Hitachi Energy to accelerate sustainable mobility in Germany's biggest city


NFPA 70b Training - Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today

Grid-eMotion Fleet Smart Charging enables BVG Berlin to electrify bus depots with compact grid-to-plug DC infrastructure, smart charging software, and high reliability, accelerating zero-emission electric buses, lower noise, and space-efficient e-mobility.

 

Key Points

Grid-to-plug DC charging for bus depots, with smart software to reliably power zero-emission electric bus fleets.

✅ Up to 60% less space and 40% less cabling than alternatives

✅ DC charging with smart scheduling for depot operations

✅ Scalable, grid-code compliant, low-noise, high reliability

 

Grid-eMotion Fleet smart charging solution to help the City of Berlin reach its goal of a zero-emission bus fleet by 2030

Dubai, UAE: Hitachi Energy has won an order from Berliner Verkehrsbe-triebe (BVG), Germany’s biggest municipal public transportation company, to supply its Grid-eMotionTM Fleet smart charging infrastructure to help BVG transition to sustainable mobility in Berlin, the country’s capital, where an electric flying ferry initiative underscores the city’s e-mobility momentum.

Hitachi Energy will provide a complete Grid-eMotion Fleet grid-to-plug charging infrastructure solution for the next two bus depots to be converted in the bus electrification program. Hitachi Energy’s solution offers the smallest footprint for both the connection, as well as low noise emissions and high reliability that support grid stability across operations – three key requirements for bus depots in a densely populated urban environment, where space is limited and flawless charging is vital to ensure buses run on time.

The solution comprises a connection to the distribution grid, where effective grid coordination streamlines integration, power distribution and DC charging infrastructure with charging points and smart charging systems. Hitachi Energy will perform the engineering and integrate, install and service the entire solution. The solution has a compact and robust design that requires less equipment than competing infrastructure, which results in a small footprint, lower operating and maintenance costs, and higher reliability. Typically, Grid-eMotion Fleet requires 60 percent less space and 40 percent less cabling than alternative charging systems; it also provides superior overall system reliability.

“We are delighted to help the City of Berlin in its transition to quiet and emission-free transportation and a sustainable energy future for the people of this iconic capital,” said Niklas Persson, Managing Director of Hitachi Energy’s Grid Integration business. “We feel the urgency and have the pioneering technology and commitment to advance sustainable mobility, thus improving the quality of life of millions of people.”

BVG operates Germany’s biggest city bus fleet of around 1,500 vehicles, which it aims to make completely electric and emission-free by 2030, and could benefit from vehicle-to-grid pilots to enhance flexibility. This requires the installation of charging infra-structure in its large network of bus depots.

About Grid-eMotion:

Grid-eMotion comprises two unique, innovative solutions – Fleet and Flash. Grid-eMotion Fleet is a grid-code compliant and space-saving grid-to-plug charging solution that can be in-stalled in new and existing bus depots. The charging solution can be scaled flexibly as the fleet gets bigger and greener. It includes a robust and compact grid connection and charging points, and is also available for commercial vehicle fleets, including last-mile delivery and heavy-duty trucks, as electric truck fleets scale up, requiring high power charging of several megawatts. Grid-eMotionTM Flash enables operators to flash-charge buses within seconds at passenger stops and fully recharge within minutes at the route terminus, without interrupting the bus schedule.

Both solutions are equipped with configurable smart charging digital platforms that can be em-bedded with larger fleet and energy management systems, enabling vehicle-to-grid capabilities for bidirectional charging. Additional offerings from Hitachi Energy for EV charging systems consist of e-meshTM energy management and optimization solutions and Lumada APM, EAM and FSM solutions, to help transportation operators make informed decisions that maximize their uptime and improve efficiency.

In the past few months alone, Hitachi Energy has won orders from customers and partners all over the world for its smart charging portfolio – a sign that Grid-eMotion is changing the e-mobility landscape for electric buses and commercial vehicles, as advances in energy storage and mobile charging bolster resilience. Grid-eMotion solutions are al-ready operating or under development in Australia, Canada, China, India, the Middle East, the United States and several countries in Europe.

 

Related News

Related News

Vancouver seaplane airline completes first point-to-point flight with prototype electric aircraft

Harbour Air Electric Seaplane completes a point-to-point test flight, showcasing electric aircraft innovation, zero-emission short-haul travel, H55 battery technology, and magniX propulsion between Vancouver and Victoria, advancing sustainable aviation and urban air mobility.

 

Key Points

Retrofitted DHC-2 Beaver testing zero-emission short-haul flights with H55 batteries and magniX propulsion.

✅ 74 km in 24 minutes, Vancouver to Victoria test route

✅ H55 battery pack and magniX electric motor integration

✅ Aims to certify short-haul, zero-emission commercial service

 

A seaplane airline in Vancouver says it has achieved a new goal in its development of an electric aircraft.

Harbour Air Seaplanes said in a release about its first electric passenger flights timeline that it completed its first direct point-to-point test flight on Wednesday by flying 74 kilometres in 24 minutes from a terminal on the Fraser River near Vancouver International Airport to a bay near Victoria International Airport.

"We're really excited about this project and what it means for us and what it means for the electric aviation revolution to be able to keep pushing that forward," said Erika Holtz, who leads the project for the company.

Harbour Air, founded in 1982, uses small propeller planes to fly commercial flights between the Lower Mainland, Seattle, Vancouver Island, the Gulf Islands and Whistler.

In the last few years it has turned its attention to becoming a leader in green urban mobility, as seen with electric ships on the B.C. coast, which would do away with the need to burn fossil fuels, a major contributor to climate change, for air travel.

In December 2019, a pilot flew one of Harbour Air's planes — a more than 60-year-old DHC-2 de Havilland Beaver floatplane that had been outfitted with a Seattle-based company's electric propulsion system, magniX — for three minutes over Richmond.

Since then, the company has continued to fine-tune the plane and conduct test flights in order to meet federally regulated criteria for Canada's first commercial electric flight, showing it can safely fly with passengers.

Harbour Air's new fully electric seaplane flew over the Fraser River for three minutes today in its debut test flight.
Holtz said flying point-to-point this week was a significant step forward.

"Having this electric aircraft be able to prove that it can do scheduled flights, it moves us that step closer to being able to completely convert our entire fleet to electric," she said.

All the test flights so far have been made with only a pilot on board.

Vancouver seaplane company to resume test flights with electric commercial airplane
The ePlane will stay in Victoria for the weekend as part of an open house put on by the B.C. Aviation Museum before returning to Richmond.

A yellow seaplane flies over a body of water with the Vancouver skyline visible in the background.
A prototype all-electric floatplane made by B.C.'s Harbour Air Seaplanes on a test flight in Vancouver in 2021. (Harbour Air Seaplanes)
Early in Harbour Air's undertaking to develop an all-electric airplane, experts who study the aviation sector said Harbour Air would have to find a way to make the plane light enough to carry heavy lithium batteries and passengers, without exceeding weight limits for the plane.

Werner Antweiler, a professor of economics at UBC's Sauder School of Business who studies the commercialization of novel technologies around mobility, said in 2021 that Harbour Air's challenge would be proving to regulators that the plane was safe to fly and the batteries powerful enough to complete short-haul flights with power to spare.

In April 2021 Harbour Air partnered with Swiss company H55 to incorporate its battery technology, reflecting ongoing research investment to limit weight and improve the distance the plane could fly.

Shawn Braiden, a vice-president with Harbour Air, said the company is trying to get as much power as possible from the lightest possible batteries, a challenge shared by BC Ferries' hybrid ships as well. 

"It's a balancing act," he said.

In December, Harbour Air announced it had begun work on converting a second de Havilland Beaver to an all-electric airplane, copying the original prototype.

The plan is to retrofit version two of the ePlane with room for a pilot plus three passengers. If certified for commercial use, it could become one of the first all-electric commercial passenger planes operating in the world.

Seth Wynes, a post-doctoral fellow at Concordia University who has studied how to de-carbonize the aviation industry, said Harbour Air's progress on its eplane project won't solve the pollution problem of long-haul flights, but could inspire other short-haul airlines to follow suit, alongside initiatives like electric ferries in B.C. that expand low-carbon transportation. 

"It's also just really helpful to pilot these technologies and get them going where they can be scaled up and used in a bunch of different places around the world," he said. "So that's why Harbour Air making progress on this front is exciting."

 

Related News

View more

DOE Issues Two LNG Export Authorizations

DOE LNG Export Approvals expand flexibility for Cheniere's Sabine Pass and Corpus Christi to ship to non-FTA countries, boosting U.S. supply to Europe while advancing methane emissions reductions and strengthening global energy security.

 

Key Points

DOE LNG export approvals authorize Sabine Pass and Corpus Christi to sell full-capacity LNG to non-FTA markets.

✅ Exports allowed to any non-FTA country, including Europe

✅ Capacity covers Sabine Pass and Corpus Christi terminals

✅ DOE targets methane reductions across oil and gas

 

The U.S. Department of Energy (DOE) today issued two long-term orders authorizing liquefied natural gas (LNG) exports from two current operating LNG export projects, Cheniere Energy Inc.’s Sabine Pass in Louisiana and Corpus Christi in Texas, following a recent deep freeze that slammed the American energy sector.

The two orders allow Sabine Pass and Corpus Christi additional flexibility to export the equivalent of 0.72 billion cubic feet per day of natural gas as LNG to any country with which the U.S. does not have a free trade agreement, including all of Europe, such as the UK natural gas market as well.

While U.S. exporters are already exporting at or near their maximum capacity, with today's issuances, every operating U.S. LNG export project has approval from DOE to export its full capacity to any country where not prohibited by U.S. law or policy constraints in place.

The U.S. is now the top global exporter of LNG and exports are set to grow an additional 20% beyond current levels by the end of this year as additional capacity comes online, even as a domestic energy crisis influences electricity and gas markets.  In January 2022, U.S. LNG supplied more than half of the LNG imports into Europe for the month.

With the expected rise in LNG exports, DOE is particularly focused on driving down methane emissions in the oil and gas sector both domestically and abroad, leveraging the deep technical expertise of the Department, and supporting nuclear innovation as well.

U.S. LNG remains an important component to global energy security worldwide and DOE remains committed to finding ways to help our allies and trading partners, including support to Ukraine and others with the energy supplies they need while continuing to work to mitigate the impact of climate change.

 

Related News

View more

Solar Power Becomes EU’s Top Electricity Source

Solar has become the EU’s main source of electricity, marking a historic turning point in Europe’s energy mix as solar power surpasses nuclear and wind, accelerates renewable expansion, lowers carbon emissions, and strengthens the EU’s clean energy transition.

 

Why has Solar Become the EU’s Main Source of Electricity?

Solar has become the EU’s primary source of electricity due to rapid solar expansion, lower installation costs, and robust clean energy policies, which have boosted generation, reduced fossil fuel dependence, and accelerated Europe’s transition toward sustainability.

✅ Surging solar capacity and falling costs

✅ Policy support for renewable energy growth

✅ Reduced reliance on oil, gas, and coal

 

For the first time in history, solar energy became the leading source of electricity generation in the European Union in June 2025, marking a major milestone in the continent’s transition toward renewable energy, as renewables surpassed fossil fuels across the bloc this year. According to new data from Eurostat, more than half of the EU's net electricity production in the second quarter of the year came from renewable sources, with solar power leading the way.

Between April and June 2025, renewables accounted for 54 percent of the EU’s electricity generation, a 1.3 percent increase compared to the same period in 2024. The rise was driven primarily by solar energy, with countries like Germany seeing a solar boost amid the energy crisis, which generated 122,317 gigawatt-hours (GWh) in the second quarter—enough, in theory, to power around three million homes.

Rob Stait, a spokesperson for Alight, one of Europe’s leading solar developers, described the achievement as “heartening.” He said, “Solar’s boom is because it can generate huge energy cost savings, and it's easy and quick to install and scale. A solar farm can be developed in a year, compared to at least five years for wind and at least ten for nuclear. But most importantly, it provides clean, renewable power, and its increased adoption drastically reduces the reliance of Europe on Russian oil and gas supplies.”

Eurostat’s data shows that June 2025 was the first month ever when solar overtook all other energy sources, accounting for 22 percent of the EU’s energy mix, reflecting a broader renewables surge across the region. Nuclear power followed closely at 21.6 percent, wind at 15.8 percent, hydro at 14.1 percent, and natural gas at 13.8 percent.

The shift comes at a critical time as Europe continues to navigate the economic and energy challenges brought on by Russia’s ongoing war in Ukraine. With fossil fuel markets remaining volatile, countries have increasingly viewed investment in renewables as both an environmental and strategic imperative. As Stait noted, energy resilience and renewable infrastructure have now become a “strategic necessity.”

Denmark led the EU in renewable energy generation during the second quarter, producing 94.7% of its electricity from renewable sources. It was followed by Latvia (93.4%), Austria (91.8%), Croatia (89.5%), and Portugal (85.6%). Luxembourg recorded the largest year-on-year increase, up 13.5 percent, largely due to a surge in solar production. Belgium also saw strong growth, with a 9.1 percent rise in renewable generation compared to 2024, while Ireland targets over one-third green electricity within four years.

At the other end of the spectrum, Slovakia, Malta, and the Czech Republic lagged behind, producing just 19.9%, 21.2%, and 22.1% of their electricity from renewable sources, respectively.

Stait believes the continued expansion of renewables will help stabilize and eventually lower electricity prices across Europe. “The accelerated buildout of renewables will ultimately lower bills for both businesses and other users—but slower buildouts mean sky-high prices may linger,” he said.

He added a call for decisive action: “My advice to European nations would be to keep going further and faster. There needs to be political action to solve grid congestion, and to create opportunities for innovation and manufacturing in Europe will be critical to keep momentum.”

With solar energy now taking the lead for the first time, Europe’s clean energy transformation appears to be entering a new phase, as global renewables set new records and momentum builds—one that combines environmental sustainability with energy security and economic opportunity.

 

Related Articles

View more

Alberta Leads Canada’s Renewable Surge

Alberta Leads Canada’s Renewable Surge showcases how the province is transforming its power grid with wind, solar, and hydrogen energy projects that reduce carbon emissions, create sustainable jobs, and drive Canada’s clean electricity future.

 

Key Points: Alberta Leads Canada’s Renewable Surge

It is a national clean energy initiative showcasing Alberta’s leadership in renewable electricity generation, grid modernization, and sustainable economic growth.

✅ Expands solar, wind, and hydrogen projects across Alberta

✅ Reduces emissions while strengthening grid reliability

✅ Creates thousands of clean energy jobs and investments

Alberta is rapidly emerging as a national leader in clean electricity, driving Canada’s transition to a low-carbon energy future. A federal overview highlights how the province has become the powerhouse behind the country’s renewable energy growth across the Prairies, phasing out coal ahead of schedule and attracting billions in clean-energy investment.

In 2023, Alberta accounted for an astonishing 92 percent of Canada’s increase in renewable electricity generation, reflecting a renewable energy surge across the province. Solar and wind developments have expanded dramatically, as new lower-cost solar contracts are signed, reducing the province’s reliance on natural gas and cutting emissions from the power sector. Alberta’s vast land area and strong wind and solar resources have made it an ideal location for large-scale renewable projects that are transforming its energy landscape.

Federal programs are helping fuel this momentum. Through the Smart Renewables and Electrification Pathways program, 49 Alberta projects have already received over $660 million in funding, with an additional $152 million announced in the 2024 federal budget. Flagship developments include the Forty Mile Wind Farm and the Big Sky Solar Power Project, each backed by $25 million in federal support. These investments are creating jobs, strengthening grid reliability, and positioning Alberta at the forefront of Canada’s clean energy transition.

Although fossil fuels still dominate Alberta’s electricity mix, a major change is underway. In 2022, coal and natural gas accounted for 81 percent of electricity generation, while renewables and other sources contributed 18 percent, and the province’s hydroelectric capacity remained comparatively small. However, Alberta has successfully phased out coal generation ahead of the federal deadline, marking a milestone achievement in the province’s decarbonization journey.

Alberta’s renewable expansion features some of the country’s most significant projects. The Travers Solar Project in Vulcan County generates up to 465 megawatts — enough to power about 150,000 homes. Indigenous-led solar initiatives are also expanding, underscoring the province’s solar power growth, supported by $160 million in federal funding that has already created more than 1,500 jobs. On the wind side, the 494-megawatt Buffalo Plains Wind Farm, Canada’s largest onshore installation, began operating in 2024, followed by the 190-megawatt Paintearth Wind facility, which signed a 15-year power purchase agreement with Microsoft.

Beyond wind and solar, Alberta is exploring new technologies to maintain a stable, low-carbon grid while addressing solar expansion challenges related to grid integration. The province is collaborating with Saskatchewan on the development of small modular reactors (SMRs) to provide reliable baseload power and support the long-term shift toward net-zero electricity by 2050. Projects integrating carbon capture and storage are also moving forward, such as the proposed Moraine Power Generating Project — a 465-megawatt natural gas plant that is expected to create more than 700 jobs during construction.

The economic potential of Alberta’s clean energy transformation is substantial. Clean Energy Canada estimates that between 2025 and 2050, the province could gain more than 400,000 new jobs in the clean energy sector — triple the number currently employed in the upstream oil and gas industry. These positions will span renewable generation, hydrogen production, grid modernization, and energy storage.

With strong federal backing, aggressive private investment, and rapid deployment of renewable energy, Alberta is redefining its energy identity. Once known for its fossil fuel resources, the province is now positioning itself as a powerhouse for both green energy and fossil fuels in Canada, demonstrating that economic growth and environmental responsibility can go hand in hand.

 

Related Articles

 

View more

Requests for Proposal launched for purchase of clean electricity in Alberta

Canada Clean Electricity Procurement advances federal operations with renewable energy in Alberta, leveraging RECs, competitive sourcing, Indigenous participation, and grid decarbonization to cut greenhouse gas emissions and stimulate new clean power infrastructure.

 

Key Points

A plan to procure clean power and RECs, cutting emissions in Alberta and attributing use where renewables are absent.

✅ RFPs to source new clean electricity in Alberta

✅ RECs from net new Canadian renewable generation

✅ Mandatory Indigenous participation via equity or set-asides

 

Public Services and Procurement Canada (PSPC) is taking concrete steps to meet the Government of Canada's commitment in the Greening Government Strategy to reduce greenhouse gas emissions from federal government buildings, vehicle fleets and other operations, aligning with broader vehicle electrification trends across Canada.

The Honourable Anita Anand, Minister of Public Services and Procurement, announced the Government of Canada has launched Requests for Proposal to buy new clean electricity in the province of Alberta, which is moving ahead with the retirement of coal power to clean its grid, to power federal operations there.

As well, Canada will purchase Renewable Energy Certificates (REC) from new clean energy generation in Canada. This will enable Canada to attribute its energy consumption as clean in regions where new clean renewable sources are not yet available. The Government of Canada is excited about this opportunity to stimulate net new Canadian clean electricity generation through the procurement of RECs and complementary power purchase agreements that secure long-term supply for federal demand.

Together, these contracts will help to ensure Canada is reducing its greenhouse gas footprint by approximately 133 kilotonnes or 56% of total real property emissions in Alberta. Additionally, the contracts will displace approximately 41 kilotonnes of greenhouse gas emissions from electricity use in the rest of Canada, supporting progress toward 2035 clean electricity goals even as challenges remain.

Through these open, fair and transparent competitive procurement processes, PSPC will be a key purchaser of clean electricity and will support the growth of new clean electricity and renewable power infrastructure, such as recent turbine investments in Manitoba that expand capacity.

The Government of Canada's Clean Electricity Initiative plans to use 100% clean electricity by 2022, where available, in alignment with evolving net-zero electricity regulations that shape supply choices, to reduce greenhouse gas emissions and stimulate growth in clean renewable power infrastructure. PSPC has applied the goals of the Government of Canada's Clean Electricity Initiative to its specific requirement for net new clean electricity generation to power federal operations in Alberta.  

These procurements will support economic opportunities for Indigenous businesses by encouraging participation in the move towards clean energy, seen in provincial shifts toward clean power in Ontario that broaden markets. Each Request for Proposal incorporates mandatory requirements for Indigenous participation through equity holdings or set-asides under the Procurement Strategy for Aboriginal Business.

 

Related News

View more

CEC Allocates $30 Million for 100-Hr Long-Duration Energy Storage Project

California Iron-Air Battery Storage Project delivers 100-hour long-duration energy storage, supported by a $30 CEC grant, using Form Energy technology at a PG&E substation to boost grid reliability, integrate renewables, and cut fossil reliance.

 

Key Points

California's 5 MW/500 MWh iron-air battery delivers 100-hour discharge, boosting reliability and renewable integration.

✅ 5 MW/500 MWh iron-air system at a PG&E substation

✅ 100-hour multiday storage enhances grid reliability

✅ CEC $30M grant backs non-lithium, long-duration tech

 

The California Energy Commission (CEC) has given the green light to a $30 million grant to Form Energy for the construction of an extraordinary long-duration energy storage project that will offer an unparalleled 100 hours of continuous grid discharge.

This ambitious endeavor involves the development of a 5-megawatt (MW) / 500 megawatt-hour iron-air battery storage project, representing the largest long-duration energy storage initiative in California. It also marks the state's inaugural utilization of this cost-effective technology, and joins ongoing procurements by utilities such as San Diego Gas & Electric to expand storage capacity statewide. The project's location is set at a substation owned by the Pacific Gas and Electric Company in Mendocino County, where it will supply power to local residents. The system is scheduled to commence operation by the conclusion of 2025, contributing to grid reliability and showcasing solutions aligned with the state's climate and clean energy objectives.

CEC Chair David Hochschild commented, "A multiday battery system is transformational for California's energy mix. This project will enhance our ability to harness excess renewables during nonpeak hours for use during peak demand, especially as we work toward a goal of 100 percent clean electricity."

This grant award represents one of three approvals within the framework of the CEC's Long-Duration Energy Storage program, a part of Governor Gavin Newsom's historic multi-billion-dollar commitment to combat climate change. This program fosters investment in the demonstration of non-lithium-ion technologies across the state, including green hydrogen microgrids, contributing to the creation of a diverse portfolio of energy storage technologies.

As of August, California had 6,600 MW of battery storage actively deployed statewide, a trend mirrored in regions like Ontario as well, operating within the prevailing industry standard of 4 to 6 hours of discharge. By year-end, this figure is projected to expand to 8,600 MW. Longer-duration storage, spanning from 8 to 100 hours, holds the potential to expedite the state's shift away from fossil fuels while reinforcing grid stability. California estimates that more than 48 gigawatts (GW) of battery storage and 4 GW of long-duration storage will be requisite to achieve the objective of 100 percent clean electricity by 2045.

Energy storage serves as a cornerstone of California's clean energy future, offering a means to capture and store surplus power generated by renewable resources, including emerging virtual power plant models that aggregate distributed assets. The state's battery infrastructure plays a pivotal role during the summer when electricity demand peaks in the early evening hours as solar resources decline, preceding the later surge in wind energy.

Iron-air battery technology operates on the principle of reversible rusting. These battery cells contain iron and air electrodes and are filled with a water-based, nonflammable electrolyte solution. During discharge, the battery absorbs oxygen from the air, converting iron metal into rust. During the charging phase, the application of an electrical current converts the rust back into iron, releasing oxygen. This technology is cost-competitive compared to lithium-ion battery production and complements broader clean energy BESS initiatives seen in New York.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.