Charged up for a transmission overhaul

By Calgary Herald


NFPA 70b Training - Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Sitting in the dark is no fun when it's not a deliberate choice.

And without a major revamp of Alberta's aging transmission system, the possibility of unscheduled dark time is growing, say transmission folk.

The transmission grid is electricity's road to get from generation plants to industry, commerce and households, and is regulated by the government, paid for by the public but powered for the main part by private corporations.

The arrangement is part of the province's unique position in Canada of having a fully deregulated power market and never having provincially owned utilities.

So who are the people and agencies that make the power lines hum in a safe, reliable and efficient manner?

They all sing the same mantra of safety, reliability and cost-effectiveness but fall in line at different times in the transmission scenario.

The Alberta Electric System Operator (AESO) takes top billing as the entity that makes the transmission wires flow those electrons in near-perfect order.

It recently announced an ambitious $14.5-billion plan to reinforce the crumbling provincial infrastructure electricity travels on, including a high-voltage, direct-current twin line between Calgary and Edmonton that would tack on about a dollar a month per billion dollars in infrastructure to consumers' bills by 2017.

An extra $14 a month is cheap for a transmission system that will ensure Albertans get all the electricity they need and want, said Dave Allwright, professor at Mount Royal College's Bissett School of Business.

"I think what they're trying to do is build a larger, more robust system that allows for some economies of scale to be built into the alternative generation or other base power generation," he said, calling the existing system decrepit.

The AESO doesn't regulate or own the transmission wires and towers. Instead, the AESO keeps its eyes on the to-and-fro of electrons on the wires, making sure supply and demand are balanced, watching trends and making plans to keep up with them.

"Transmission is an enabler of other industries," said David Erickson, interim president of the AESO.

Erickson pointed out that transmission, which brings with it a huge capital commitment, tends to be built in chunks, the last wave being built more than 25 years ago. This latest plan will tack on costs to all consumers in the province, if approved, but also will ensure new growth can be accommodated, he said.

The AESO's recent long-term vision for transmission includes five projects that are considered critical to keeping the constrained provincial system stable.

The projects target high-demand markets and growth areas of the province, leading with two 500-kilovolt high-capacity lines from Edmonton to Calgary, a 500-kV line from coal-fired power plants outside of Edmonton to a nearby industrial complex and two 500-kV lines to Fort Mc-Murray.

New transmission for southern Alberta also is being planned, driven by wind power, while a massive hydroelectric plan in Slave River could push transmission development in northern Alberta.

The thing about transmission is that it generally takes longer to build than the generation plants it ties into, hence the need to plan big, the AESO says.

Exactly how big, how much, where and when transmission should be put in is determined by the Alberta Utilities Commission.

The AUC regulates the wires and approves or votes on applications for new transmission lines, as well as sets general tariffs, OK's budgets and rates of return for the transmission facility operators.

Since transmission is seen as being a natural monopoly where only a few operators are needed to make the system run, the regulator acts as a surrogate to competition, spokesman Jim Law said.

The AUC establishes the regulated rate charged to all power consumers in the province, balancing utilities' need for a solid return on their investments and the ratepayers, Law said.

It also holds public hearings on needs applications, including for landowners and other stakeholders in the process, as well as the utilities and industrial players.

Once the needs application has been scrutinized and approved, it goes back to the AESO, which then assigns the project to one of four major transmission facility operators in the province; privately owned AltaLink in the south, or ATCO Electric in the north, Calgary utility Enmax or Edmonton utility Epcor.

AltaLink counts on the majority of southern Alberta as its territory and serves about 85 per cent of the province's actual load, spokesman Leigh Clarke said.

"We've got a responsibility to deliver safe, reliable and cost-effective transmission service, and be ready to respond when we get direction from AESO to find the best possible routes for the transmission lines and get them built in the most cost-effective, timely manner that we can," Clarke said.

As a regulated utility, AltaLink earns an 8.75 per cent rate of return on its 35 per cent equity investment in the province's transmission grid. The rest is debt financed, and covered by ratepayers. In fact, operating, maintenance and debt costs are shouldered by all power consumers in the province, as reconciled by the AUC.

ATCO Electric serves about 200,000 customers in the north of the province, operating, maintaining and building power lines and stations. As a transmission facility operator, it is in charge of picking out the best route for a line, hashing out deals with landowners and keeping the environmental footprint down.

"It's up to us to try to minimize the costs and defend the costs in front of the AESO, as well as the regulators," said Sett Policichio, president of ATCO Electric.

The costs from all the transmission facility operators are collected and turned into a tariff by the AESO, with industry picking up most of the costs, since it consumes 61 per cent of the province's power.

"Utilities are very stable, and have a rate of return set by the regulator, so, good times or bad, you know that's what you're going to make," Policichio said.

Once a project has been approved, the transmission facility operator goes back to the regulator for a permitting licence and, if approved, starts breaking ground.

In the meantime, the utility has been communicating with landowners and interested parties, working out compensation as well as alternative routes if directed to by the regulator.

Alberta's Conservative government also is in the picture, most recently with its controversial Bill 50, which would give it the power to determine what transmission is needed when. Supporters say the move was needed to make new transmission happen, while opponents say the bill would take away landowners' rights.

The move to forward Bill 50 comes as the government cut $700,000 in funding for the Utilities Consumer Advocate, which represents residential consumers in rate and facilities hearings.

While Service Alberta Minister Heather Klimchuk said the cuts to the advocate shouldn't affect the office's ability to represent and protect consumers at hearings, Jim Wachowich, spokesman for the Consumers' Coalition of Alberta, questioned the decision.

"The Utilities Consumer Advocate is supposed to be a counter-balance," he said. "There's been a real movement behind the scenes from both the utilities and politicians to say: 'Keep the interveners out of the hearing room. Limit the involvement of independent representatives and consumer representatives' — and this is a concern to us."

Related News

Trump Is Seen Replacing Obama’s Power Plant Overhaul With a Tune-Up

Clean Power Plan Rollback signals EPA's shift to inside-the-fence efficiency at coal plants, emphasizing heat-rate improvements over sector-wide decarbonization, renewables, natural gas switching, demand-side efficiency, and carbon capture under Clean Air Act constraints.

 

Key Points

A policy shift by the EPA to replace broad emissions rules with plant-level efficiency standards, limiting CO2 cuts.

✅ Inside-the-fence heat-rate improvements at coal units

✅ Potential CO2 cuts limited to about 6% per plant

✅ Alternatives: fuel switching, renewables, carbon capture

 

President Barack Obama’s signature plan to reduce carbon dioxide emissions from electrical generation took years to develop and touched every aspect of power production and use, from smokestacks to home insulation.

The Trump administration is moving to scrap that plan and has signaled that any alternative it might adopt would take a much less expansive approach, possibly just telling utilities to operate their plants more efficiently.

That’s a strategy environmentalists say is almost certain to fall short of what’s needed.

The Trump administration is making "a wholesale retreat from EPA’s legal, scientific and moral obligation to address the threats of climate change," said former Environmental Protection Agency head Gina McCarthy, the architect of Obama’s Clean Power Plan.

President Donald Trump promised to rip up the initiative, echoing an end to the 'war on coal' message from his campaign, which mandated that states change their overall power mix, displacing coal-fired electricity with that from wind, solar and natural gas. The EPA is about to make it official, arguing the prior administration violated the Clean Air Act by requiring those broad changes to the electricity sector, according to a draft obtained by Bloomberg.

 

Possible Replacements

Later, the agency will also ask the public to weigh in on possible replacements. The administration will ask whether the EPA can or should develop a replacement rule -- and, if so, what actions can be mandated at individual power plants, though some policymakers favor a clean electricity standard to drive broader decarbonization.

 

Follow the Trump Administration’s Every Move

Such changes -- such as adding automation or replacing worn turbine seals -- would yield at most a 6 percent gain in efficiency, along with a corresponding fall in greenhouse gas emissions, according to earlier modeling by the Environmental Protection Agency and other analysts. That compares to the 32 percent drop in emissions by 2030 under Obama’s Clean Power Plan.

"In these existing plants, there’s only so many places to look for savings," said John Larsen, a director of the Rhodium Group, a research firm. "There’s only so many opportunities within a big spinning machine like that."

EPA Administrator Scott Pruitt outlined such an "inside-the-fence-line" approach in 2014, later embodied in the Affordable Clean Energy rule that industry groups backed, when he served as Oklahoma’s attorney general. Under his blueprint, states would set emissions standards after a detailed unit-by-unit analysis, looking at what reductions are possible given "the engineering limits of each facility."

The EPA has not decided whether it will promulgate a new rule at all, though it has also proposed new pollution limits for coal and gas plants in separate actions. In a forthcoming advanced notice of proposed rulemaking, the EPA will ask "what inside-the-fence-line options are legal, feasible and appropriate," according to a document obtained by Bloomberg.

Increased efficiency at a coal plant -- known as heat-rate improvement -- translates into fewer carbon-dioxide emissions per unit of electric power generated.

Under Obama, the EPA envisioned utilities would make some straightforward efficiency improvements at coal-fired power plants as the first step to comply with the Clean Power Plan. But that was expected to coincide with bigger, broader changes -- such as using more cleaner-burning natural gas, adding more renewable power projects and simply encouraging customers to do a better job turning down their thermostats and turning off their lights.

Obama’s EPA didn’t ask utilities to wring every ounce of efficiency they could out of coal-fired power plants because they saw the other options as cheaper. A plant-specific approach "would be grossly insufficient to address the public health and environmental impacts from CO2 emissions," Obama’s EPA said.

That approach might yield modest emissions reductions and, in a perverse twist, might event have the opposite effect. If utilities make coal plants more efficient -- thereby driving down operating costs -- they also make them more competitive with natural gas and renewables, "so they might run more and pollute more," said Conrad Schneider, advocacy director for the Clean Air Task Force.  

In a competitive market, any improvement in emissions produced for each unit of energy could be overwhelmed by an increase in electrical output, and debates over changes to electricity pricing under Trump and Perry added further uncertainty.

"A very minor heat rate improvement program would very likely result in increased emissions," Schneider said. "It might be worse than nothing."

Power companies want to get as much electricity as possible from every pound of coal, so they already have an incentive to keep efficiency high, said Jeff Holmstead, a former assistant EPA administrator now at Bracewell LLP. But an EPA regulation known as “new source review” has discouraged some from making those changes, for fear of triggering other pollution-control requirements, he said.

"If EPA’s replacement rule allows companies to improve efficiency without triggering new source review, it would make a real difference in terms of reducing carbon-dioxide emissions," Holmstead said.

 

Modest Impact

A plant-specific approach doesn’t have to mean modest impact.

"If you’re thinking about what can be done at the power plants by themselves, you don’t stop at efficiency tune-ups," said David Doniger, director of the Natural Resources Defense Council’s climate and clean air program. "You look at things like switching to natural gas or installing carbon capture and storage."

Requirements that facilities use carbon capture technology or swap in natural gas for coal could actually come close to hitting the same goals as in Obama’s Clean Power Plan -- if not go even further, Schneider said. They just would cost more.

The benefit of the Clean Power Plan "is that it enabled states to create programs and enabled companies to find a reduction strategy that was the most efficient and made the most sense for their own content," said Kathryn Zyla, deputy director of the Georgetown Climate Center. "And that flexibility was really important for the states and companies."

Some utilities, including Houston-based Calpine Corp., PG&E Corp. and Dominion Resources Inc., backed the Obama-era approach. And they are still pushing the Trump administration to be creative now.

"The Clean Power Plan achieved a thoughtful, balanced approach that gave companies and states considerable flexibility on how best to pursue that goal," said Melissa Lavinson, vice president of federal affairs and policy for PG&E’s Pacific Gas and Electric utility. “We look forward to working with the administration to devise an alternative plan for decarbonizing the U.S. economy."

 

Related News

View more

Heat Exacerbates Electricity Struggles for 13,000 Families in America

Energy Poverty in Extreme Heat exposes vulnerable households to heatwaves, utility shutoffs, and unreliable grid infrastructure, straining public health. Community nonprofits, cooling centers, and policy reform aim to improve electricity access, resilience, and affordable energy.

 

Key Points

Without reliable, affordable power in heatwaves, health risks rise and cooling, food storage, and daily needs suffer.

✅ Risks: heat illness, dehydration, and indoor temperatures above 90F

✅ Causes: utility shutoffs, aging grid, unpaid bills, remote areas

✅ Relief: cooling centers, aid programs, weatherization, bill credits

 

In a particular pocket of America, approximately 13,000 families endure the dual challenges of sweltering heat and living without electricity, and the broader risk of summer shut-offs highlights how widespread these pressures have become across the country. This article examines the factors contributing to their plight, the impact of living without electricity during hot weather, and efforts to alleviate these hardships.

Challenges Faced by Families

For these 13,000 families, daily life is significantly impacted by the absence of electricity, especially during the scorching summer months. Without access to cooling systems such as air conditioners or fans, residents are exposed to dangerously high temperatures, which can lead to heat-related illnesses and discomfort, particularly among vulnerable populations such as children, the elderly, and individuals with health conditions, where electricity's role in public health became especially evident.

Causes of Electricity Shortages

The reasons behind the electricity shortages vary. In some cases, it may be due to economic challenges that prevent families from paying utility bills, resulting in disconnections. Other factors include outdated or unreliable electrical infrastructure in underserved communities, as reflected in a recent grid vulnerability report that underscores systemic risks, where maintenance and upgrades are often insufficient to meet growing demand.

Impact of Extreme Heat

During heatwaves, the lack of electricity exacerbates health risks and quality of life issues for affected families, aligning with reports of more frequent outages across the U.S. Furthermore, the absence of refrigeration and cooking facilities can compromise food safety and nutritional intake, further impacting household well-being.

Community Support and Resilience

Despite these challenges, communities and organizations often rally to support families living without electricity. Local nonprofits, community centers, and government agencies provide assistance such as distributing fans, organizing cooling centers, and delivering essentials like bottled water and non-perishable food items during heatwaves to alleviate immediate hardships and improve summer blackout preparedness in vulnerable neighborhoods.

Long-term Solutions

Addressing electricity access issues requires comprehensive, long-term solutions. These may include policy reforms to ensure equitable access to affordable energy, investments in upgrading infrastructure in underserved areas, and expanding financial assistance programs to help families maintain uninterrupted electricity service, in recognition that climate change risks increasingly stress the grid.

Advocacy and Awareness

Advocacy efforts play a crucial role in raising awareness about the challenges faced by families living without electricity and advocating for sustainable solutions. By highlighting these issues, community leaders, activists, and policymakers can work together to drive policy changes, secure funding for infrastructure improvements, and promote energy efficiency initiatives, drawing lessons from Canada's harsh-weather grid exposures that illustrate regional vulnerabilities.

Building Resilience

Building resilience in vulnerable communities involves not only improving access to reliable electricity but also enhancing preparedness for extreme weather events. This includes developing emergency response plans, educating residents about heat safety measures, and fostering community partnerships to support those in need during crises.

Conclusion

As temperatures rise and climate impacts intensify, addressing the plight of families living without electricity becomes increasingly urgent. By prioritizing equitable access to energy, investing in resilient infrastructure, and fostering community resilience, stakeholders can work towards ensuring that all families have access to essential services, even during the hottest months of the year. Collaborative efforts between government, nonprofit organizations, and community members are essential in creating sustainable solutions that improve quality of life and promote health and well-being for all residents.

 

Related News

View more

Hydro-Quebec begins talks for $185-billion strategy to wean the province off fossil fuels

Hydro-Québec $185-Billion Clean Energy Plan accelerates hydroelectric upgrades, wind power expansion, solar and battery storage, pumped storage, and 5,000 km transmission lines to decarbonize Quebec, boost grid resilience, and attract bond financing and Indigenous partnerships.

 

Key Points

Plan to grow renewables, harden the grid, and fund Quebec's decarbonization with major investments.

✅ $110B new generation, $50B grid resilience by 2035

✅ Triple wind, add solar, batteries, and pumped storage

✅ 5,000 km lines, bond financing, Indigenous partnerships

 

Hydro-Québec is in the preliminary stages of dialogue with various financiers and potential collaborators to strategize the implementation of a $185-billion initiative aimed at transitioning Quebec away from fossil fuel dependency.

As the leading hydroelectric power producer in Canada, Hydro-Québec is set to allocate up to $110 billion by 2035 towards the development of new clean energy facilities, building on its hydropower capacity expansion in recent years, with an additional $50 billion dedicated to enhancing the resilience of its power grid, as revealed in a strategy announced last November. The remainder of the projected expenditure will cover operational costs.

This ambitious initiative has garnered significant interest from the financial sector, with the province's recent electricity for industrial projects also drawing attention, as noted by CEO Michael Sabia during a conference call with journalists where the utility's annual financial outcomes were discussed. Sabia reported receiving various proposals to fund the initiative, though specific partners were not disclosed. He expressed confidence in securing the necessary capital for the project's success.

Sabia highlighted three immediate strategies to increase power output: identifying new sites for hydroelectric projects while upgrading turbines at existing facilities, such as the Carillon Generating Station upgrade now underway for enhanced efficiency, expanding wind energy production threefold, and promoting energy conservation among consumers to optimize current power usage.

Additionally, Hydro-Québec aims to augment its solar and battery energy production and is planning to establish a pumped-storage hydroelectric plant to support peak demand periods. The utility also intends to construct 5,000 kilometers of new transmission lines, address Quebec-to-U.S. transmission constraints where feasible, and is set to double its capital expenditure to $16 billion annually, a significant increase from the investment levels during the James Bay hydropower project construction in the 1970s and 1980s.

To fund part of this expansive plan, Hydro-Québec will continue to access the bond market, having issued $3.7 billion in notes to investors last year despite facing several operational hurdles due to adverse weather conditions.

For the year 2023, Hydro-Québec reported a net income of $3.3 billion, marking a 28% decrease from the previous year's record of $4.56 billion. Factors such as insufficient snow cover, reduced spring runoff, and higher temperatures resulted in lower water levels in reservoirs, leading to a reduction in power exports and a $547-million decrease in external market sales compared to the previous year.

The utility experienced its lowest export volume in a decade but managed to leverage hedging strategies to secure 10.3 cents per kWh for exported power to markets including New Brunswick via recent NB Power agreements that expand interprovincial deliveries, nearly twice the average market rate, through forward contracts that cover up to half of its export volume for about a year in advance.

The success of Sabia's plan will partly depend on the cooperation of First Nations communities, as the proposed infrastructure developments are likely to traverse their ancestral territories. Relationships with some communities are currently tense, exemplified by the Innu of Labrador's $4-billion lawsuit against Hydro-Québec for damages related to land flooding for reservoir construction, and broader regional tensions in Newfoundland and Labrador that persist in the power sector.

Sabia has committed to involving First Nations and Inuit communities as partners in clean energy ventures, offering them ongoing financial benefits rather than one-off settlements, a principle he refers to as "economic reconciliation."

Recently, the Quebec government reached an agreement with the Innu of Pessamit, pledging $45 million to support local community development. This agreement outlines solutions for managing a nearby hydropower reservoir, such as the La Romaine complex in the region, and includes commitments for wind energy development.

Sabia is optimistic about building stronger, more positive relationships with various Indigenous communities, anticipating significant progress in the coming months and viewing this year as a potential milestone in transforming these relationships for the better.

 

Related News

View more

Wasteful air conditioning adds $200 to summer energy bills, reveals BC Hydro

BC Hydro Air Conditioning Efficiency Tips help cut energy bills as HVAC use rises. Avoid inefficient portable AC units, set thermostats near 25 C, use fans and window shading, and turn systems off when unoccupied.

 

Key Points

BC Hydro's guidelines to lower summer power bills by optimizing A/C settings, fans, shading, and usage habits at home.

✅ Set thermostats to 25 C; switch off A/C when away

✅ Prefer fans and window shading; close doors/windows in heat

✅ Avoid multiple portable A/C units; choose efficient HVAC

 

BC Hydro is scolding British Columbians for their ineffective, wasteful and costly use of home air conditioners.

In what the electric utility calls “not-so-savvy” behaviour, it says many people are over-spending on air conditioning units that are poorly installed or used incorrectly.

"The majority of British Columbians will spend more time at home this summer because of the COVID-19 pandemic," BC Hydro says in a news release about an August survey of customers.

"With A/C use on the rise, there is evidence British Columbians are not cooling down efficiently, leading to higher summer electricity bills, as extreme heat boosts U.S. bills too this summer."

BC Hydro estimates some customers are shelling out $200 more on their summer energy bills than they need to during a record-breaking 2021 demand year for electricity.

The pandemic is compounding the demand for cool, comfortable air at home. Roughly two in five British Columbians between the ages of 25 and 50 are working from home five days a week.

However, it’s not just COVID-19 that is putting a strain on energy consumption and monthly bills, with drought affecting generation as well today.

About 90 per cent of people who use an air conditioner set it to a temperature below the recommended 25 Celsius, according to BC Hydro.

In fact, one in three people have set their A/C to the determinedly unseasonable temperature of 19 C.

Another 30 per cent are using more than one portable air conditioning unit, which the utility says is considered the most inefficient model on the market, and questions remain about crypto mining electricity use in B.C. today.

The use of air conditioners is steadily increasing in B.C. and has more than tripled since 2001, according to BC Hydro, with all-time high demand also reported in B.C. during recent heat waves. The demand for climate control is particularly high among condo-dwellers since apartments tend to trap heat and stay warmer.

This may explain why one in 10 residents of the Lower Mainland has three portable air conditioning units, and elsewhere Calgary's frigid February surge according to Enmax.

In addition, 30 per cent of people keep the air conditioning on for the sake of their pets while no one is home.

BC Hydro makes these recommendations to save energy and money on monthly bills while still keeping homes cooled during summer’s hottest days, and it also offers a winter payment plan to help manage costs:

Cool homes to 25 C in summer months when home; air conditioning should be turned off when homes are unoccupied.
In place of air conditioning, running a fan for nine hours a day over the summer costs $7.
Shading windows with drapes and blinds can help insulate a home by keeping out 65 per cent of the heat.
If the temperature outside a home is warmer than inside, keep doors and windows closed to keep cooler air inside.
Use a microwave, crockpot or toaster oven to avoid the extra heat produced by larger appliances, such as an oven, when cooking. Hang clothes to dry instead of using a dryer on hot days.

 

Related News

View more

Is Hydrogen The Future For Power Companies?

Hydrogen Energy Transition accelerates green hydrogen, electrolyzers, renewables, and fuel cells, as the EU and US scale decarbonization, NextEra tests hydrogen-to-power, and DOE funds pilots to replace natural gas and cut CO2.

 

Key Points

A shift to deploy green hydrogen tech to decarbonize power, industry, and transport across EU and US energy systems.

✅ EU targets 40 GW electrolyzers plus 40 GW imports by 2030

✅ DOE funds pilots; NextEra trials hydrogen-to-power at Okeechobee

✅ Aims to replace natural gas, enable fuel cells, cut CO2

 

Last month, the European Union set out a comprehensive hydrogen strategy as part of its goal to achieve carbon neutrality for all its industries by 2050. The EU has an ambitious target to build out at least 40 gigawatts of electrolyzers within its borders by 2030 and also support the development of another 40 gigawatts of green hydrogen in nearby countries that can export to the region by the same date. The announcement came as little surprise, given that Europe is regarded as being far ahead of the United States in the shift to renewable energy, even as it looks to catch up on fuel cells with Asian leaders today.

But the hydrogen bug has finally arrived stateside: The U.S. Department of Energy has unveiled the H2@Scale initiative whereby a handful of companies including Cummins Inc. (NYSE: CMI), Caterpillar Inc.(NYSE: CAT), 3M Company (NYSE: MMM), Plug Power Inc.(NASDAQ: PLUG) and EV startup Nikola Corp.(NASDAQ: NKLA), even as the industry faces threats to the EV boom that investors are watching, will receive $64 million in government funding for hydrogen research projects.

Hot on the heels of the DoE initiative: American electric utility and renewable energy giant, NextEra Energy Inc.(NYSE: NEE), has unveiled an equally ambitious plan to start replacing its natural gas-powered plants with hydrogen.

During its latest earnings call, NextEra’s CFO Rebecca Kujawa said the company is “…particularly excited about the long-term potential of hydrogen” and discussed plans to start a pilot hydrogen project at one of its generating stations at Okeechobee Clean Energy Center owned by its subsidiary, Florida Power & Light (FPL). NextEra reported Q2 revenue of $4.2B (-15.5% Y/Y), which fell short of Wall Street’s consensus by $1.12B while GAAP EPS of $2.59 (+1.1% Y/Y) beat estimates by $0.09. The company attributed the big revenue slump to the effects of Covid-19.

Renewable energy and hydrogen stocks have lately become hot property as EV adoption hits an inflection point worldwide, with NEE up 16% in the year-to-date; PLUG +144%, Bloom Energy Corp. (NYSE: BE) +62.8% while Ballard Power Systems (NASDAQ: BLDP) has gained 98.2% over the timeframe.

NextEra’s usual modus operandi involves conducting small experiments with new technologies to establish their cost-effectiveness, a pragmatic approach informed by how electricity changed in 2021 across the grid, before going big if the trials are successful.

CFO Kujawa told analysts:
“Based on our ongoing analysis of the long-term potential of low-cost renewables, we remain confident as ever that wind, solar, and battery storage will be hugely disruptive to the country’s existing generation fleet, while reducing cost for customers and helping to achieve future CO2 emissions reductions. However, to achieve an emissions-free future, we believe that other technologies will be necessary, and we are particularly excited about the long-term potential of hydrogen.”

NextEra plans to test the electricity-to-hydrogen-to-electricity model at its natural gas-powered Okeechobee Clean Energy Center that came online in 2019. Okeechobee is already regarded as one of the cleanest thermal energy facilities anywhere on the globe. However, replacing natural gas with zero emissions hydrogen would be a significant step in helping the company achieve its goal to become 100% emissions-free by 2050.

Kujawa said the company plans to continue evaluating other potential hydrogen opportunities to accelerate the decarbonization of transportation fuel, amid the debate over the future of vehicles between electricity and hydrogen, and industrial feedstock and also support future demand for low-cost renewables.

Another critical milestone: NextEra finished the quarter with a renewables backlog of approximately 14,400 megawatts, its largest in its 20-year development history. To put that backlog into context, NextEra revealed that it is larger than the operating wind and solar portfolios of all but two companies in the world.

Hydrogen Bubble?
That said, not everybody is buying the hydrogen hype.

Barron’s Bill Apton says Wall Street has discovered hydrogen this year and that hydrogen stocks are a bubble, even as hybrid vehicles gain momentum in the U.S. market according to recent reports. Apton says the huge runup by Plug Power, Ballard Energy, and Bloom Energy has left them trading at more than 50x future cash flow, making it hard for them to grow into their steep valuations. He notes that smaller hydrogen companies are up against big players and deep-pocketed manufacturers, including government-backed rivals in China and the likes of Cummins.

According to Apton, it could take a decade or more before environmentally-friendly hydrogen can become competitive with natural gas on a cost-basis, while new ideas like flow battery cars also vie for attention, making hydrogen stocks better long-term picks than the cult stocks they have become.

 

Related News

View more

Experiment Shows We Can Actually Generate Electricity From The Night Sky

Nighttime thermoradiative power converts outgoing infrared radiation into electricity using semiconductor photodiodes, leveraging negative illumination and sky cooling to harvest renewable energy from Earth-to-space heat flow when solar panels rest, regardless of weather.

 

Key Points

Nighttime thermoradiative power converts Earth's outgoing infrared heat into electricity using semiconductor diodes.

✅ Uses negative illumination to tap Earth-to-space heat flow

✅ Infrared semiconductor photodiodes generate small nighttime current

✅ Theoretical output ~4 W/m^2; lab demo reached 64 nW/m^2

 

There's a stark contrast between the freezing temperatures of space and the relatively balmy atmosphere of Earth, and that contrast could help generate electricity, scientists say – and alongside concepts such as space-based solar power, utilizing the same optoelectronic physics used in solar panels. The obvious difference this would have compared with solar energy is that it would work during the night time, a potential source of renewable power that could keep on going round the clock and regardless of weather conditions.

Solar panels are basically large-scale photodiodes - devices made out of a semiconducting material that converts the photons (light particles) coming from the Sun into electricity by exciting electrons in a material such as silicon, while concepts like space solar beaming could complement them during adverse weather.

In this experiment, the photodiodes work 'backwards': as photons in the form of infrared radiation - also known as heat radiation - leave the system, a small amount of energy is produced, similar to how raindrop electricity harvesting taps ambient fluxes in other experiments.

This way, the experimental system takes advantage of what researchers call the "negative illumination effect" – that is, the flow of outgoing radiation as heat escapes from Earth back into space. The setup explained in the new study uses an infrared semiconductor facing into the sky to convert this flow into electrical current.

"The vastness of the Universe is a thermodynamic resource," says one of the researchers, Shanhui Fan from Stanford University in California.

"In terms of optoelectronic physics, there is really this very beautiful symmetry between harvesting incoming radiation and harvesting outgoing radiation."

It's an interesting follow-up to a research project Fan participated in last year: a solar panel that can capture sunlight while also allowing excess heat in the form of infrared radiation to escape into space.

In the new study, this "energy harvesting from the sky" process can produce a measurable amount of electricity, the researchers have shown – though for the time being it's a long way from being efficient enough to contribute to our power grids, but advances in peer-to-peer energy sharing could still make niche deployments valuable.

In the team's experiments they were able to produce 64 nanowatts per square metre (10.8 square feet) of power – only a trickle, but an amazing proof of concept nevertheless. In theory, the right materials and conditions could produce a million times more than that, and analyses of cheap abundant electricity show how rapidly such advances compound, reaching about 4 watts per square metre.

"The amount of power that we can generate with this experiment, at the moment, is far below what the theoretical limit is," says one of the team, Masashi Ono from Stanford.

When you consider today's solar panels are able to generate up to 100-200 watts per square metre, and in China solar is cheaper than grid power across every city, this is obviously a long way behind. Even in its earliest form, though, it could be helpful for keeping low-power devices and machines running at night: not every renewable energy device needs to power up a city.

Now that the researchers have proved this can work, the challenge is to improve the performance of the experimental device. If it continues to show promise, the same idea could be applied to capture energy from waste heat given off by machinery, and results in humidity-powered generation suggest ambient sources are plentiful.

"Such a demonstration of direct power generation of a diode facing the sky has not been previously reported," explain the researchers in their published paper.

"Our results point to a pathway for energy harvesting during the night time directly using the coldness of outer space."

The research has been published in Applied Physics Letters.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified