to build offshore windfarms with a capacity of 2.5 gigawatts (GW) by 2030.

Analysts and investors say that offshore wind farms are the easiest and fastest way for Poland to fill the expected capacity gap from coal, with examples like the largest UK offshore wind farm coming online underscoring momentum, and reduce CO2 emissions in line with EU’s 2030 targets as Poland seeks improved ties with Brussels.

The decision to open up the offshore power industry could also draw in investors, as shown by Japanese utilities’ UK offshore investment attracting cross-border capital. Statoil said in April it would join Polenergia’s offshore project which has drawn interest from other international wind companies. “

The Polish Wind Energy Association (PWEA) estimates that offshore windfarms with a total capacity of 6 GW would help create around 77,000 new jobs and add around 60 billion zlotys to economic growth.

 

Related News

View more

Altmaier's new electricity forecast: the main driver is e-mobility

Germany 2030 Electricity Demand Forecast projects 658 TWh, driven by e-mobility, heat pumps, and green hydrogen. BMWi and BDEW see higher renewables, onshore wind, photovoltaics, and faster grid expansion to meet climate targets.

 

Key Points

A BMWi outlook to 658 TWh by 2030, led by e-mobility, plus demand from heat pumps, green hydrogen, and industry.

✅ Transport adds ~70 TWh; cars take 44 TWh by 2030

✅ Heat pumps add 35 TWh; green hydrogen needs ~20 TWh

✅ BDEW urges 70% renewables and faster grid expansion

 

Gross electricity consumption in Germany will increase from 595 terawatt hours (TWh) in 2018 to 658 TWh in 2030. That is an increase of eleven percent. This emerges from the detailed analysis of the development of electricity demand that the Federal Ministry of Economics (BMWi) published on Tuesday. The main driver of the increase is therefore the transport sector. According to the paper, increased electric mobility in particular contributes 68 TWh to the increase, in line with rising EV power demand trends across markets. Around 44 TWh of this should be for cars, 7 TWh for light commercial vehicles and 17 TWh for heavy trucks. If the electricity consumption for buses and two-wheelers is added, this results in electricity consumption for e-mobility of around 70 TWh.

The number of purely battery-powered vehicles is increasing according to the investigation by the BMWi to 16 million by 2030, reflecting the global electric car market momentum, plus 2.2 million plug-in hybrids. In 2018 there were only around 100,000 electric cars, the associated electricity consumption was an estimated 0.3 TWh, and plug-in mileage in 2021 highlighted the rapid uptake elsewhere. For heat pumps, the researchers predict an increase in demand by 35 TWh to around 42 TWh. They estimate the electricity consumption for the production of around 12.5 TWh of green hydrogen in 2030 to be just under 20 TWh. The demand at battery factories and data centers will increase by 13 TWh compared to 2018 by this point in time. In the data centers, there is no higher consumption due to more efficient hardware despite advancing digitization.

The updated figures are based on ongoing scenario calculations by Prognos, in which the market researchers took into account the goals of the Climate Protection Act for 2030 and the wider European electrification push for decarbonization. In the preliminary estimate presented by Federal Economics Minister Peter Altmaier (CDU) in July, a range of 645 to 665 TWh was determined for gross electricity consumption in 2030. Previously, Altmaier officially said that electricity demand in this country would remain constant for the next ten years. In June, Chancellor Angela Merkel (CDU) called for an expanded forecast that would have to include trends in e-mobility adoption within a decade and the Internet of Things, for example.

Higher electricity demand
The Federal Association of Energy and Water Management (BDEW) is assuming an even higher electricity demand of around 700 TWh in nine years. In any case, a higher share of renewable energies in electricity generation of 70 percent by 2030 is necessary in order to be able to achieve the climate targets and to address electricity price volatility risks. The expansion paths urgently need to be increased and obstacles removed. This could mean around 100 gigawatts (GW) for onshore wind turbines, 11 GW for biomass and at least 150 GW for photovoltaics by 2030. Faster network expansion and renovation will also become even more urgent, as electric cars challenge grids in many regions.
 

 

Related News

View more

Idaho gets vast majority of electricity from renewables, almost half from hydropower

Idaho Renewable Energy 2018 saw over 80% in-state utility-scale power from hydropower, wind, solar, biomass, and geothermal, per EIA, with imports declining as Snake River Plain resources and Hells Canyon hydro lead.

 

Key Points

Idaho produced over 80% in-state power from renewables in 2018, led by hydropower, wind, solar, and biomass.

✅ Hydropower supplies about half of capacity; Hells Canyon leads.

✅ Wind provides nearly 20% of capacity along the Snake River Plain.

✅ Utility-scale solar surged since 2016; biomass and geothermal add output.

 

More than 80% of Idaho’s in-state utility-scale electricity generation came from renewable resources in 2018, behind only Vermont, according to recently released data from the U.S. Energy Information Administration’s Electric Power Monthly and broader trends showing that solar and wind reached about 10% of U.S. generation in the first half of 2018.

Idaho generated 17.4 million MWh of electricity in 2018, of which 14.2 million MWh came from renewable sources, while nationally January power generation jumped 9.3% year over year according to EIA. Idaho uses a variety of renewable resources to generate electricity:

Hydroelectricity. Idaho ranked seventh in the U.S. in electricity generation from hydropower in 2018. About half of Idaho’s electricity generating capacity is at hydroelectric power plants, and utility actions such as the Idaho Power settlement could influence future resource choices, and seven of the state’s 10 largest power plants (in terms of electricity generation) are hydroelectric facilities. The largest privately owned hydroelectric generating facility in the U.S. is a three-dam complex on the Snake River in Hells Canyon, the deepest river gorge in North America.

Wind. Nearly one-fifth of Idaho’s electricity generating capacity and one-sixth of its generation comes from wind turbines. Idaho has substantial wind energy potential, and nationally the EIA expects solar and wind to be larger sources this summer, although only a small percentage of the state's land area is well-suited for wind development. All of the state’s wind farms are located in the southern half of the state along the Snake River Plain.

Solar. Almost 5% of Idaho’s electricity generating capacity and 3% of its generation come from utility-scale solar facilities, and nationally over half of new capacity in 2023 will be solar according to projections. The state had no utility-scale solar generation as recently as 2015. Between 2016 and 2017, Idaho’s utility-scale capacity doubled and generation increased from 30,000 MWh to more than 450,000 MWh. Idaho’s small-scale solar capacity also doubled since 2017, generating 33,000 MWh in 2018.

Biomass. Biomass-fueled power plants account for about 2% of the state’s utility-scale electricity generating capacity and 3% of its generation, contributing to a broader U.S. shift where 40% of electricity came from non-fossil sources in 2021. Wood waste from the state’s forests is the primary fuel for these plants.

Geothermal. Idaho is one of seven states with utility-scale geothermal electricity generation. Idaho has one 18-MW geothermal facility, located near the state’s southern border with Utah.

EIA says Idaho requires significant electricity imports, totaling about one-third of demand, to meet its electricity needs. However, Idaho’s electricity imports have decreased over time, and Georgia's recent import levels illustrate how regional dynamics can vary. Almost all of these imports are from neighboring states, as electricity imports from Canada accounted for less than 0.1% of Idaho’s total electricity supply in 2017.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified