AMSC signs contract to develop higher power wind energy systems for Chinese market

By Business Wire


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
American Superconductor Corporation, a leading energy technologies company, announced its wholly owned subsidiary, Windtec, has signed a multi-million-dollar wind energy system joint development contract with Sinovel Wind Corporation Limited.

AMSC also has a prior delivery right to sell future electrical components under the same conditions as other suppliers to Sinovel for the wind energy systems covered under the contract, creating a substantial follow-on business opportunity for AMSC. The order significantly expands WindtecÂ’s business with Sinovel. Since 2005, Sinovel has ordered electrical components from Windtec for 785 wind energy systems rated at 1.5 megawatts (MW).

Under the terms of the new contract, Windtec and Sinovel will design and jointly develop 3 and 5 MW wind energy systems that Sinovel plans to market and sell worldwide. Sinovel will have the exclusive ownership and complete industrial and intellectual property rights for large-scale onshore and offshore wind turbines developed under this contract, enabling the company to compete effectively with established leaders in the market. Based in Beijing, Sinovel plans to begin series production of 3 MW systems during 2009 and 5 MW systems the following year.

“AMSC’s Windtec business enabled Sinovel to quickly establish itself in the wind power market,” said Han Junliang, Chairman and President of Sinovel. “We believe the 3 and 5 MW systems we will jointly develop with Windtec will allow Sinovel to grow its market share and position us as a technology leader in the industry. We look forward to benefiting from our expanded relationship with Windtec as we continue to implement our plan to manufacture 500 wind energy systems in 2007, 800 in 2008 and reach an annual capacity of 1,000 wind energy systems in 2010.”

By December 2006, Sinovel had already signed more than $1 billion (US) in contracts to supply domestically made wind energy systems to help meet ChinaÂ’s rising demand for clean energy. According to one of its customers and one of ChinaÂ’s biggest power generation companies, China Huaneng, up to $36 billion (US) may be spent in China by 2020 to increase wind energy capacity to cut pollution. The Chinese government has mandated that at least 70 percent of equipment used in Chinese wind farms must be made in China.

“AMSC’s business in the Asia-Pacific region continues to grow rapidly,” said Greg Yurek, founder and chief executive officer of AMSC. “Sinovel has done a tremendous job of scaling its production capabilities and has emerged as a major wind system manufacturer. We are honored that it has chosen Windtec to aid in expanding its product offerings to 3 and 5 MW systems – a step that will help considerably to meet the renewable energy needs of China.”

According to a recent report from the Global Wind Energy Council, China’s installed base of wind generated electricity grew by 107% in 2006 alone to 2,600 MW. Li Junfeng of the Chinese Renewable Energy Industry Association (CREIA) stated: “Thanks to the Renewable Energy law, the Chinese market has grown substantially in 2006, and this growth is expected to continue and speed up. According to the list of approved projects and those under construction, more than 1,500 MW will be installed in 2007. The goal for wind power in China by the end of 2010 is 5,000 MW, which according to our estimations will already be reached well ahead of time.”

Related News

With New Distributed Energy Rebate, Illinois Could Challenge New York in Utility Innovation

Illinois NextGrid redefines utility, customer, and provider roles with grid modernization, DER valuation, upfront rebates, net metering reform, and non-wires alternatives, leveraging rooftop solar, batteries, and performance signals to enhance reliability and efficiency.

 

Key Points

Illinois NextGrid is an ICC roadmap to value DER and modernize the grid with rebates and non-wires solutions.

✅ Upfront Value-of-DER rebates reward location, time, and performance.

✅ Locational DER reduce peak demand and defer wires and substations.

✅ Encourages non-wires alternatives and data-driven utility planning.

 

How does the electric utility fit in to a rapidly-evolving energy system? That’s what the Illinois Commerce Commission is trying to determine with its new effort, "NextGrid". Together, we’re rethinking the roles of the utility, the customer, and energy solution providers in a 21st-century digital grid landscape.

In some ways, NextGrid will follow in the footsteps of New York’s innovative Reforming the Energy Vision process, a multi-year effort to re-examine how electric utilities and customers interact. A new approach is essential to accelerating the adoption of clean energy technologies and building a smarter electricity infrastructure in the state.

Like REV, NextGrid is gaining national attention for stakeholder-driven processes to reveal new ways to value distributed energy resources (DER), like rooftop solar and batteries. New York and Illinois’ efforts also seek alternatives, such as virtual power plants, to simply building more and more wires, poles, and power plants to meet the energy needs of tomorrow.

Yet, Illinois is may go a few steps beyond New York, creating a comprehensive framework for utilities to measure how DER are making the grid smarter and more efficient. Here is what we know will happen so far.

On Wednesday, April 5, at the second annual Grid Modernization Forum in Chicago, I’ll be discussing why these provisions could change the future of our energy system, including insights on grid modernization affordability for stakeholders.

 

Value of distributed energy

The Illinois Commerce Commission’s NextGrid plans grew out of the recently-passed future energy jobs act, a landmark piece of climate and energy policy that was widely heralded as a bipartisan oddity in the age of Trump. The Future Energy Jobs Act will provide significant new investments in renewables and energy efficiency over the next 13 years, redefine the role and value of rooftop solar and batteries on the grid, and lead to significant greenhouse gas emission reductions.

NextGrid will likely start laying the groundwork for valuing distributed energy resources (DER) as envisioned by the Future Energy Jobs Act, which introduces the concept of a new rebate. Illinois currently has a net metering policy, which lets people with solar panels sell their unused solar energy back to the grid to offset their electric bill. Yet the net metering policy had an arbitrary “cap,” or a certain level after which homes and businesses adding solar panels would no longer be able to benefit from net metering.

Although Illinois is still a few years away from meeting that previous “cap,” when it does hit that level, the new policy will ensure additional DER will still be rewarded. Under the new plan, the Value-of-DER rebate will replace net metering on the distribution portion of a customer’s bill (the charge for delivering electricity from the local substation to your house) with an upfront payment, which credits the customer for the value their solar provides to the local grid over the system’s life. Net metering for the energy supply portion of the bill would remain – i.e. homes and businesses would still be able to offset a significant portion of their electric bills by selling excess energy.

What is unique about Illinois’ approach is that the rebate is an upfront payment, rather than on ongoing tariff or reduced net metering compensation, for example. By allowing customers to get paid for the value solar provides to the system at the time it is installed, in the same way new wires, poles, and transformers would, this upfront payment positions DER investments as equally or more beneficial to customers and the electric grid. This is a huge step not only for regulators, but for utilities as well, as they begin to see distributed energy as an asset to the system.

This is a huge step for utilities, as they begin to see distributed energy as an asset to the system.

The rebate would also factor-in the variables of location, time, and performance of DER in the rebate formula, allowing for a more precise calculation of the value to the grid. Peak electricity demand can stress the local grid, causing wear and tear and failure of the equipment that serve our homes and businesses. Power from DER during peak times and in certain areas can alleviate those stresses, therefore providing a greater value than during times of average demand.

In addition, factoring-in the value of performance will take into account the other functions of distributed energy that help keep the lights on. For example, batteries and advanced inverters can provide support for helping avoid voltage fluctuations that can cause outages and other costs to customers.

 

Related News

View more

New York Faces Soaring Energy Bills

New York faces soaring energy bills as utilities seek record rate hikes, aging grid infrastructure demands upgrades, and federal renewable policies shift. Consumers struggle with affordability, late payments, and rising costs of delivery and energy supply across the state.

 

Why is New York Facing Soaring Energy Bills?

New York faces soaring energy bills because utilities are raising rates to cover the costs of grid upgrades, inflation, and policy-driven changes in energy supply.

✅ Utilities seek double-digit rate hikes across the state

✅ Aging infrastructure and storm repairs increase delivery costs

✅ Federal policies and gas dependence push energy prices higher

New Yorkers are bracing for another wave of energy bill increases as utilities seek record-high rate hikes and policy changes ripple through the state’s power system. Electric bills in New York are the highest they’ve been in over a decade, and more than a million households are now at least two months behind on payments, a sign of pandemic energy insecurity that continues to strain budgets, owing utilities nearly $2 billion.

Record numbers of households have had their electricity or gas shut off this year — more than 61,000 in May alone — despite pandemic shut-off suspensions that had offered temporary relief, the highest the Public Utility Law Project (PULP) has ever recorded. “This August was the group’s busiest month ever,” said Laurie Wheelock, PULP’s executive director, citing a surge in calls to its hotline. “The top concern on people’s minds: rate hikes.”

Utilities across the state are pushing for significant price increases, citing aging infrastructure, the need for climate adaptation, and higher operating costs, as California regulators face calls for action amid rising bills. “We used to see single-digit rate hikes and now we see double-digit rate hikes,” said Jessica Azulay, executive director of the Alliance for a Green Economy. “That’s a new normal that is unacceptable.”

Several utilities have requested delivery rate increases of 25 percent or more, with some proposals as high as 39 percent. Upstate utilities NYSEG and RG&E are seeking to raise electric and gas bills by about $33 a month, although regulators are unlikely to approve the full amount.

The companies argue the hikes are needed “to pay for rebuilding an aging grid and expanding its capacity to meet residents’ and businesses’ service demands,” including storm repairs. They also claim the plan would create more than 1,000 jobs.

James Denn, a spokesperson for the Public Service Commission (PSC), said much of the cost pressure stems from “inflation, higher interest rates, supply chain disruptions, the global push to upgrade electrical infrastructure, and, most recently, the rising risk and uncertainty from tariffs,” trends reflected in U.S. electricity price data over the past two years.

While some have blamed New York’s clean-energy transition, a PSC report found that state climate policies account for only 5 to 9.5 percent of the average household’s electric bill, or approximately $10 to $12 per month. The bulk of the increases still come from traditional spending on infrastructure, storm resilience, and system expansion.

On the supply side, costs are rising too. President Donald Trump’s recent policies have threatened renewable-energy investment nationwide, even as states’ renewable ambitions carry significant costs, potentially adding to New York’s woes. His July “megabill” phases out a 30 percent federal tax credit for solar and wind unless projects begin construction by mid-2026. Industry experts warn that the changes could make renewables “more expensive to build” and “increase reliance on gas.”

“It just means more expensive power,” said Marguerite Wells of the Alliance for Clean Energy New York.

The state estimates Trump’s policy shifts could cost New York $60 billion in lost renewable investment. With fewer clean-energy projects moving forward, gas — which already supplies roughly half of the state’s electricity — will remain the dominant source, tying energy prices to volatile global markets and the kinds of price drivers seen in California in recent years.

Governor Kathy Hochul has called affordability “our greatest short-term challenge,” while consumer advocates are demanding reforms to reduce utility profits and overhaul “rate design,” and to strengthen protections such as the emergency disconnection moratorium that applies during declared emergencies.

“There is definitely a groundswell of concern,” Wheelock said. “We go to meetings and we’re getting questions about rate design, like, ‘What is the revenue decoupling mechanism?’ Never had that question before.”

 

Related Articles

 

View more

New rules give British households right to sell solar power back to energy firms

UK Smart Export Guarantee enables households to sell surplus solar energy to suppliers, with dynamic export tariffs, grid payments, and battery-friendly incentives, boosting local renewable generation, microgeneration uptake, and decarbonisation across Britain.

 

Key Points

UK Smart Export Guarantee pays homes for exporting surplus solar power to the grid via supplier tariffs.

✅ Suppliers must pay households for exported kWh.

✅ Dynamic tariffs incentivize daytime solar generation.

✅ Batteries boost self-consumption and grid flexibility.

 

Britain’s biggest energy companies will have to buy renewable energy from their own customers through community-generated green electricity models under new laws to be introduced this week.

Homeowners who install new rooftop solar panels from 1 January 2020 will be able to lower their bills as many seek to cut soaring bills by selling the energy they do not need to their supplier.

A record was set at noon on a Friday in May 2017, when solar energy supplied around a quarter of the UK’s electricity, and a recent award that adds 10 GW of renewables indicates further growth.

However, solar panel owners are not always at home on sunny days to reap the benefit. The new rules will allow them to make money if they generate electricity for the grid.

Some 800,000 householders with solar panels already benefit from payments under a previous scheme. However, the subsidies were controversially scrapped by the government in April, with similar reduced credits for solar owners seen in other regions, causing the number of new installations to fall by 94% in May from the month before.

Labour accused the government last week of “actively dismantling” the solar industry. The sector will still struggle this summer as the change does not come in for another seven months, so homeowners have no incentive to buy panels this year.

Chris Skidmore, the minister for energy and clean growth, said the government wanted to increase the number of small-scale generators without adding the cost of subsidies to energy bills. “The future of energy is local and the new smart export guarantee will ensure households that choose to become green energy generators will be guaranteed a payment for electricity supplied to the grid,” he said. The government also hopes to encourage homes with solar panels to install batteries to help manage excess solar power on networks.

Greg Jackson, the founder of Octopus Energy, said: “These smart export tariffs are game-changing when it comes to harnessing the power of citizens to tackle climate change”.

A few suppliers, including Octopus, already offer to buy solar power from their customers, often setting terms for how solar owners are paid that reflect market conditions.

“They mean homes and businesses can be paid for producing clean electricity just like traditional generators, replacing old dirty power stations and pumping more renewable energy into the grid. This will help bring down prices for everyone as we use cheaper power generated locally by our neighbours,” Jackson said.

Léonie Greene, a director at the Solar Trade Association, said it was “vital” that even “very small players” were paid a fair price. “We will be watching the market like a hawk to see if competitive offers come forward that properly value the power that smart solar homes can contribute to the decarbonising electricity grid,” she said.

 

Related News

View more

Hydro-Quebec won't ask for rate hike next year

Hydro-Quebec Rate Freeze maintains current electricity rates, aligned with Bill 34, inflation indexing, and energy board oversight, delivering rebates to residential, commercial, and industrial customers and projecting nearly $1 billion in savings across Quebec.

 

Key Points

A Bill 34 policy holding power rates, adding 2020 rebates, and indexing 2021-2024 rates to inflation for Quebec customers.

✅ 2020-21 rates frozen; savings near $1B over five years.

✅ $500M rebate: residential, commercial, industrial shares.

✅ 2021-2024 rates index to inflation; five-year reviews after 2025.

 

Hydro-Quebec Distribution will not file a rate adjustment application with the province’s energy board this year, amid a class-action lawsuit alleging customers were overcharged.

In a statement released on Friday the Crown Corporation said it wants current electricity rates to be maintained for another year, as pandemic-driven demand pressures persist, starting April 1. That is consistent with the recently tabled Bill 34, and echoes Ontario legislation to lower electricity rates in its aims, which guarantees lower electricity rates for Quebecers.

The bill also provides a $500 million rebate in 2020, similar to a $535 million refund previously issued, half of which will go to residential customers while $190 million will go to commercial customers and another $60 million to industrial ones.

Hydro-Quebec said the 2020-21 rate freeze will generate savings of nearly $1 billion for its clients over the next five years, even as Manitoba Hydro scales back increases in a different market.

Bill 34, which was tabled in June, also proposes to set rates based on inflation for the years 2021 to 2024, contrasting with Ontario rate increases over the same period. After 2025 Hydro-Quebec would have to ask the energy board to set new rates every five years, as opposed to the current annual system, while BC Hydro is raising rates by comparison.

 

Related News

View more

Potent greenhouse gas declines in the US, confirming success of control efforts

US SF6 Emissions Decline as NOAA analysis and EPA mitigation show progress, with atmospheric measurements and Greenhouse Gas Reporting verifying reductions from the electric power grid; sulfur hexafluoride's extreme global warming potential underscores inventory improvements.

 

Key Points

A documented drop in US sulfur hexafluoride emissions, confirmed by NOAA atmospheric data and EPA reporting reforms.

✅ NOAA towers and aircraft show 2007-2018 decline

✅ EPA reporting and utility mitigation narrowed inventory gaps

✅ Winter leaks and servicing signal further reduction options

 

A new NOAA analysis shows U.S. emissions of the super-potent greenhouse gas sulfur hexafluoride (SF6) have declined between 2007-2018, likely due to successful mitigation efforts by the Environmental Protection Agency (EPA) and the electric power industry, with attention to SF6 in the power industry across global markets. 

At the same time, significant disparities that existed previously between NOAA’s estimates, which are based on atmospheric measurements, and EPA’s estimates, which are based on a combination of reported emissions and industrial activity, have narrowed following the establishment of the EPA's Greenhouse Gas Reporting Program. The findings, published in the journal Atmospheric Chemistry and Physics, also suggest how additional emissions reductions might be achieved. 

SF6 is most commonly used as an electrical insulator in high-voltage equipment that transmits and distributes electricity, and its emissions have been increasing worldwide as electric power systems expand, even as regions hit milestones like California clean energy surpluses in recent years. Smaller amounts of SF6 are used in semiconductor manufacturing and in magnesium production. 

SF6 traps 25,000 times more heat than carbon dioxide over a 100-year time scale for equal amounts of emissions, and while CO2 emissions flatlined in 2019 globally, that comparison underscores the potency of SF6. That means a relatively small amount of the gas can have a significant impact on climate warming. Because of its extremely large global warming potential and long atmospheric lifetime, SF6 emissions will influence Earth’s climate for thousands of years.

In this study, researchers from NOAA’s Global Monitoring Laboratory, as record greenhouse gas concentrations drive demand for better data, working with colleagues at EPA, CIRES, and the University of Maryland, estimated U.S. SF6 emissions for the first time from atmospheric measurements collected at a network of tall towers and aircraft in NOAA’s Global Greenhouse Gas Reference Network. The researchers provided an estimate of SF6 emissions independent from the EPA’s estimate, which is based on reported SF6 emissions for some industrial facilities and on estimated SF6 emissions for others.

“We observed differences between our atmospheric estimates and the EPA’s activity-based estimates,” said study lead author Lei Hu, a Global Monitoring Laboratory researcher who was a CIRES scientist at the time of the study. “But by closely collaborating with the EPA, we were able to identify processes potentially responsible for a significant portion of this difference, highlighting ways to improve emission inventories and suggesting additional emission mitigation opportunities, such as forthcoming EPA carbon capture rules for power plants, in the future.” 

In the 1990s, the EPA launched voluntary partnerships with the electric power, where power-sector carbon emissions are falling as generation shifts, magnesium, and semiconductor industries to reduce SF6 emissions after the United States recognized that its emissions were significant. In 2011, large SF6 -emitting facilities were required to begin tracking and reporting their emissions under the EPA Greenhouse Gas Reporting Program. 

Hu and her colleagues documented a decline of about 60 percent in U.S. SF6 emissions between 2007-2018, amid global declines in coal-fired power in some years—equivalent to a reduction of between 6 and 20 million metric tons of CO2 emissions during that time period—likely due in part to the voluntary emission reduction partnerships and the EPA reporting requirement. A more modest declining trend has also been reported in the EPA’s national inventories submitted annually under the United Nations Framework Convention on Climate Change. 

Examining the differences between the NOAA and EPA independent estimates, the researchers found that the EPA’s past inventory analyses likely underestimated SF6 emissions from electrical power transmission and distribution facilities, and from a single SF6 production plant in Illinois. According to Hu, the research collaboration has likely improved the accuracy of the EPA inventories. The 2023 draft of the EPA’s U.S. Greenhouse Gas Emissions and Sinks: 1990-2021 used the results of this study to support revisions to its estimates of SF6 emissions from electrical transmission and distribution. 

The collaboration may also lead to improvements in the atmosphere-based estimates, helping NOAA identify how to expand or rework its network to better capture emitting industries or areas with significant emissions, according to Steve Montzka, senior scientist at GML and one of the paper’s authors.

Hu and her colleagues also found a seasonal variation in SF6 emissions from the atmosphere-based analysis, with higher emissions in winter than in summer. Industry representatives identified increased servicing of electrical power equipment in the southern states and leakage from aging brittle sealing materials in the equipment in northern states during winter as likely explanations for the enhanced wintertime emissions—findings that suggest opportunities for further emissions reductions.

“This is a great example of the future of greenhouse gas emission tracking, where inventory compilers and atmospheric scientists work together to better understand emissions and shed light on ways to further reduce them,” said Montzka.

 

Related News

View more

India's electricity demand falls at the fastest pace in at least 12 years

India Industrial Output Slowdown deepens as power demand slumps, IIP contracts, and electricity, manufacturing, and mining weaken; capital goods plunge while RBI rate cuts struggle to lift GDP growth, infrastructure, and fuel demand.

 

Key Points

A downturn where IIP contracts as power demand, manufacturing, mining, and capital goods fall despite RBI rate cuts.

✅ IIP fell 4.3% in Sep, worst since Feb 2013.

✅ Power demand dropped for a third month, signaling weak industry.

✅ Capital goods output plunged 20.7%, highlighting weak investment.

 

India's power demand fell at the fastest pace in at least 12 years in October, signalling a continued decline in the industrial output, mirroring how China's power demand dropped when plants were shuttered, according to government data. Electricity has about 8% weighting in the country's index for industrial production.

India needs electricity to fuel its expanding economy and has at times rationed coal supplies when demand surged, but a third decline in power consumption in as many months points to tapering industrial activity in a nation that aims to become a $5 trillion economy by 2024.

India's industrial output fell at the fastest pace in over six years in September, adding to a series of weak indicators that suggests that the country’s economic slowdown is deep-rooted and interest rate cuts alone may not be enough to revive growth.

Annual industrial output contracted 4.3% in September, government data showed on Monday. It was the worst performance since a 4.4% contraction in February 2013, according to Refinitiv data.

Analysts polled by Reuters had forecast industrial output to fall 2% for the month.

“A contraction of industrial production by 4.3% in September is serious and indicative of a significant slowdown as both investment and consumption demand have collapsed,” said Rupa Rege Nitsure, chief economist of L&T Finance Holdings.

The industrial output figure is the latest in a series of worrying economic data in Asia's third largest economy, which is also the world's third-largest electricity producer as well.

Economists say that weak series of data could mean economic growth for July-September period will remain near April-June quarter levels of 5%, which was a six-year low, and some analysts argue for rewiring India's electricity to bolster productivity. The Indian government is likely to release April-September economic growth figures by the end of this month.

Subdued inflation and an economic slowdown have prompted the Reserve Bank of India (RBI) to cut interest rates by a total of 135 basis points this year, while coal and electricity shortages eased in recent months.

“These are tough times for the RBI, as it cannot do much about it but there will be pressures on it to act ...Blunt tools like monetary policy may not be effective anymore,” Nitsure said.

Data showed in September mining sector fell 8.5%, while manufacturing and electricity fell 3.9% and 2.6% respectively, even as imported coal volumes rose during April-October. Capital goods output during the month fell 20.7%, indicating sluggish demand.

“IIP (Index of Industrial Production) growth in October 2019 is also likely to be in negative territory and only since November 2019 one can expect mild IIP expansion, said Devendra Kumar Pant, Chief Economist and Senior Director, Public Finance, India Ratings & Research (Fitch Group).

Infrastructure output, which comprises eight main sectors, in September showed a contraction of 5.2%, the worst in 14 years, even as global daily electricity demand fell about 15% during pandemic lockdowns.

India's fuel demand fell to its lowest in more than two years in September, with consumption of diesel to its lowest levels since January 2017. Diesel and gasoline together make up over 7.4% of the IIP weightage.

In 2019/20 India's fuel demand — also seen as an indicator of economic and industrial activity — is expected to post the slowest growth in about six years.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified