Hitachi Energy to accelerate sustainable mobility in Germany's biggest city


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today

Grid-eMotion Fleet Smart Charging enables BVG Berlin to electrify bus depots with compact grid-to-plug DC infrastructure, smart charging software, and high reliability, accelerating zero-emission electric buses, lower noise, and space-efficient e-mobility.

 

Key Points

Grid-to-plug DC charging for bus depots, with smart software to reliably power zero-emission electric bus fleets.

✅ Up to 60% less space and 40% less cabling than alternatives

✅ DC charging with smart scheduling for depot operations

✅ Scalable, grid-code compliant, low-noise, high reliability

 

Grid-eMotion Fleet smart charging solution to help the City of Berlin reach its goal of a zero-emission bus fleet by 2030

Dubai, UAE: Hitachi Energy has won an order from Berliner Verkehrsbe-triebe (BVG), Germany’s biggest municipal public transportation company, to supply its Grid-eMotionTM Fleet smart charging infrastructure to help BVG transition to sustainable mobility in Berlin, the country’s capital, where an electric flying ferry initiative underscores the city’s e-mobility momentum.

Hitachi Energy will provide a complete Grid-eMotion Fleet grid-to-plug charging infrastructure solution for the next two bus depots to be converted in the bus electrification program. Hitachi Energy’s solution offers the smallest footprint for both the connection, as well as low noise emissions and high reliability that support grid stability across operations – three key requirements for bus depots in a densely populated urban environment, where space is limited and flawless charging is vital to ensure buses run on time.

The solution comprises a connection to the distribution grid, where effective grid coordination streamlines integration, power distribution and DC charging infrastructure with charging points and smart charging systems. Hitachi Energy will perform the engineering and integrate, install and service the entire solution. The solution has a compact and robust design that requires less equipment than competing infrastructure, which results in a small footprint, lower operating and maintenance costs, and higher reliability. Typically, Grid-eMotion Fleet requires 60 percent less space and 40 percent less cabling than alternative charging systems; it also provides superior overall system reliability.

“We are delighted to help the City of Berlin in its transition to quiet and emission-free transportation and a sustainable energy future for the people of this iconic capital,” said Niklas Persson, Managing Director of Hitachi Energy’s Grid Integration business. “We feel the urgency and have the pioneering technology and commitment to advance sustainable mobility, thus improving the quality of life of millions of people.”

BVG operates Germany’s biggest city bus fleet of around 1,500 vehicles, which it aims to make completely electric and emission-free by 2030, and could benefit from vehicle-to-grid pilots to enhance flexibility. This requires the installation of charging infra-structure in its large network of bus depots.

About Grid-eMotion:

Grid-eMotion comprises two unique, innovative solutions – Fleet and Flash. Grid-eMotion Fleet is a grid-code compliant and space-saving grid-to-plug charging solution that can be in-stalled in new and existing bus depots. The charging solution can be scaled flexibly as the fleet gets bigger and greener. It includes a robust and compact grid connection and charging points, and is also available for commercial vehicle fleets, including last-mile delivery and heavy-duty trucks, as electric truck fleets scale up, requiring high power charging of several megawatts. Grid-eMotionTM Flash enables operators to flash-charge buses within seconds at passenger stops and fully recharge within minutes at the route terminus, without interrupting the bus schedule.

Both solutions are equipped with configurable smart charging digital platforms that can be em-bedded with larger fleet and energy management systems, enabling vehicle-to-grid capabilities for bidirectional charging. Additional offerings from Hitachi Energy for EV charging systems consist of e-meshTM energy management and optimization solutions and Lumada APM, EAM and FSM solutions, to help transportation operators make informed decisions that maximize their uptime and improve efficiency.

In the past few months alone, Hitachi Energy has won orders from customers and partners all over the world for its smart charging portfolio – a sign that Grid-eMotion is changing the e-mobility landscape for electric buses and commercial vehicles, as advances in energy storage and mobile charging bolster resilience. Grid-eMotion solutions are al-ready operating or under development in Australia, Canada, China, India, the Middle East, the United States and several countries in Europe.

 

Related News

Related News

Major investments by Canada and Quebec in electric vehicle battery assembly

Lion Electric Battery Plant Quebec secures near $100M public investment for an automated battery-pack assembly in Saint-Jérôme, fueling EV manufacturing, R&D, local supply chains, and heavy-duty zero-emission vehicle competitiveness and jobs.

 

Key Points

Automated battery-pack plant in Saint-Jérôme boosting EV manufacturing and strengthening Quebec's supply chain.

✅ $100M joint federal-provincial investment announced

✅ 135 jobs in 2023; 150 more long-term positions

✅ R&D hub to enhance heavy-duty EV battery performance

 

Canadian Prime Minister of Canada, Justin Trudeau, and the Premier of Quebec, François Legault, have announced an equal investment totalling nearly $100 million to Lion Electric, as a B.C. battery plant announcement has done in another province, for the establishment of a highly automated battery-pack assembly plant in Saint–Jérôme, in the Laurentians. This project, valued at nearly $185 million, will create 135 jobs when construction of the plant is completed in 2023. It is also expected that 150 additional jobs will be created over the longer term.

For the announcement, Mr. Trudeau and Mr. Legault were accompanied by the Minister of Innovation, Science and Industry, François-Philippe Champagne, by Quebec's Minister of Economy and Innovation, Pierre Fitzgibbon, and by Marc Bédard, President and Founder of Lion Electric.

The battery packs assembled at the new plant will be used in Lion Electric vehicles. This strategic investment will allow the company to improve its cost structure, and better control the design and shape of its batteries, making it more competitive in the heavy-duty electric vehicle market, as EV assembly deals put Canada in the race. Ultimately, the company will be able to increase the volume of its vehicle production. Lion Electric will be the first Canadian manufacturer of medium and heavy-duty vehicles to have state-of-the-art, automated battery-pack manufacturing facilities.

The company will also establish a research and development innovation centre within its manufacturing plant, which will allow it to test and refine products for future use, including batteries for emergency vehicles such as ambulances. The company will test innovations from research and development, including energy storage capacity and battery performance. The results will make these products more competitive in the North American market, where a Niagara Region battery plant signals growing demand.

The company said it expects to employ 135 people at the plant when it is operational by 2023. It also plans to invest in a research and development facility that could create a number of spinoff jobs.

"When we talk about an economic recovery that's good for workers, for families and for the environment, this is exactly the kind of project we mean," Trudeau said at a news conference in Montreal.

Trudeau toured Lion Electric's factory in Saint-Jérôme, Que., last March, just before the pandemic. (Ryan Remiorz/The Canadian Press)
It was the prime minister's first trip to Montreal in more than a year. He said one of the reasons he decided to attend the announcement was to illustrate the importance of the green economy and how Canada can capitalize on the U.S. EV pivot for future job growth.

The project also aligns with the Legault government's desire to create a supply chain within Quebec that is able to feed the electric vehicle industry, where Canada-U.S. collaboration could accelerate progress.

At Monday's announcement, Economy Minister Pierre Fitzgibbon spoke at length about the province's deposits of lithium and nickel — key components in electric vehicle batteries — as well as its supply of low-emission hydroelectricity.

"If we play our cards right, we could become world leaders in this market of the future," Fitzgibbon said.

Currently, many of those strategic minerals found in Quebec are exported to Asia where they are turned into battery cells, and then imported back to Quebec by companies like Lion, said Mickaël Dollé, a chemistry professor at the Université de Montréal.

By opening a battery assembly plant in Quebec, Lion could help stimulate more cell-makers, such as the Northvolt project near Montreal, to set up shop in the province. Further localizing the supply chain, Dollé said, means better value and a greener product. 

But other countries have the same goal in mind, he said, and the window for the province to establish itself as an important player in the emerging electric vehicle battery industry is closing quickly, as major Ford Oakville deal commitments accelerate competition.

"The decision has to be taken now, or in the coming months, but if we wait too long we may miss our main goal which is to get our own supply chain in Canada," Dollé said.

What's in a name?
Monday's announcement was closely watched in Quebec for what it foretold about the political future as well as the economic one.

By coming to Montreal and touring a vaccination clinic before making the funding announcement, Trudeau fed speculation in the province that he is preparing to call an election soon.

Intrigue also surrounded the informal meeting Trudeau had with Legault on Monday. The Quebec premier and members of his government have repeatedly expressed frustration with Trudeau during the pandemic.

 

Related News

View more

0 to 180 km in 10 minutes: B.C. Hydro rolls out faster electric vehicle charging

B.C. Hydro fast EV charging stations roll out 180 kW DC fast chargers, power sharing, and rural network expansion in Surrey, Manning Park, Mackenzie, and Tumbler Ridge to ease range anxiety across northern B.C.

 

Key Points

180 kW DC chargers with power sharing, expanding B.C.'s rural EV network to cut range anxiety and speed up recharging.

✅ 180 kW DC fast charging: ~180 km added in about 10 minutes

✅ Power sharing enables two vehicles to use one unit simultaneously

✅ Expands rural charging coverage to cut range anxiety for northern B.C.

 

B.C. Hydro has unveiled plans to install new charging stations it says can add as much as 180 kilometres worth of range to the average electric vehicle in 10 minutes.

The utility says the new 180-kilowatt units will be added to its network, expanding stations in southern B.C. as soon as this fall, with even more scheduled to arrive in 2024.

The first communities to get the new faster-charge stations are Surrey, Manning Park and, north of Prince George, Mackenzie and Tumbler Ridge, while the Lillooet fast-charging site is already operational.

B.C. Hydro president Chris O'Riley says both current and prospective electric vehicle owners have said they want improved coverage in more rural parts of the province in order to address range anxiety, as the utility has warned of a potential EV charging bottleneck if demand outpaces infrastructure.

"We are listening to feedback from our customers," he said.

The new stations will also be the first from B.C. Hydro to offer power sharing, which lets two different vehicles use the same unit to charge at the same time.

The adoption of electric vehicles in B.C. is much higher in southern urban areas than rural, northern ones, according to statistics from the provincial government made available in 2022, as the province leads the country in going electric according to recent reports.

The figures showed about one in every 45 people owns a zero-emission vehicle in the southwest regions of the province, but that number drops to one in 232 in the Kootenays, where the region makes electric cars a priority through local initiatives, and one in 414 in northern B.C.

The number of public charging stations closely corresponds to the number of zero-emission vehicles in various regions.

The Vancouver area has more than 500 fast-charging ports, according to ChargeHub, a website that tracks charging stations in North America. 

In contrast, the route from Prince George to Fort Nelson via Dawson Creek along Highway 97, part of the B.C. Electric Highway network connecting the region — a distance of more than 800 kilometres — has just three locations where a vehicle can be charged to 80 per cent power in an hour or less, creating challenges for people hoping to travel the route.

The disparity is also clear in a just-published analysis from the non-profit Community Energy Association, which acts as an advisory group to government associations. 

It found that while there is roughly one charging port every three square kilometres in Metro Vancouver, the number drops to one every 250 square kilometres in the Regional District of East Kootenay and one every 3,500 square kilometres in the Peace River Regional District, in the province's northeast.

"The more infrastructure we can get across the region ... the more the adoption of electric vehicles will increase," said the association's director of transportation initiatives, Danielle Weiss.

"We are excited to hear that B.C. Hydro is also viewing rural areas as a key focus for their new, enhanced charging technology."

B.C. Hydro says it currently has 153 charging units at 84 locations across the province with plans to add an additional 3,000 ports over the next 10 years, with provincial EV charger rebates supporting home and workplace installations as well.

 

Related News

View more

California Wants Cars to Run on Electricity. It’s Going to Need a Much Bigger Grid

California EV mandate will phase out new gas cars, raising power demand and requiring renewable energy, grid upgrades, fast chargers, time-of-use rates, and vehicle-to-grid to stabilize loads and reduce emissions statewide.

 

Key Points

California's order ends new gas-car sales by 2035, driving grid upgrades, charging infrastructure, and cleaner transport.

✅ 25% higher power demand requires new generation and storage

✅ Time-of-use pricing and midday charging reduce grid stress

✅ Vehicle-to-grid and falling battery costs enable reliability

 

Leaning on the hood of a shiny red electric Ford Mustang, California Gov. Gavin Newsom signed an executive order Wednesday to end the sale of new gas-burning cars in his state in 15 years, a move with looming challenges for regulators and industry.

Now comes the hard part.

Energy consultants and academics say converting all passenger cars and trucks to run on electricity in California could raise power demand by as much as 25%. That poses a major challenge to state power grids as California is already facing periodic rolling blackouts as it rapidly transitions to renewable energy.

California will need to boost power generation, scale up its network of fast charging stations, enhance its electric grid to handle the added load and hope that battery technology continues to improve enough that millions in America’s most populous state can handle long freeway commutes to schools and offices without problems.

“We’ve got 15 years to do the work,” said Pedro Pizarro, chief executive of Edison International, owner of Southern California Edison, a utility serving 15 million people in the state. “Frankly the state agencies are going to have to do their part. We’ve got to get to the permitting processes, the approvals; all of that work is going to have to get accelerated to meet [Wednesday’s] target.”

Switching from petroleum fuels to electricity to phase out the internal combustion engine won’t happen all at once—Mr. Newsom’s order applies to sales of new vehicles, so older gas-powered cars will be on the road in California for many years to come. But the mandate means the state will face a growing demand for megawatts.

California is already facing a shortfall of power supplies over the next couple of years. The problem was highlighted last month when a heat wave blanketed the western U.S. and the state’s grid operator instituted rolling blackouts on two occasions.

“It is too early to tell what kind of impact the order will have on our power grid, and we don’t have any specific analysis or projections,” said Anne Gonzalez, a spokeswoman for the California Independent System Operator, which runs the grid.

Currently, California faces a crunchtime in the early evening as solar power falls off and demand to power air conditioners remains relatively high. Car charging presents a new potential issue: what happens if surging demand threatens to crash the grid during peak hours?

Caroline Winn, the chief executive of San Diego Gas & Electric, a utility owned by Sempra Energy that serves 3.6 million people, said there will need to be rules and rates that encourage people to charge their cars at certain times of the day, amid broader control over charging debates.

“We need to get the rules right and the markets right, informed by lessons from 2021, in order to resolve this issue because certainly California is moving that way,” she said.

The grid will need to be upgraded to prepare for millions of new electric vehicles. The majority of people who own them usually charge them at home, which would mean changes to substations and distribution circuits to accommodate multiple homes in a neighborhood drawing power to fill up batteries. The state’s three main investor-owned utilities are spending billions of dollars to harden the grid to prevent power equipment from sparking catastrophic wildfires.


“We have a hell of a lot of work to do nationally. California is ahead of everybody and they have a hell of a lot of work to do,” said Chris Nelder, who studies EV-grid integration at the Rocky Mountain Institute, an energy and environment-policy organization that promotes clean-energy solutions.

Mr. Nelder believes the investment will be worth it, because internal combustion engines generate so much waste heat and emissions of uncombusted hydrocarbons that escape out of tailpipes. Improving energy efficiency by upgrading the electrical system could result in lower bills for customers. “We will eliminate a vast amount of waste from the energy system and make it way more efficient,” he said.

Some see the growth of electric vehicles as an opportunity more than a challenge. In the afternoon, when electricity demand is high but the sun is setting and solar power drops off quickly, batteries in passenger cars, buses and other vehicles could release power back into the electric grid to help grid stability across the system, said Matt Petersen, chairman of the Transportation Electrification Partnership, a public-private effort in Los Angeles to accelerate the deployment of electric vehicles.

The idea is known as “vehicle-to-grid” and has been discussed in a number of countries expanding EV use, including the U.K. and Denmark.

“We end up with rolling batteries that can discharge power when needed,” Mr. Petersen said, adding, “The more electric vehicles we add to the grid, the more renewable energy we can add to the grid.”

One big hurdle for the widespread deployment of electric cars is driving down the cost of batteries to make the cars more affordable. This week, Tesla Inc. Chief Executive Elon Musk said he expected to have a $25,000 model ready by about 2023, signaling a broader EV boom in the U.S.

Shirley Meng, director of the Sustainable Power and Energy Center at the University of California, San Diego, said she believed batteries would continue to provide better performance at a lower cost.

“I am confident the battery technology is ready,” she said. Costs are expected to fall as new kinds of materials and metals can be used in the underlying battery chemistry, dropping prices. “Batteries are good now, and they will be better in the next 10 years.”

John Eichberger, executive director of the Fuels Institute, a nonprofit research group launched by the National Association of Convenience Stores, said he hoped that the California Air Resources Board, which is tasked with developing new rules to implement Mr. Newsom’s order, will slow the timeline if the market and electric build-out is running behind.

“We need to think about these critical infrastructure issues because transportation is not optional,” he said. “How do we develop a system that can guarantee consumers that they can get the energy when they need it?”

 

Related News

View more

U.S. Electric Vehicle Sales Soar Into 2024

U.S. EV Sales Growth reflects rising consumer demand, expanding market share, new tax credits, and robust charging infrastructure, as automakers boost output and quarterly sales under the Inflation Reduction Act drive adoption across states.

 

Key Points

It is the rise in U.S. EV sales and market share, driven by incentives, charging growth, and automaker investment.

✅ Quarterly EV sales and share have risen since Q3 2021.

✅ Share topped 10% in Q3 2023, with states far above.

✅ IRA credits and chargers lower costs and boost adoption.

 

Contrary to any skepticism, the demand for electric vehicles (EVs) in the United States is not dwindling. Data from the Alliance for Automotive Innovation highlights a significant and ongoing increase in EV sales from 2021 through the third quarter of 2023. An upward trend in quarterly sales (depicted as bars on the left axis) and EV sales shares (illustrated by the red line on the right axis) is evident. Sales surged from about 125,000 in Q1 2021 to 185,000 in Q4 2021, and from around 300,000 in Q1 2023 to 375,000 by Q3 2023. Notably, by Q3 2023, annual U.S. EV sales exceeded 1 million for the first time, a milestone often cited as the tipping point for mass adoption in the U.S., marking a 58% increase over the same period in 2022.

EV sales have shown consistent quarterly growth since Q3 2021, and the proportion of EVs in total light-duty vehicle sales is also on the rise. EVs’ share of new sales increased from roughly 3% in Q1 2021 to about 7% in 2022, and further to over 10% in Q3 2023, though they are still behind gas cars in overall market share, for now. For context, according to the U.S. Environmental Protection Agency’s Automotive Trends Report, EVs have reached a 10% market share more quickly than conventional hybrids without a plug, which took about 25 years.

State-level data also indicates that several states exceed national averages in EV sales. California, for example, saw EVs comprising nearly 27% of sales through September 2023, even as a brief Q1 2024 market share dip has been noted nationally. Additionally, 12 states plus the District of Columbia had EV sales shares between 10% and 20% through Q3 2023.

EV sales data by automaker reveal that most companies sold more EVs in Q2 or Q3 2023 than in any previous quarter, mirroring global growth that went from zero to 2 million in five years. Except for Ford, each automaker sold more EVs in the first three quarters of 2023 than in all of 2022. EV sales in Q3 2023 notably increased compared to Q3 2022 for companies like BMW, Tesla, and Volkswagen.

Despite some production scalebacks by Ford and General Motors, these companies, along with others, remain dedicated to an electric future and expect to sell more EVs than ever. The growing consumer interest in EVs is also reflected in recent surveys by McKinsey, J.D. Power, and Consumer Reports, and echoed in Europe where the share of electric cars grew during lockdown months, showing an increasing intent to purchase EVs and a declining interest in gasoline vehicles.

Furthermore, the Inflation Reduction Act of 2022 introduces new tax credits, potentially making EVs more affordable than gasoline counterparts. Investments in charging infrastructure are also expected to increase, especially as EV adoption could drive a 38% rise in U.S. electricity demand, with over $21 billion allocated to boost public chargers from around 160,000 in 2023 to nearly 1 million by 2030.

The shift to EVs is crucial for reducing climate pollution, enhancing public health, and generating economic benefits and jobs, and by 2021 plug-in vehicles had already traveled 19 billion miles on electricity, underscoring real-world progress toward these goals. The current data and trends indicate a robust and positive future for EVs in the U.S., reinforcing the need for strong standards to further encourage investment and consumer confidence in electric vehicles.

 

Related News

View more

The American EV boom is about to begin. Does the US have the power to charge it?

EV Charging Infrastructure accelerates with federal funding, NEVI corridors, and Level 2/3 DC fast charging to cut range anxiety, support apartment dwellers, and scale to 500,000 public chargers alongside tax credits and state mandates.

 

Key Points

The network of public and private hardware, software, and policies enabling reliable Level 2/3 EV charging at scale.

✅ $7,500/$4,000 tax credits spur adoption and charger demand

✅ NEVI funding builds 500,000 public, reliable DC fast chargers

✅ Equity focus: apartment, curbside, bidirectional and inductive tech

 

Speaking in front of a line of the latest electric vehicles (EVs) at this month’s North American International Auto Show, President Joe Biden declared: “The great American road trip is going to be fully electrified.”

Most vehicles on the road are still gas guzzlers, but Washington is betting big on change, with EV charging networks competing to expand as it hopes that major federal investment will help reach a target set by the White House for 50% of new cars to be electric by 2030. But there are roadblocks – specifically when it comes to charging them all. “Range anxiety,” or how far one can travel before needing to charge, is still cited as a major deterrent for potential EV buyers.

The auto industry recently passed the 5% mark of EV market share – a watershed moment, arriving ahead of schedule according to analysts, before rapid growth. New policies at the state and local level could very well spur that growth: the Inflation Reduction Act, which passed this summer, offers tax credits of $4,000 to purchase a used EV and up to $7,500 for certain new ones. In August, California, the nation’s largest state and economy, announced rules that would ban all new gas-powered cars by 2035, as part of broader grid stability efforts in the state. New York plans to follow.

So now, the race is on to provide chargers to power all those new EVs.

The administration’s target of 500,000 public charging units by 2030 is a far cry from the current count of nearly 50,000, according to the Department of Energy’s estimate. And those new chargers will have to be fast – what’s known as Level 2 or 3 charging – and functional in order to create a truly reliable system, even as state power grids face added demands across regions. Today, many are not.

Last week, the White House approved plans for all 50 states, along with Washington DC, and Puerto Rico, to set up chargers along highways, unlocking $1.5bn in federal funding to that end, as US automakers’ charger buildout to complement public funds. The money comes from the landmark infrastructure bill passed last year, which invests $7.5bn for EV charging in total.

But how much of that money is spent is largely going to be determined at the local level, amid control over charging debates among stakeholders. “It’s a difference between policy and practice,” said Drew Lipsher, the chief development officer at Volta, an EV charging provider. “Now that the federal government has these policies, the question becomes, OK, how does this actually get implemented?” The practice, he said, is up to states and municipalities.

As EV demand spikes, a growing number of cities are adopting policies for EV charging construction. In July, the city of Columbus passed an “EV readiness” ordinance, which will require new parking structures to host charging stations proportionate to the number of total parking spots, with at least one that is ADA-accessible. Honolulu and Atlanta have passed similar measures.

One major challenge is creating a distribution model that can meet a diversity of needs.

At the moment, most EV owners charge their cars at home with a built-in unit, which governments can help subsidize. But for apartment dwellers or those living in multi-family homes, that’s less feasible. “When we’re thinking about the largest pieces of the population, that’s where we need to really be focusing our attention. This is a major equity issue,” said Alexia Melendez Martineau, the policy manager at Plug-In America, an EV consumer advocacy group.

Bringing power to people is one such solution. In Hoboken, New Jersey, Volta is working with the city to create a streetside charging network. “The network will be within a five-minute walk of every resident,” said Lipsher. “Hopefully this is a way for us to really import it to cities who believe public EV charging infrastructure on the street is important.” Similarly, in parts of Los Angeles – as in Berlin and London – drivers can get a charge from a street lamp.

And there may be new technologies that could help, exciting experts and EV enthusiasts alike. That could include the roads themselves charging EVs through a magnetizable concrete technology being piloted in Indiana and Detroit. And bidirectional charging, where, similar to solar panels, drivers can put their electricity back into the grid – or perhaps even to another EV, through what’s known as electric vehicle supply equipment (EVSE). Nissan approved the technology for their Leaf model this month.

 

Related News

View more

Will Electric Vehicles Crash The Grid?

EV Grid Readiness means utilities preparing the power grid for electric vehicles with smart charging, demand response, V2G, managed load, and renewable integration to maintain reliability, prevent outages, and optimize infrastructure investment.

 

Key Points

EV Grid Readiness is utilities' ability to support mass EV charging with smart load control, V2G, and grid upgrades.

✅ Managed charging shifts load off-peak to reduce stress and costs

✅ V2G enables EVs to supply power and balance renewables

✅ Utilities plan upgrades, rate design, and demand response

 

There's little doubt that the automobile industry is beginning the greatest transformation it has ever seen as the American EV boom gathers pace. The internal combustion engine, the heart of the automobile for over 100 years, is being phased out in favor of battery electric powered vehicles. 

Industry experts know that it's no longer a question of will electric vehicles take over, the only question remaining is how quickly will it happen. If electric vehicle adoption accelerates faster than many have predicted, can the power grid, and especially state power grids across the country, handle the additional load needed to "fuel" tens of millions of EVs?

There's been a lot of debate on this subject, with, not surprisingly, those opposed to EVs predicting doomsday scenarios including power outages, increased electricity rates, and frequent calls from utilities asking customers to stop charging their cars.

There have also been articles written that indicate the grid will be able to handle the increased power demand needed to fuel a fully electric transportation fleet. Some even explain how electric vehicles will actually help grid stability overall, not cause problems.

So we decided to go directly to the source to get answers. We reached out to two industry professionals that aren't just armchair experts. These are two of the many people in the country tasked with the assignment of making sure we don't have problems as more and more electric vehicles are added to the national fleet. 

"Let's be clear. No one is forcing anyone to stop charging their EV." - Eric Cahill, speaking about the recent request by a California utility to restrict unnecessary EV charging during peak demand hours when possible

Both Eric Cahill, who is the Strategic Business Planner for the Sacramento Municipal Utility District in California, and John Markowitz, the Senior Director and Head of eMobility for the New York Power Authority agreed to recorded interviews so we could ask them if the grid will be ready for millions of EVs.  

Both Cahill and Markowitz explained that, while there will be challenges, they are confident that their respective districts will be ready for the additional power demand that electric vehicles will require. It's also important to note that the states that they work in, California and New York, with California expected to need a much bigger grid to support the transition, have both banned the sale of combustion vehicles past 2035. 

That's important because those states have the most aggressive timelines to transition to an all-electric fleet, and internationally, whether the UK grid can cope is a parallel question, so if they can provide enough power to handle the increased demand, other states should be able to also. 

We spoke to both Cahill and Markowitz for about thirty minutes each, so the video is about an hour long. We've added chapters for those that want to skip around and watch select topics. 

We asked both guests to explain what they believe some of the biggest challenges are, including how energy storage and mobile chargers could help, if 2035 is too aggressive of a timeline to ban combustion vehicles, and a number of other EV charging and grid-related questions. 

Neither of our guests seemed to indicate that they were worried about the grid crashing, or that 2035 was too soon to ban combustion vehicles. In fact, they both indicated that, since they know this is coming, they have already begun the planning process, with proper management in place to ensure the lights stay on and there are no major electricity disruptions caused by people charging their cars. 

So check out the video and let us know your thoughts. This has been a hot topic of discussion for many years now. Now that we've heard from the people in charge of providing us the power to charge our EVs, can we finally put the concerns to rest now? As always, leave your comments below; we want to hear your opinions as well.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.