Power outages disrupt life in India

By San Francisco Chronicle


CSA Z463 Electrical Maintenance -

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
Two 12-hour-long power blackouts shut factories and businesses, disrupted trains and left millions of people without power in and around India's capital recently.

The outages on March 8 and 9 in New Delhi and several neighboring states were blamed on heavy fog and pollution that settled on transmission lines, tripping them when their insulation proved insufficient to handle the conditions, said Shailendra Dubey, chief engineer of the state-run Uttar Pradesh Power Corporation.

Dozens of trains came to a standstill or ran behind schedule, said Amrish Saxena, a railroad official in Lucknow, the capital of Uttar Pradesh state.

Federal Power Secretary Anil Razdan ordered replacement of conventional insulators with polymer insulators in transmission lines to prevent collapse of the power supply in the region, the Hindustan Times newspaper reported.

India faces regular power shortages, particularly in the hot summers when demand rises, sometimes outstripping supply by 25 percent.

Despite more than a decade of rapid economic growth, India's infrastructure still lags far behind, particularly the energy sector needed to fuel the economy, raising concerns it could slow further development.

India needs to build hundreds of new power plants over the next five years to end the massive electricity shortages that threaten the country's rapid economic growth rate.

The government has set a target of generating at least 200,000 megawatts of power by 2012. Currently, the country has a total capacity to produce 130,000 megawatts.

The power sector in the country is mostly run by state governments, which have been slow in adding new capacities because of lack of funds. Although the sector was opened to private capital more than a decade ago, few companies have invested in building new plants because of regulatory bottlenecks.

Currently, 30 to 45 percent of electricity produced in many states is lost in transmission and distribution, according to government figures.

Related News

Cleaning up Canada's electricity is critical to meeting climate pledges

Canada Clean Electricity Standard targets a net-zero grid by 2035, using carbon pricing, CO2 caps, and carbon capture while expanding renewables and interprovincial trade to decarbonize power in Alberta, Saskatchewan, and Ontario.

 

Key Points

A federal plan to reach a net-zero grid by 2035 using CO2 caps, carbon pricing, carbon capture, renewables, and trade.

✅ CO2 caps and rising carbon prices through 2050

✅ Carbon capture required on gas plants in high-emitting provinces

✅ Renewables build-out and interprovincial trade to balance supply

 

A new tool has been proposed in the federal election campaign as a way of eradicating the carbon emissions from Canada’s patchwork electricity system. 

As the country’s need for power grows through the decarbonization of transportation, industry and space heating, the Liberal Party climate plan is proposing a clean energy standard to help Canada achieve a 100% net-zero-electricity system by 2035, aligning with Canada’s net-zero by 2050 target overall. 

The proposal echoes a report released August 19 by the David Suzuki Foundation and a group of environmental NGOs that also calls for a clean electricity standard, capping power-sector emissions, and tighter carbon-pricing regulations. The report, written by Simon Fraser University climate economist Mark Jaccard and data analyst Brad Griffin, asserts that these policies would effectively decarbonize Canada’s electricity system by 2035.

“Fuel switching from dirty fossil fuels to clean electricity is an essential part of any serious pathway to transition to a net-zero energy system by 2050,” writes Tom Green, climate policy advisor to the Suzuki Foundation, in a foreword to the report. The pathway to a net-zero grid is even more important as Canada switches from fossil fuels to electric vehicles, space heating and industrial processes, even as the Canadian Gas Association warns of high transition costs.

Under Jaccard and Griffin’s proposal, a clean electricity standard would be established to regulate CO2 emissions specifically from power plants across Canada. In addition, the plan includes an increase in the carbon price imposed on electricity system releases, combined with tighter regulation to ensure that 100% of the carbon price set by the federal government is charged to electricity producers. The authors propose that the current scheduled carbon price of $170 per tonne of CO2 in 2030 should rise to at least $300 per tonne by 2050.

In Alberta, Saskatchewan, Ontario, New Brunswick and Nova Scotia, the 2030 standard would mean that all fossil-fuel-powered electricity plants would require carbon capture in order to comply with the standard. The provinces would be given until 2035 to drop to zero grams CO2 per kilowatt hour, matching the 2030 standard for low-carbon provinces (Quebec, British Columbia, Manitoba, Newfoundland and Labrador and Prince Edward Island). 

Alberta and Saskatchewan targeted 
Canada has a relatively clean electricity system, as shown by nationwide progress in electricity, with about 80% of the country’s power generated from low- or zero-emission sources. So the biggest impacts of the proposal will be felt in the higher-carbon provinces of Alberta and Saskatchewan. Alberta has a plan to switch from coal-based electric power to natural gas generation by 2023. But Saskatchewan is still working on its plan. Under the Jaccard-Griffin proposal, these provinces would need to install carbon capture on their gas-fired plants by 2030 and carbon-negative technology (biomass with carbon capture, for instance) by 2035. Saskatchewan has been operating carbon capture and storage technology at its Boundary Dam power station since 2014, but large-scale rollout at power plants has not yet been achieved in Canada. 

With its heavy reliance on nuclear and hydro generation, Ontario’s electricity supply is already low carbon. Natural gas now accounts for about 7% of the province’s grid, but the clean electricity standard could pose a big challenge for the province as it ramps up natural-gas-generated power to replace electricity from its aging Pickering station, scheduled to go out of service in 2025, even as a fully renewable grid by 2030 remains a debated goal. Pickering currently supplies about 14% of Ontario’s power. 

Ontario doesn’t have large geological basins for underground CO2 storage, as Alberta and Saskatchewan do, so the report says Ontario will have to build up its solar and wind generation significantly as part of Canada’s renewable energy race, or find a solution to capture CO2 from its gas plants. The Ontario Clean Air Alliance has kicked off a campaign to encourage the Ontario government to phase out gas-fired generation by purchasing power from Quebec or installing new solar or wind power.

As the report points out, the federal government has Supreme Court–sanctioned authority to impose carbon regulations, such as a clean electricity standard, and carbon pricing on the provinces, with significant policy implications for electricity grids nationwide.

The federal government can also mandate a national approach to CO2 reduction regardless of fuel source, encouraging higher-carbon provinces to work with their lower-carbon neighbours. The Atlantic provinces would be encouraged to buy power from hydro-heavy Newfoundland, for example, while Ontario would be encouraged to buy power from Quebec, Saskatchewan from Manitoba, and Alberta from British Columbia.

The Canadian Electricity Association, the umbrella organization for Canada’s power sector, did not respond to a request for comment on the Jaccard-Griffin report or the Liberal net-zero grid proposal.

Just how much more clean power will Canada need? 
The proposal has also kicked off a debate, and an IEA report underscores rising demand, about exactly how much additional electricity Canada will need in coming decades.

In his 2015 report, Pathways to Deep Decarbonization in Canada, energy and climate analyst Chris Bataille estimated that to achieve Canada’s climate net-zero target by 2050 the country will need to double its electricity use by that year.

Jaccard and Griffin agree with this estimate, saying that Canada will need more than 1,200 terawatt hours of electricity per year in 2050, up from about 640 terawatt hours currently.

But energy and climate consultant Ralph Torrie (also director of research at Corporate Knights) disputes this analysis.

He says large-scale programs to make the economy more energy efficient could substantially reduce electricity demand. A major program to install heat pumps and replace inefficient electric heating in homes and businesses could save 50 terawatt hours of consumption on its own, according to a recent report from Torrie and colleague Brendan Haley. 

Put in context, 50 terawatt hours would require generation from 7,500 large wind turbines. Applied to electric vehicle charging, 50 terawatt hours could power 10 million electric vehicles.

While Torrie doesn’t dispute the need to bring the power system to net-zero, he also doesn’t believe the “arm-waving argument that the demand for electricity is necessarily going to double because of the electrification associated with decarbonization.” 

 

Related News

View more

Adani Electricity's Power Supply Cuts in Mumbai

Adani Electricity Mumbai Power Cuts follow non-payment rules, reflecting billing disputes, regulatory compliance, consumer impact, and affordability concerns, while prompting mitigation measures like flexible payment plans, assistance programs, and clearer communication for residents.

 

Key Points

AEML cutoffs for unpaid bills per rules, raising affordability worries, billing issues, and calls for flexible aid.

✅ Triggered by unpaid bills under regulatory guidelines

✅ Affordability and billing transparency concerns raised

✅ Mitigation: flexible plans, aid for low-income users

 

Adani Electricity Mumbai Limited (AEML) recently made headlines by cutting power supply to around 100 homes in Mumbai, sparking discussions about the reasons behind this action and its implications for consumers, especially as reports like the Northeast D.C. outage continue to surface.

Background of the Incident

The power supply disconnections by AEML were reportedly due to non-payment of electricity bills by the affected households. This action, although necessary under AEML's policies and in accordance with regulatory guidelines, has raised concerns about the impact on residents, particularly during challenging economic times when pandemic electricity shut-offs highlighted energy insecurity.

Reasons for Non-Payment

Non-payment of electricity bills can stem from various reasons, including financial hardships, disputes over billing accuracy, or unforeseen circumstances affecting household finances. In Mumbai, where the cost of living is high, utility bills constitute a significant portion of monthly expenses for many households, mirroring trends of rising electricity bills seen elsewhere.

Regulatory and Legal Framework

AEML's decision to disconnect power supply aligns with regulatory provisions governing utility services, which may include emergency disconnection moratoriums in other jurisdictions. Utility companies are mandated to enforce bill payments to maintain operational sustainability and ensure fair distribution of resources among consumers.

Consumer Impact and Response

The power disconnections have prompted reactions from affected residents and consumer advocacy groups, highlighting issues related to affordability, transparency in billing practices, and the need for supportive measures during times of economic distress amid heat-related electricity struggles that pressure vulnerable households.

Mitigation Measures

In response to such incidents, utility companies and regulatory authorities often implement mitigation measures. These may include flexible payment options, financial assistance programs for low-income households, and enhanced communication about billing procedures and payment deadlines, along with policy scrutiny such as utility spending oversight to curb unnecessary costs.

Future Considerations

As cities like Mumbai continue to grow and face challenges related to urbanization and infrastructure development, ensuring reliable and affordable access to essential services like electricity, including efforts to prevent summer power outages, remains a priority. Balancing the operational needs of utility providers with consumer welfare concerns requires ongoing dialogue and proactive measures from all stakeholders.

Conclusion

The power supply cuts by Adani Electricity in Mumbai underscore the complexities of managing utility services in urban centers. While necessary for financial viability and regulatory compliance, such actions also highlight broader issues of affordability and consumer protection. Moving forward, collaborative efforts between utility companies, regulatory authorities, and community stakeholders are essential in addressing these challenges and ensuring equitable access to essential services for all residents.

 

Related News

View more

Survivors of deadly tornadoes may go weeks without heat, water, electricity, Kentucky officials say

Kentucky Tornado Recovery details Mayfield damage, death toll, power outages, boil-water advisories, shelter operations, and emergency response across five states, as crews restore infrastructure, locate missing persons, and support displaced families in frigid temperatures.

 

Key Points

Overview of restoring utilities, repairing infrastructure, and sheltering survivors after Kentucky's tornado disaster.

✅ Power, water, and gas outages persist; boil-water advisories in effect.

✅ Mayfield hardest hit; factory casualties lower than first feared.

✅ Shelter provided in state park lodges; long-term recovery expected.

 

Residents of Kentucky counties where tornadoes killed several dozen people could be without heat, water or electricity in frigid temperatures for weeks or longer, state officials warned Monday, and experiences abroad like Kyiv's difficult winter underscore the risks as the toll of damage and deaths came into clearer focus in five states slammed by the swarm of twisters.

Authorities are still tallying the devastation from Friday's storms, though they believe the death toll will be lower than initially feared since it appeared many more people escaped a candle factory in Mayfield, Ky., than first thought.

At least 88 people — including 74 in Kentucky — were killed by the tornados which also destroyed a nursing home in Arkansas, heavily damaged an Amazon distribution centre in Illinois and spread their deadly effects into Tennessee and Missouri, while ongoing nuclear worker safety concerns highlighted vulnerabilities across critical facilities. Another 105 people were still unaccounted for in Kentucky as of Monday afternoon, Gov. Andy Beshear said.

As searches continued for those still missing, efforts also turned to repairing the power grid, downed line safety education, sheltering those whose homes were destroyed and delivering drinking water and other supplies.

"We're not going to let any of our families go homeless," Beshear said in announcing that lodges in state parks were being used to provide shelter.

In Bowling Green, Ky., 11 people died on the same street, including two infants found among the bodies of five relatives near a residence, Warren County coroner Kevin Kirby said. 

In Mayfield, one of the hardest hit towns, those who survived faced a high around 10 C and a low below freezing Monday without any utilities, and awareness of power strip fire risks is critical as residents turn to makeshift heating and power.

"Our infrastructure is so damaged. We have no running water. Our water tower was lost. Our waste water management was lost, and there's no natural gas to the city. So we have nothing to rely on there," Mayfield Mayor Kathy Stewart O'Nan said on CBS Mornings. "So that is purely survival at this point for so many of our people."

Across the state, about 26,000 homes and businesses were without electricity, according to poweroutage.us, including nearly all of those in Mayfield, and the U.S. grid warning during the pandemic underscored vulnerabilities in critical infrastructure.

More than 10,000 homes and businesses have no water, and another 17,000 are under boil-water advisories, Kentucky Emergency Management Director Michael Dossett told reporters.

Dossett warned that full recovery in the hardest-hit places could take not just months, but years, noting that utilities have at times contemplated on-site staffing to maintain operations during crises.

At least 74 people have been confirmed dead across Kentucky after tornadoes tore through the state, leaving some communities nearly totally destroyed and many residents wondering if they can afford to rebuild. 2:22
"This will go on for years to come," he said. 

Amid broader economic strain, recent debates over Kentucky miners' pay highlight ongoing financial vulnerabilities for workers affected by disasters as well.

Authorities are still trying to determine the total number of dead, and the storms made door-to-door searches impossible in some places. "There are no doors," said Beshear.

"We're going to have over 1,000 homes that are gone, just gone," he said.

Beshear had said Sunday morning that the state's toll could exceed 100. But he later said it might be as low as 50.

'Then he was gone'
Initially as many as 70 people were feared dead in the candle factory in Mayfield, but the company said Sunday that eight were confirmed dead and eight remained missing, while more than 90 others had been located.

"Many of the employees were gathered in the tornado shelter and after the storm was over they left the plant and went to their homes," said Bob Ferguson, a spokesman for the company. "With the power out and no landline they were hard to reach initially. We're hoping to find more of those eight unaccounted as we try their home residences."

 

Related News

View more

Japanese utilities buy into vast offshore wind farm in UK

Japan Offshore Wind Investment signals Japanese utilities entering UK offshore wind, as J-Power and Kansai Electric buy into Innogy's Triton Knoll, leveraging North Sea expertise, 9.5MW turbines, and 15-year fixed-rate contracts.

 

Key Points

Japanese utilities buying UK offshore wind stakes to import expertise, as J-Power and Kansai join Innogy's Triton Knoll.

✅ $900M deal: J-Power 25%, Kansai Electric ~16% in Innogy unit

✅ Triton Knoll: 860MW, up to 90 9.5MW turbines, 15-year fixed PPA

✅ Goal: Transfer North Sea expertise to develop Japan offshore wind

 

Two of Japan's biggest power companies will buy around 40% of a German-owned developer of offshore wind farms in the U.K., seeking to learn from Britain's lead in this sector, as highlighted by a UK offshore wind milestone this week, and bring the know-how back home.

Tokyo-based Electric Power Development, better known as J-Power, will join Osaka regional utility Kansai Electric Power in investing in a unit of Germany's Innogy.

The deal, estimated to be worth around $900 million, will give J-Power a 25% stake and Kansai Electric a roughly 16% share. It will mark the first investment in an offshore wind project by Japanese power companies, as other markets shift strategies, with Poland backing wind over nuclear signaling broader momentum.

Innogy plans to start up the 860-megawatt Triton Knoll offshore wind project -- one of the biggest of its kind in the world -- in the North Sea in 2021. The vast installation will have up to 90 9.5MW turbines and sell its output to local utilities under a 15-year fixed-rate contract.

J-Power, which supplies mainly fossil-fuel-based electricity to Japanese regional utilities, will set up a subsidiary backed by the government-run Development Bank of Japan to participate in the Innogy project. Engineers will study firsthand construction and maintenance methods.

While land-based wind turbines are proliferating worldwide, offshore wind farms have progressed mainly in Europe, though U.S. offshore wind competitiveness is improving in key markets. Installed capacity totaled more than 18,000MW at the end of 2017, which at maximum capacity can produce as much power as 18 nuclear reactors.

Japan has hardly any offshore wind farms in commercial operation, and has little in the way of engineering know-how in this field or infrastructure for linking such installations to the land power grid, with a recent Japan grid blackout analysis underscoring these challenges. But there are plans for a total of 4,000MW of offshore wind power capacity, including projects under feasibility studies.

J-Power set up a renewable energy division in June to look for opportunities to expand into wind and geothermal energy in Japan, and efforts like a Japan hydrogen energy system are emerging to support decarbonization. Kansai Electric also seeks know-how for increasing its reliance on renewable energy, even as it hurries to restart idled nuclear reactors.

They are not the only Japanese investors is in this field. In Asia, trading house Marubeni will invest in a Taiwanese venture with plans for a 600MW offshore wind farm.

 

Related News

View more

NTPC bags order to supply 300 MW electricity to Bangladesh

NTPC Bangladesh Power Supply Tender sees NVVN win 300 MW, long-term cross-border electricity trade to BPDB, enabled by 500 MW HVDC interconnection; rivals included Adani, PTC, and Sembcorp in the competitive bidding process.

 

Key Points

It is NTPC's NVVN win to supply 300 MW to Bangladesh's BPDB for 15 years via a 500 MW HVDC link.

✅ NVVN selected as L1 for short and long-term supply

✅ 300 MW to BPDB; delivery via India-Bangladesh HVDC link

✅ Competing bidders: Adani, PTC, Sembcorp

 

NTPC, India’s biggest electricity producer in a nation that is now the third-largest electricity producer globally, on Tuesday said it has won a tender to supply 300 megawatts (MW) of electricity to Bangladesh for 15 years.

Bangladesh Power Development Board (BPDP), in a market where Bangladesh's nuclear power is expanding with IAEA assistance, had invited tenders for supply of 500 MW power from India for short term (1 June, 2018 to 31 December, 2019) and long term (1 January, 2020 to 31 May, 2033). NTPC Vidyut Vyapar Nigam (NVVN), Adani Group, PTC and Singapore-bases Sembcorp submitted bids by the scheduled date of 11 January.

Financial bid was opened on 11 February, the company said in a statement, amid rising electricity prices domestically. “NVVN, wholly-owned subsidiary of NTPC Limited, emerged as successful bidder (L1), both in short term and long term for 300 MW power,” it said.

Without giving details of the rate at which power will be supplied, NTPC said supply of electricity is likely to commence from June 2018 after commissioning of 500 MW HVDC inter-connection project between India and Bangladesh, and as the government advances nuclear power initiatives to bolster capacity in the sector. India currently exports approximately 600 MW electricity to Bangladesh even as authorities weigh coal rationing measures to meet surging demand domestically.

 

Related News

View more

Parked Electric Cars Earn $1,530 From Europe's Power Grids

Vehicle-to-Grid Revenue helps EV owners earn income via V2G, demand response, and ancillary services by exporting stored energy, supporting grid balancing, smart charging, and renewable integration with two-way charging infrastructure.

 

Key Points

Income EV owners earn by selling battery power to the grid for balancing, response, and flexibility services.

✅ Earn up to about $1,530 annually in Denmark trials

✅ Requires V2G-compatible EVs and two-way smart chargers

✅ Provides ancillary services and supports renewable integration

 

Electric car owners are earning as much as $1,530 a year just by parking their vehicle and feeding excess power back into the grid, effectively selling electricity back to the grid under V2G schemes.

Trials in Denmark carried out by Nissan and Italy’s biggest utility Enel Spa showed how batteries inside electric cars could, using vehicle-to-grid technology, help balance supply and demand at times and provide a new revenue stream for those who own the vehicles.

Technology linking vehicles to the grid marks another challenge for utilities already struggling to integrate wind and solar power into their distribution system. As the use of plug-in cars spreads, grid managers will have to pay closer attention and, with proper management, to when motorists draw from the system and when they can smooth variable flows.

For example, California's grid stability efforts include leveraging EVs as programs expand.

“If you blindingly deploy in the market a massive number of electric cars without any visibility or control over the way they impact the electricity grid, you might create new problems,” said Francisco Carranza, director of energy services at Nissan Europe in an interview with Bloomberg New Energy Finance.


 

While the Tokyo-based automaker has trials with more than 100 cars across Europe, only those in Denmark are able to earn money by feeding power back into the grid. There, fleet operators collected about 1,300 euros ($1,530) a year using the two-way charge points, said Carranza.

Restrictions on accessing the market in the U.K. means the company needs to reach about 150 cars before they can get paid for power sent back to the grid. That could be achieved by the end of this year, he said.

“It’s feasible,” he said. “It’s just a matter of finding the appropriate business model to deploy the business wide-scale.’’

Electric car demand globally is expected to soar, challenging state power grids and putting further pressure on grid operators to find new ways of balancing demand. Power consumption from vehicles will grow to 1,800 terawatt-hours in 2040 from just 6 terawatt-hours now, according to Bloomberg New Energy Finance.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified