Canadian power cable wonÂ’t reach Connecticut

By Middletown Press


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
A Toronto company that had proposed a 420-mile underwater electric-transmission cable from Canada, a portion of which would have gone under Long Island Sound to Bridgeport, is scrapping its plans for the Connecticut leg of the project.

Transmission Developers Inc. announced it is abandoning the portion of the route that would have gone from New York City to Bridgeport Harbor.

The announcement came from Donald Jessome, president and chief executive officer of TDI, at City Hall during the first of seven hearings on the projectÂ’s potential environmental impact.

“The market has spoken,” Jessome said, explaining that the power generators that will pay to build the so-called Champlain Hudson Power Express found selling their electricity in the New York City marketplace more lucrative than selling it in Connecticut.

Scrapping the Connecticut leg of the project will reduce the cost of the project from $3.8 billion to $1.9 billion, the length of the line from 420 miles to 355, and the amount of electricity transported on it from 2,000 megawatts to 1,000 megawatts, Jessome said.

But the timetable for completion, he said, remains some time in 2015.

The project will begin in southern Quebec and enter the United States with high-voltage direct-current cables buried underneath the Richelieu River, which flows from the north end of Lake Champlain. The cables will be buried along the entire length of Lake Champlain.

A portion of the cable in upstate New York, near Albany, will be buried along a railroad right of way, before going back underwater in the Hudson River. With the Connecticut leg of the project being eliminated, the line will end in Yonkers, N.Y.

The hearing on the project, which was conducted by the U.S. Department of Energy, was attended by fewer than a dozen people.

No one spoke during the public comment portion of the meeting.

Because the line is crossing into the United States from Canada, it needs a special permit, said Jerry Pell, an environmental scientist with the Department of Energy, who was chairman of the hearing.

A representative of Save the Sound, a program of the Connecticut Fund for the Environment, said TDIÂ’s decision illustrates the need for a two-state body charged with coordinating long-term planning and protection of Long Island Sound.

“This project is yet another in a long line of projects.... This was the seventh Long Island Sound energy proposal in fewer than 10 years,” said Leah Schmalz, director of legislative and legal affairs for Save the Sound.

“While, thankfully, we may never need detailed investigation of an environmental-impact statement, nor the rigorous inquiry of independent scientists on the Sound portion of the Champlain Hudson project, we can be sure that we will face another... energy inquiry in future years.”

Related News

Yet another Irish electricity provider is increasing its prices

Electric Ireland Electricity Price Increase stems from rising wholesale costs as energy suppliers adjust tariffs. Customers face higher electricity bills, while gas remains unchanged; switching provider could deliver savings during winter.

 

Key Points

A 4% increase in Electric Ireland electricity prices from 1 Feb 2018, driven by wholesale costs; gas unchanged.

✅ 4% electricity rise effective 1 Feb 2018

✅ Increase attributed to rising wholesale energy costs

✅ Switching supplier may reduce bills and boost savings

 

ELECTRIC IRELAND has announced that it will increase its household electricity prices by 4% from 1 February 2018.

This comes just a week after both Bord Gáis Energy and SSE Airtricity announced increases in their gas and electricity prices, while national efforts to secure electricity supplies continue in parallel.

Electric Ireland has said that the electricity price increase is unavoidable due to the rising wholesale cost of electricity, with EU electricity prices trending higher as well.

The electricity provider said it has no plans to increase residential gas prices at the moment.

Commenting on the latest announcement, Eoin Clarke, managing director of Switcher.ie, said: “This is the third largest energy supplier to announce a price increase in the last week, so the other suppliers are probably not far behind.

“The fact that the rise is not coming into effect until 1 February will be welcomed by Electric Ireland customers who are worried about the rising cost of energy as winter sets in,” he said.

However, any increase is still bad news, especially as a quarter of consumers (27%) say their energy bill already puts them under financial pressure, and EU energy inflation has disproportionately affected lower-income households.

According to Electric Ireland, this will amount to a €2.91 per month increase for an average electricity customer, amounting to €35 per year.

Meanwhile, SSE Airtricity’s change amounts to an increase of 90 cent per week or €46.80 per year for someone with average consumption on their 24hr SmartSaver standard tariff, far below the dramatic Spain electricity price surge seen recently.

Bord Gáis Energy said its announcement will increase a typical gas bill by €2.12 a month and a typical electricity bill by €4.77 a month, reflecting wider trends such as the Germany power price spike reported recently.

In a statement, Bord Gáis Energy said: “The changes, which will take effect from 1st November 2017, are due to significant increases in the wholesale cost of energy as well as higher costs associated with distributing energy on the gas and electricity networks.

“In percentage terms, the increase represents 3.4% in a typical customer’s gas bill and an increase of 5.9% in a typical customer’s electricity bill.”

Clark said that if customers haven’t switched electricity provider in over a year that they should review the deals available at the moment.

“The market is highly competitive so there are huge savings to be made by switching,” he said.

“All suppliers use the same cables to supply electricity to your home, so you don’t need to worry about any loss in service, and you could save up to 324 by switching from typical standard tariffs to the cheapest deals on the market.”

 

Related News

View more

Texas utilities struggle to restore power as Harvey hampers progress

Texas Gulf Coast Power Outages from Harvey continue as flooding, high winds, and downed lines paralyze Houston and coastal utilities, while restoration crews from out-of-state work to repair infrastructure and restore electricity across impacted communities.

 

Key Points

Power disruptions across Houston and the Gulf Coast from Harvey, driven by flooding, wind damage, and blocked access.

✅ CenterPoint warns multi-day outages in flooded zones.

✅ AEP Texas aided by crews from Kentucky, Illinois, Missouri.

✅ Entergy expects more outages as storm nears Galveston.

 

Hundreds of thousands of Texans were without power along the Gulf Coast as Tropical Storm Harvey left parts of the Houston area under water, with extended Houston outages compounding response efforts.

There were roughly 280,000 customers without power along the Texas's coast and in Houston and the surrounding areas on Monday, according to reported outages by the state's investor-owned utilities. Harvey, which made landfall on Friday, caused devastating flooding and knocked out power lines along its destructive path, similar to the Louisiana grid rebuild after Laura that required weeks of restoration.

CenterPoint Energy reported more than 100,000 outages earlier on Monday, though that figure was down to 91,744 shortly after 1 p.m. on Monday.

The company said it was unable to access hard-hit areas until floodwaters recede and electric infrastructure dries out, a challenge that, as seen in Florida power restoration efforts elsewhere, has taken weeks to resolve. Outages in the most flooded areas could last for several days, CenterPoint warned.

AEP Texas's coverage area south of Houston had 150,500 customers without electricity as of 11 a.m. ET on Monday. That was down from the peak of its outages on Saturday afternoon, which affected 220,000 customers.

Former FEMA deputy director: Texas has already begun recovery from storm  1:54 PM ET Mon, 28 Aug 2017 | 05:57

Corpus Christi and the surrounding areas along the Gulf Coast were still experiencing the most outages, while persistent Toronto outages after a spring storm underscored how long recovery can take in urban areas. AEP credited assistance from out-of-state workers for helping to get the lights back on.

"Thousands of resources have arrived from across the country to help AEP Texas with restoration efforts following this historic weather event. Crews from Kentucky, Illinois, Missouri and other states have arrived and are working on restoring power to those impacted by Hurricane Harvey," AEP said in a statement.

Entergy reported 29,500 customers were without power on Monday in areas north of Houston. The company warned that additional outages were expected if Harvey moves inland near the island city of Galveston on Wednesday as anticipated, a pattern similar to New Orleans during Ida where electricity failed despite levees holding.

Houston, Beaumont and Victoria are expected to see continued periods of torrential rain through Tuesday, before Harvey begins to move north on Wednesday and out of the flood zone by Thursday.

"Our crews are safely restoring power as quickly as possible, but the continued wind, rain and flooding are having an impact on restoration efforts," Entergy said in a statement.

South of Houston, about 7,500 Texas New Mexico Power Company customers were still experiencing outages, according to the company's outage map.

 

Related News

View more

B.C. ordered to pay $10M for denying Squamish power project

Greengen Misfeasance Ruling details a B.C. Supreme Court decision awarding $10.125 million over wrongfully denied Crown land and water licence permits for a Fries Creek run-of-river hydro project under a BC Hydro contract.

 

Key Points

A B.C. Supreme Court ruling awarding $10.125M for wrongful denial of Crown land and water licences on Greengen's project.

✅ $10.125M damages for misfeasance in public office

✅ Denial of Crown land tenure and water licence permits

✅ Tied to Fries Creek run-of-river and BC Hydro EPA

 

A B.C. Supreme Court judge has ordered the provincial government to pay $10.125 million after it denied permits to a company that wanted to build a run-of-the river independent power project near Squamish.

In his Oct. 10 decision, Justice Kevin Loo said the plaintiff, Greengen Holdings Ltd., “lost an opportunity to achieve a completed and profitable hydro-electric project” after government representatives wrongfully exercised their legal authority, a transgression described in the ruling as “misfeasance,” with separate concerns reflected in an Ontario market gaming investigation reported elsewhere.

Between 2003 and 2009, the company sought to develop a hydro-electric project on and around Fries Creek, which sits opposite the Brackendale neighbourhood on the other side of the Squamish River. To do so, Greengen Holdings Ltd. required a water licence from the Minister of the Environment and tenure over Crown land from the Minister of Agriculture.

After a lengthy process involving extensive communications between Greengen and various provincial and other ministries and regulatory agencies, the permits were denied, according to Loo. Both decisions cited impacts on Squamish Nation cultural sites that could not be mitigated.

Elsewhere, an Indigenous-owned project in James Bay proceeded despite repeated denials, underscoring varied approaches to community participation.

40-year electricity plan relied on Crown land
The case dates back to December 2005, when BC Hydro issued an open call for power with Greengen. The company submitted a tender several months later.

On July 26, 2006, BC Hydro awarded Greengen an energy purchase agreement, amid evolving LNG electricity demand across the province, under which Greengen would be entitled to supply electricity at a fixed price for 40 years.

Unlike conventional hydroelectric projects, such as new BC generating stations recently commissioned, which store large volumes of water in reservoirs, and in so doing flood large tracts of land, a run of the river project often requires little or no water storage. Instead, from a high elevation, they divert water from a stream or river channel.

Water is then sent into a pressured pipeline known as a penstock, and later passed through turbines to generate electricity, Loo explained, as utilities pursue long-term plans like the Hydro-Québec strategy to reduce fossil fuel reliance. The system returns water to the original stream or river, or into another body of water. 

The project called for most of that infrastructure to be built on Crown land, according to the ruling.

All sides seemed to support the project
In early 2005, company principle Terry Sonderhoff discussed the Fries Creek project in a preliminary meeting with Squamish Nation Chief Ian Campbell.

“Mr. Sonderhoff testified that Chief Campbell seemed supportive of the project at the time,” Loo said.

 

Related News

View more

NB Power launches public charging network for EVs

NB Power eCharge Network expands EV charging in New Brunswick with fast chargers, level 2 stations, Trans-Canada Highway coverage, and green infrastructure, enabling worry-free electric vehicle travel and lower emissions across the province.

 

Key Points

NB Power eCharge Network is a provincewide EV charging system with fast and level 2 stations for reliable travel.

✅ 15 fast-charging sites on Trans-Canada and northern New Brunswick

✅ Level 2 stations at highways, municipalities, and businesses

✅ 20-30 minute DC fast charging; cut emissions ~80% and fuel ~75%

 

NB Power announced Friday the eCharge Network, the province’s first electric vehicle charging network aimed at giving drivers worry-free travel everywhere in the province.

The network includes 15 locations along the province’s busiest highways where both fast-chargers and level-2 chargers will be available. In addition, nine level-2 chargers are already located at participating municipalities and businesses throughout the province. The new locations will be installed by the end of 2017.

NB Power is working with public and private partners to add to the network to enable electric vehicle owners to drive with confidence and to encourage others to make the switch from gas to electric vehicles, supported by a provincial rebate program now available.

“We are incredibly proud to offer our customers and visitors to New Brunswick convenient charging with the launch of our eCharge Network,” said Gaëtan Thomas, president and CEO of NB Power. “Our goal is to make it easy for owners of electric vehicles to drive wherever they choose in New Brunswick, and to encourage more drivers to consider an electric vehicle for their next purchase.”

An electric vehicle owner in New Brunswick can shrink their vehicle carbon footprint by about 80 per cent while reducing their fuel-related costs by about 75 per cent, according to NB Power, and broader grid benefits are being explored through Nova Scotia's vehicle-to-grid pilot across the region.

In addition to the network of standard charging stations, the eCharge network will also include 400 volt fast-charging stations along the Trans-Canada Highway and in the northern parts of New Brunswick. The first of their kind in New Brunswick, these 15 fast-charging stations, similar to Newfoundland and Labrador's newly completed fast-charging network connecting communities, will enable all-electric vehicles to recharge in as little as 20 to 30 minutes. Fast-charge sites will include standard level-2 stations for both battery electric vehicles and plug-in hybrids.

NB Power will install fast-charge and level-2 sites at five locations throughout northern New Brunswick, addressing northern coverage challenges seen elsewhere, such as Labrador's infrastructure gaps today, which will be cost-shared with government. Locations include the areas of Saint-Quentin/Kedgwick, Campbellton, Bathurst, Tracadie, and Miramichi.

“Our government understands that embracing the green economy and reducing our carbon footprint is a priority for New Brunswickers,” said Environment and Local Government Minister Serge Rousselle. “Our climate change action plan calls for a collaborative approach to creating the strategic infrastructure to support electric vehicles throughout all regions in the province, and we are pleased to see this important step underway. New Brunswickers will now have the necessary network to adopt new methods of transportation and contribute to our provincial plan to increase the number of electric vehicles on the road and will help meet emission reduction targets as we work to combat climate change.”

An investment of $500,000 from Natural Resources Canada will go towards purchasing and installing the charging stations for the 10 fast-charging stations along the Trans-Canada Highway.

“The eCharge Network will make it easier for Canadians to choose cleaner options and helps put New Brunswick’s transportation system on a path to a lower-carbon future,” said Moncton-Riverview-Dieppe MP Ginette Petitpas Taylor. “The Government of Canada continues to support green infrastructure in the transportation sector that will advance Canada’s efforts to build a clean economy, create well-paying jobs, and achieve our climate change goals.”

Petitpas Taylor attended for federal Natural Resources Minister Jim Carr.

Fast chargers are being installed at the following locations along the Trans-Canada Highway across New Brunswick:

– Irving Big Stop, Aulac

– Edmundston Truck Stop

– Irving Big Stop, Saint-André

– Johnson Guardian, Perth-Andover

– Murray’s Irving, Woodstock

– Petro-Canada / Acorn Restaurant, Prince William

– Irving Big Stop, Waasis

 

Related News

View more

Melting Glass Experiment Surprises Scientists by Defying a Law of Electricity

Electric Field-Induced Glass Softening reveals a Joule heating anomaly in silicate glass, where anode-side nanoscale alkali depletion drives ionic conduction, localized thermal runaway, melting, and evaporation, challenging homogeneity assumptions and refining materials processing models.

 

Key Points

An effect where electric fields lower glass softening temperature via nanoscale ionic migration and structural change.

✅ Anode-side alkali depletion creates extreme, localized heating

✅ Thermal runaway melts glass near the anode despite uniform bulk

✅ Findings refine Joule heating models and enable new glass processing

 

A team of scientists working with electrical currents and silicate glass have been left gobsmacked after the glass appeared to defy a basic physical law, in a field that also explores electricity-from-air devices for novel energy harvesting.

If you pass an electrical current through a material, the way that current generates heat can be described by Joule's first law. It's been observed time and time again, with the temperature always evenly distributed when the material is homogeneous (or uniform).

But not in this recent experiment. A section - and only a section - of silicate glass became so hot that it melted, and even evaporated. Moreover, it did so at a much lower temperature than the boiling point of the material.

The boiling point of pure silicate glass is 2,230 degrees Celsius (4,046 degrees Fahrenheit). The hottest temperature the researchers recorded in a homogeneous piece of silicate glass during the experiment was 1,868.7 degrees Celsius.

Say whaaaat.

"The calculations did not add up to explain what we were seeing as simply standard Joule heating," said engineer and materials scientist Himanshu Jain of Lehigh University.

"Even under very moderate conditions, we observed fumes of glass that would require thousands of degrees higher temperature than Joule's law could predict!"

Jain and his colleagues from materials science company Corning Incorporated were investigating a phenomenon they had described in a previous paper. In 2015, they reported that an electric field could reduce the temperature at which glass softens, by as much as a few hundred degrees, a line of inquiry that parallels work on low-cost heat-to-electricity materials in energy research. They called this "electric field-induced softening."

 

It was certainly a peculiar phenomenon, so they set up another experiment. They put pieces of glass in a furnace, and applied 100 to 200 volts in the form of both alternating and direct currents.

Next, a thin wisp of vapour emanated from the spot where the anode conveying the current contacted the glass.

"In our experiments, the glass became more than a thousand degrees Celsius hotter near the positive side than in the rest of the glass, which was very surprising considering that the glass was totally homogeneous to begin with," Jain said.

This seems to fly in the face of Joule's first law, so the team investigated more closely - and found that the glass wasn't remaining as homogeneous as it started out. The electric field changed the chemistry and the structure of the glass on nanoscale, in just a small section close to the anode.

This region heats faster than the rest of the glass, to the point of becoming a thermal runaway - where an increase in temperature further increases temperature in a blistering feedback loop.

As it turned out, that spot of structural change and dramatic heat resulted in a small area of glass reaching melting point while the rest of the material remained solid.

"Unlike electronically conducting metals and semiconductors, with time the heating of ionically conducting glass becomes extremely inhomogeneous with the formation of a nanoscale alkali-depletion region, such that the glass melts near the anode, even evaporates, while remaining solid elsewhere," the researchers wrote in their paper.

In other words, the material wasn't homogeneous any more, which means the glass heating experiment doesn't exactly change how we apply Joule's first law.

But it's an exciting result, since until now we didn't know a material could actually lose its homogeneity with the application of an electrical current, with possible implications for thin-film heat harvesters in electronics. (The thing is, no one had tried electrically heating glass to these extreme temperatures before.)

So the physical laws of the Universe are still okay, as a piece of glass hasn't broken them. But Joule's first law may need a bit of tweaking to take this effect into account, a reminder that unconventional energy concepts like nighttime solar cells also challenge our intuitions.

And, of course, it's another piece of understanding that could help us in other ways too, including advances in thermoelectric materials that turn waste heat into electricity.

"Besides demonstrating the need to qualify Joule's law," Jain said, "the results are critical to developing new technology for the fabrication and manufacturing of glass and ceramic materials."

The research has been published in Scientific Reports.

 

Related News

View more

Elon Musk could help rebuild Puerto Rico with solar-powered electricity grid

Puerto Rico Tesla Solar Power enables resilient microgrids using batteries, renewable energy, and energy storage to rebuild the hurricane-damaged grid, reduce fossil fuels, cut costs, and accelerate recovery with scalable solar-plus-storage solutions.

 

Key Points

A solar-plus-storage plan using Tesla microgrids and batteries to restore Puerto Rico's cleaner, resilient power.

✅ Microgrids cut diesel reliance and harden critical facilities.

✅ Batteries stabilize the grid and shave peak demand costs.

✅ Scalable solar enables faster, modular disaster recovery.

 

Puerto Rico’s governor Ricardo Rossello has said that he will speak to Elon Musk after the Tesla inventor said his innovative solar and battery systems could be used to restore electricity on the island.

Mr Musk was mentioned in a tweet, referencing an article discussing ways to restore Puerto Rico’s power grid, which was knocked out by Hurricane Maria on September 20.

Restoring the ageing and already-weakened network has proved slow: as of Friday 90 per cent of the island remained without power. The island’s electricity company was declared bankrupt in July.

Mr Musk was asked: “Could @ElonMusk go in and rebuild #PuertoRico’s electricity system with independent solar & battery systems?”

The South African entrepreneur replied: “The Tesla team has done this for many smaller islands around the world, but there is no scalability limit, so it can be done for Puerto Rico too.

“Such a decision would be in the hands of the PR govt, PUC, any commercial stakeholders and, most importantly, the people of PR.”

His suggestion was seized upon by Mr Rossello, who then tweeted: “@ElonMusk Let's talk. Do you want to show the world the power and scalability of your #TeslaTechnologies?

“PR could be that flagship project.”

Mr Musk replied that he was happy to talk.

Restoring power to the battered island is a priority for the government, and improving grid resilience remains critical, with hospitals still running on generators and the 3.5 million people struggling with a lack of refrigeration or air conditioning.

Radios broadcast messages advising people how to keep their insulin cool, and doctors are concerned about people not being able to access dialysis.

And, with its power grid wiped out, the Caribbean island could totally rethink the way it meets its energy needs, drawing on examples like a resilient school microgrid built locally. 

“This is an opportunity to completely transform the way electricity is generated in Puerto Rico and the federal government should support this,” said Judith Enck, the former administrator for the region with the environmental protection agency.

“They need a clean energy renewables plan and not spending hurricane money propping up the old fossil fuel infrastructure.”

Forty-seven per cent of Puerto Rico’s power needs were met by burning oil last year - a very expensive and outdated method of electricity generation. For the US as a whole, petroleum accounted for just 0.3 per cent of all electricity generated in 2016 even as the grid isn’t yet running on 100% renewable energy nationwide.

The majority of the rest of Puerto Rico’s energy came courtesy of coal and natural gas, with renewables, which later faced pandemic-related setbacks, accounting for only two per cent of electricity generation.

“In that time of extreme petroleum prices, the utility was borrowing money and buying oil in order to keep those plants operating,” said Luis Martinez, a lawyer at natural resources defense council and former special aide to the president of Puerto Rico’s environmental quality board.

“That precipitated the bankruptcy that followed. It was in pretty poor shape before the storm. Once the storm got there, it finished the job.”

But Mr Martinez told the website Earther that it might be difficult to secure the financing for rebuilding Puerto Rico with renewables from FEMA (Federal Emergency Management Agency) funds.

“A lot of distribution lines were on wood poles,” he said.

“Concrete would make them more resistant to winds, but that would potentially not be authorized under the use of FEMA funds.

"We’re looking into if some of those requirements can be waived so rebuilding can be more resilient.”

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.