New Brunswick energy sector in flux

By New Brunswick Telegraph-Journal


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
The chairman of a Senate committee charting a vision for Canada's energy sector is anxiously awaiting the findings of a commission examining New Brunswick's uncertain situation.

Quebec's Conservative Senator David Angus said the province has an uphill battle to fight at the provincial utility, which makes a report by the energy commission run by co-chairmen Bill Thompson and Jeannot Volpe particularly "interesting".

"Things are in a state of flux," Angus said, after a day of hearings in Saint John.

"New Brunswick has a big hole to dig out, in terms of the financing of New Brunswick Power and their debt load."

Senators from the standing committee on energy, the environment and natural resources heard from a civil servant at NB Power, industry people, professors, politicians and an environmental group, part of a regional tour ahead of their report on a future national energy strategy.

They peppered Keith Cronkhite, NB Power executive director of business development and strategic adviser, on the long-delayed Point Lepreau nuclear plant refurbishment, among other issues.

Cronkhite said Point Lepreau, slated to be back online by the fall of 2012, will be a "key contributor" to rate stability going forward at a time when fuel costs are rising along with the operating costs of provincial companies, which are crying for lower power rates.

"New Brunswick is one of the most electricity-intensive economies of the world," Cronkhite said, pointing out New Brunswick companies that operate in forest products, mining and petroleum industries compete with firms in provinces and states in North America with lower power rates.

"It is therefore important that NB Power improves or maintains its electricity rate competitiveness with these jurisdictions."

Because of its electricity-intensive industries, New Brunswick's economy is second-most reliant on electricity in Canada — behind Quebec — and among the top five most electricity-intensive economies in the world.

But due to a drop in demand, NB Power can supply the province's needs for the next 15-20 years, Cronkhite said.

Still, the Crown utility has to address aging infrastructure, he said, adding that the Canadian Electricity Association predicts the power and utilities sector in Canada will invest more than $220 billion between 2007 and 2030 in utility infrastructure renewal.

The Point Lepreau refurbishment, the largest renewal project on the books for the province right now, is more than three years behind schedule and upward of $1 billion over budget.

Conservative B.C. Senator Richard Neufeld wondered whether with Point Lepreau operating, New Brunswick would be a net importer or exporter of energy.

Cronkhite said that except during winter, the province would be exporting 300-400 megawatts of power when Point Lepreau comes back online.

Liberal Senator Grant Mitchell, from Alberta, asked whether New Brunswick had aggressive plans to reduce carbon emissions like its neighbour, Nova Scotia, which wants 25 per cent of its electricity to come from renewable sources by 2015.

Cronkhite said carbon dioxide reductions are more relevant "on a federal scale," and that the province cannot prematurely close down its coal and thermal facilities without "having a serious impact on rates."

The coal-fired power plant in Belledune isn't slated to shut down until 2038, he said.

After a day of meetings, Premier David Alward met the senators in a closed-door session with Energy Minister Craig Leonard, Environment Minister Margaret- Ann Blaney and Natural Resources Minister Bruce Northrup.

Leonard said the top issue during the wide-ranging discussion was regional collaboration on energy senators were interested in New Brunswick's take on Nalcor Energy's massive 824-megawatt Muskrat Falls hydroelectric project planned for Labrador — part of Newfoundland's Lower Churchill Project.

"It would provide a new source of energy for us and certainly there would be some transmission opportunities there as well," Leonard said, adding the region could benefit from working together on system operation and energy efficiency.

Related News

Canada and Manitoba invest in new turbines

Manitoba Clean Electricity Investment will upgrade hydroelectric turbines, expand a 230 kV transmission network, and deliver reliable, affordable low-carbon power, reducing greenhouse gas emissions and strengthening grid reliability across Portage la Prairie and Winnipeg River.

 

Key Points

Joint federal-provincial funding to upgrade hydro turbines and build a 230 kV grid, boosting reliable, low-carbon power.

✅ $314M for new turbines at Pointe du Bois (+52 MW capacity)

✅ $161.6M for 230 kV transmission in Portage la Prairie

✅ Cuts Brandon Generating Station emissions by ~37%

 

The governments of Canada and Manitoba have announced a joint investment of $475.6 million to strengthen Manitoba’s clean electricity grid that can support neighboring provinces with clean power and ensure continued supply of affordable and reliable low-carbon energy.

This federal-provincial investment provides $314 million for eight new hydroelectric turbines at the 75 MW Pointe du Bois Generating Station on the Winnipeg River, as well as $161.6 million to build a new 230 kV transmission network in the Portage la Prairie area, bolstering power sales to SaskPower and regional reliability.

The $314 million joint investment in the Pointe du Bois Renewable Energy Project includes $114.1 million from the Government of Canada and nearly $200 million from the Government of Manitoba. The joint investment will enable Manitoba Hydro to replace eight generating units that are at the end of their lifecycle, amid looming new generation needs for the province. The new, more efficient units will increase the capacity of the Pointe du Bois generating station by 52 MW.

The $161.6 million joint investment in the Portage Area Capacity Enhancement project includes $70.9 million from the Government of Canada and $90.6 million from the Government of Manitoba. The joint investment will support the construction of a new transmission line to enhance reliability for customers across southwest Manitoba and help Manitoba Hydro meet increasing demand, with projections that demand could double over the next two decades. By decreasing Manitoba’s reliance on its last grid-connected fossil-fuel generating station, this investment will reduce greenhouse gas emissions at the Brandon Generating Station by about 37%.

The federal government’s total contribution of $184.9 million is provided through the Green Infrastructure Stream of the Investing in Canada Plan, alongside efforts to improve interprovincial grid integration such as NB Power agreements with Hydro-Quebec that strengthen regional reliability. This federal funding is conditional on meeting Indigenous consultation requirements, as well as environmental assessment obligations. Including today’s announcement, the Green Infrastructure Stream has supported 38 infrastructure projects in Manitoba, for a total federal contribution of more than $766.8 million and a total provincial contribution of over $658.4 million.

“A key part of our economic plan is making Canada a clean electricity superpower. Today’s announcement in Manitoba will deliver clean, reliable, and affordable electricity to people and businesses across the province—and we will continue working to expand our clean electricity grid and create great careers for people from coast to coast to coast,” said Deputy Prime Minister and Finance Minister Chrystia Freeland.

The federal government will continue to invest in making Canada a clean electricity superpower, supporting provincial initiatives like Hydro-Quebec's fossil-free strategy that complement these investments to ensure Canadians from coast to coast to coast have the affordable and reliable clean electricity they need today and for generations to come.

“Manitoba Hydro is extremely pleased to be receiving this federal funding through the Green Infrastructure Stream of the Investing in Canada Infrastructure Program. The investments we are making in both these critical infrastructure projects will help provide Manitobans with energy for life and power our province’s economic growth with clean, reliable, renewable hydroelectricity. These projects build on our legacy of investments in renewable energy over the past 100 years, as we work towards a lower carbon future for all Manitobans,” said Jay Grewal, president and chief executive officer of Manitoba Hydro.

About 97% of Manitoba’s electricity is generated from clean hydro, with most of the remaining 3% coming from wind generation. Manitoba’s abundant clean electricity has resulted in Manitobans paying 9.455 ¢/kWh — the second-lowest electricity rate in Canada, though limits on serving new energy-intensive customers have been flagged recently.

 

Related News

View more

Europe Stores Electricity in Natural Gas Pipes

Power-to-gas converts surplus renewable electricity into green hydrogen or synthetic methane via electrolysis and methanation, enabling seasonal energy storage, grid balancing, hydrogen injection into gas pipelines, and decarbonization of heat, transport, and industry.

 

Key Points

Power-to-gas turns excess renewable power into hydrogen or methane for storage, grid support, and clean fuel.

✅ Enables hydrogen injection into existing natural gas networks

✅ Balances grids and provides seasonal energy storage capacity

✅ Supplies low-carbon fuels for industry, heat, and heavy transport

 

Last month Denmark’s biggest energy firm, Ørsted, said wind farms it is proposing for the North Sea will convert some of their excess power into gas. Electricity flowing in from offshore will feed on-shore electrolysis plants that split water to produce clean-burning hydrogen, with oxygen as a by-product. That would supply a new set of customers who need energy, but not as electricity. And it would take some strain off of Europe’s power grid as it grapples with an ever-increasing share of hard-to-handle EU wind and solar output on the grid.

Turning clean electricity into energetic gases such as hydrogen or methane is an old idea that is making a comeback as renewable power generation surges and crowds out gas in Europe. That is because gases can be stockpiled within the natural gas distribution system to cover times of weak winds and sunlight. They can also provide concentrated energy to replace fossil fuels for vehicles and industries. Although many U.S. energy experts argue that this “power-to-gas” vision may be prohibitively expensive, some of Europe’s biggest industrial firms are buying in to the idea.

European power equipment manufacturers, anticipating a wave of renewable hydrogen projects such as Ørsted’s, vowed in January that, as countries push for hydrogen-ready power plants across Europe, all of their gas-fired turbines will be certified by next year to run on up to 20 percent hydrogen, which burns faster than methane-rich natural gas. The natural gas distributors, meanwhile, have said they will use hydrogen to help them fully de-carbonize Europe’s gas supplies by 2050.

Converting power to gas is picking up steam in Europe because the region has more consistent and aggressive climate policies and evolving electricity pricing frameworks that support integration. Most U.S. states have goals to clean up some fraction of their electricity supply; coal- and gas-fired plants contribute a little more than a quarter of U.S. greenhouse gas emissions. In contrast, European countries are counting on carbon reductions of 80 percent or more by midcentury—reductions that will require an economywide switch to low-carbon energy.

Cleaning up energy by stripping the carbon out of fossil fuels is costly. So is building massive new grid infrastructure, including transmission lines and huge batteries, amid persistent grid expansion woes in parts of Europe. Power-to-gas may be the cheapest way forward, complementing Germany’s net-zero roadmap to cut electricity costs by a third. “In order to reach the targets for climate protection, we need even more renewable energy. Green hydrogen is perceived as one of the most promising ways to make the energy transition happen,” says Armin Schnettler, head of energy and electronics research at Munich-based electric equipment giant Siemens.

Europe already has more than 45 demonstration projects to improve power-to-gas technologies and their integration with power grids and gas networks. The principal focus has been to make the electrolyzers that convert electricity to hydrogen more efficient, longer-lasting and cheaper to produce.

The projects are also scaling up the various technologies. Early installations converted a few hundred kilowatts of electricity, but manufacturers such as Siemens are now building equipment that can convert 10 megawatts, which would yield enough hydrogen each year to heat around 3,000 homes or fuel 100 buses, according to financial consultancy Ernst & Young.

The improvements have been most dramatic for proton-exchange membrane electrolyzers, which are akin to the fuel cells used in hydrogen vehicles (but optimized to produce hydrogen rather than consume it). The price of proton-exchange electrolyzers has dropped by roughly 40 percent during the past decade, according to a study published in February in Nature Energy. They are also five times more compact than older alkaline electrolysis plants, enabling onsite hydrogen production near gas consumers, and they can vary their power consumption within seconds to operate on fluctuating wind and solar generation.

Many European pilot projects are demonstrating “methanation” equipment that converts hydrogen to methane, too, which can be used as a drop-in replacement for natural gas. Europe’s electrolyzer plants, however, are showing that methanation is not as critical to the power-to-gas vision as advocates long believed. Many electrolyzers are injecting their hydrogen directly into natural gas pipelines—something that U.S. gas firms forbid—and they are doing so without impacting either the gas infrastructure or natural gas consumers.

Europe’s first large-scale hydrogen injection began in eastern Germany in 2013 at a two-megawatt electrolyzer installed by Essen-based power firm E.ON. Germany has since ratcheted up the amount of hydrogen it allows in natural gas lines from an initial 2 percent by volume to 10 percent, in a market where renewables now outpace coal and nuclear in Germany, and other European states have followed suit with their own hydrogen allowances. Christopher Hebling, head of hydrogen technologies at the Freiburg-based Fraunhofer Institute for Solar Energy Systems, predicts that such limits will rise to the 20-percent level anticipated by Europe’s turbine manufacturers.

Moving renewable hydrogen and methane via natural gas pipelines promises to cut the cost of switching to renewable energy. For example, gas networks have storage caverns whose reserves could be tapped to run gas-fired electric generation power plants during periods of low wind and solar output. Hebling notes that Germany’s gas network can store 240 terawatt-hours of energy—roughly 25 times more energy than global power grids can presently store by pumping water uphill to refill hydropower reservoirs. Repurposing gas infrastructure to help the power system could save European consumers 138 billion euros ($156 billion) by 2050, according to Dutch energy consultancy Navigant (formerly Ecofys).

For all the pilot plants and promise, renewable hydrogen presently supplies a tiny fraction of Europe’s gas. And, globally, around 4 percent of hydrogen is supplied via electrolysis, with the bulk refined from fossil fuels, according to the International Renewable Energy Agency.

Power-to-gas is catching up, however. According to the February Nature Energy study, renewable hydrogen already pays for itself in some niche applications, and further electrolyzer improvements will progressively extend its market. “If costs continue to decline as they have done in recent years, power-to-gas will become competitive at large scale within the next decade,” says study co-author Gunther Glenk, an economist at the Technical University of Munich.

Glenk says power-to-gas could scale up faster if governments guaranteed premium prices for renewable hydrogen and methane, as they did to mainstream solar and wind power.

Tim Calver, an energy storage researcher turned consultant and Ernst & Young’s executive director in London, agrees that European governments need to step up their support for power-to-gas projects and markets. Calver calls the scale of funding to date, “not proportionate to the challenge that we face on long-term decarbonization and the potential role of hydrogen.”

 

Related News

View more

Starting Texas Schools After Labor Day: Power Grid and Cost Benefits?

Texas After-Labor Day School Start could ease ERCOT's power grid strain by shifting peak demand, lowering air-conditioning loads in schools, improving grid reliability, reducing electricity costs, and curbing emissions during extreme heat the summer months.

 

Key Points

A proposed calendar shift to start school after Labor Day to lower ERCOT peak demand, costs, and grid risk.

✅ Cuts school HVAC loads during peak summer heat

✅ Lowers costly peaker plant use and electricity rates

✅ Requires calendar changes, testing and activities shifts

 

As Texas faces increasing demands on its power grid, a new proposal is gaining traction: starting the school year after Labor Day. This idea, reported by the Dallas News, suggests that delaying the start of the academic year could help alleviate some of the pressure on the state’s electricity grid during the peak summer months, potentially leading to both grid stability and financial savings. Here’s an in-depth look at how this proposed change could impact Texas’s energy landscape and education system.

The Context of Power Grid Strain

Texas's power grid, operated by the Electric Reliability Council of Texas (ERCOT), has faced significant challenges in recent years. Extreme weather events, record-breaking temperatures, and high energy demand have strained the grid, and some analyses argue that climate change, not demand is the biggest challenge today, leading to concerns about reliability and stability. The summer months are particularly taxing, as the demand for air conditioning surges, often pushing the grid to its limits.

In this context, the idea of adjusting the school calendar to start after Labor Day has been proposed as a potential strategy to help manage electricity demand. By delaying the start of school, proponents argue that it could reduce the load on the power grid during peak usage periods, thereby easing some of the stress on energy resources.

Potential Benefits for the Power Grid

The concept of delaying the school year is rooted in the potential benefits for the power grid. During the hottest months of summer, the demand for electricity often spikes as families use air conditioning to stay cool, and utilities warn to prepare for blackouts as summer takes hold. School buildings, typically large and energy-intensive facilities, contribute significantly to this demand when they are in operation.

Starting school later could help reduce this peak demand, as schools would be closed during the hottest months when the grid is under the most pressure. This reduction in demand could help prevent grid overloads and reduce the risk of power outages, at a time when longer, more frequent outages are afflicting the U.S. power grid, ultimately contributing to a more stable and reliable electricity supply.

Additionally, a decrease in peak demand could help lower electricity costs. Power plants, particularly those that are less efficient and more expensive to operate, are often brought online during periods of high demand. By reducing the peak load, the state could potentially minimize the need for these costly power sources, leading to lower overall energy costs.

Financial and Environmental Considerations

The financial implications of starting school after Labor Day extend beyond just the power grid. By reducing energy consumption during peak periods, the state could see significant savings on electricity costs. This, in turn, could lead to lower utility bills for schools, businesses, and residents alike, a meaningful relief as millions risk electricity shut-offs during summer heat.

Moreover, reducing the demand for electricity from fossil fuel sources can have positive environmental impacts. Lower peak demand may reduce the reliance on less environmentally friendly energy sources, and aligns with calls to invest in a smarter electricity infrastructure nationwide, thereby decreasing greenhouse gas emissions and contributing to overall environmental sustainability.

Challenges and Trade-offs

While the proposal offers potential benefits, it also comes with challenges and trade-offs. Adjusting the school calendar would require significant changes to the academic schedule, potentially affecting extracurricular activities, summer programs, and family plans, and comparisons to California's reliability challenges underscore the complexity. Additionally, there could be resistance from various stakeholders, including parents, educators, and students, who are accustomed to the current school calendar.

There are also logistical considerations to address, such as how a delayed start might impact standardized testing schedules and the academic calendar for higher education institutions. These factors would need to be carefully evaluated to ensure that the proposed changes do not adversely affect educational outcomes or create unintended consequences.

Looking Ahead

The idea of starting Texas schools after Labor Day represents an innovative approach to addressing the challenges facing the state’s power grid. By potentially reducing peak demand and lowering energy costs, and alongside efforts to connect Texas's grid to the rest of the nation, this proposal could contribute to greater grid stability and financial savings. However, careful consideration and planning will be essential to navigate the complexities of altering the school calendar and to ensure that the benefits outweigh the challenges.

As Texas continues to explore solutions for managing its power grid and energy resources, the proposal to shift the school year schedule provides an intriguing possibility. It reflects a broader trend of seeking creative and multifaceted approaches to balancing energy demand, environmental sustainability, and public needs.

In conclusion, starting schools after Labor Day could offer tangible benefits for Texas’s power grid and financial well-being. As discussions on this proposal advance, it will be important to weigh all factors and engage stakeholders to ensure a successful and equitable implementation.

 

Related News

View more

UN: Renewable Energy Ambition in NDCs must Double by 2030

NDC Renewable Energy Ambition drives COP25 calls to align with the Paris Agreement, as IRENA urges 2030 targets toward 7.7 TW, accelerating decarbonization, energy transition, socio-economic benefits, and scalable renewables in Nationally Determined Contributions.

 

Key Points

Raised 2030 renewable targets in NDCs to meet Paris goals, reaching 7.7 TW efficiently and speeding decarbonization.

✅ Double current NDC renewables to align with 7.7 TW by 2030

✅ Cost effective pathway with jobs, growth, welfare gains

✅ Accelerates decarbonization and energy access per UN goals

 

We need an oracle to get us out of this debacle. The UN climate group has met for the 25th time. Will anything ever change?

Countries are being urged to significantly raise renewable energy ambition and adopt targets to transform the global energy system in the next round of Nationally Determined Contributions (NDCs), according to a new IRENA report by the International Renewable Energy Agency (IRENA) that will be released at the UN Climate Change Conference (COP25) in Madrid.

The report will show that renewable energy ambition within NDCs would have to more than double by 2030 to put the world in line with the Paris Agreement goals, cost-effectively reaching 7.7 terawatts (TW) of globally installed capacity by then. Today’s renewable energy pledges under the NDCs are falling short of this, targeting only 3.2 TW, even as over 30% of global electricity is already generated from renewables.

The reportNDCs in 2020: Advancing Renewables in the Power Sector and Beyondwill be released at IRENA’s official side event on enhancing NDCs and raising ambition on 11 December 2019.It will state that with over 2.3 TW installed renewable capacity today, following a record year for renewables in 2016, almost half of the additional renewable energy capacity foreseen by current NDCs has already been installed.

The analysis will also highlight that delivering on increased renewable energy ambition can be achieved in a cost-effective way and with considerable socio-economic benefits across the world.

“Increasing renewable energy targets is absolutely necessary,” said IRENA’s Director-General Francesco La Camera. “Much more is possible. There is a decisive opportunity for policy makers to step up climate action, including a fossil fuel lockdown, by raising ambition on renewables, which are the only immediate solution to meet rising energy demand whilst decarbonizing the economy and building resilience.

“IRENA’s analysis shows that a pathway to a decarbonised economy is technologically possible and socially and economically beneficial,” continued Mr. La Camera.

“Renewables are good for growth, good for job creation and deliver significant welfare benefits. With renewables, we can also expand energy access and help eradicate energy poverty by ensuring clean, affordable and sustainable electricity for all in line with the UN Sustainable Development Agenda 2030.

IRENA will promote knowledge exchange, strengthen partnerships and work with all stakeholders to catalyse action on the ground. We are engaging with countries and regions worldwide, from Ireland's green electricity push to other markets, to facilitate renewable energy projects and raise their ambitions”.

NDCs must become a driving force for an accelerated global energy transformation toward 100% renewable energy globally. The current pledges reflect neither the past decade’s rapid growth nor the ongoing market trends for renewables. Through a higher renewable energy ambition, NDCs could serve to advance multiple climate and development objectives.

 

Related News

View more

BC Ferries celebrates addition of hybrid ships

BC Ferries Island Class hybrid ferries deliver quiet, battery-electric travel with shore power readiness, lower emissions, and larger capacity on northern routes, protecting marine wildlife while replacing older vessels on Powell River and Texada services.

 

Key Points

Hybrid-electric ferries using batteries and diesel for quiet, low-emission service, ready for shore power upgrades.

✅ Operate 20% electric at launch; future full-electric via shore power

✅ 300 passengers, 47 vehicles; replacing older, smaller vessels

✅ Quieter transits help protect West Coast whales and marine habitat

 

In a champagne celebration, BC Ferries welcomed two new, hybrid-electric ships into its fleet Wednesday. The ships arrived in Victoria last month, and are expected to be in service on northern routes by the summer.

The Island Aurora and Island Discovery have the ability to run on either diesel or electricity.

"The pressure on whales on the West Coast is very intense right now," said BC Ferries CEO Mark Collins. "Quiet operation is very important. These ships will be gliding out of the harbor quietly and electrically with no engines running, that will be really great for marine space."

BC Ferries says the ships will be running on electricity 20 per cent of the time when they enter service, but the company hopes they can run on electricity full-time in the future. That would require the installation of shoreline power, which the company hopes to have in place in the next five to 10 years. Each ship costs around $40-million, a price tag that the federal government partially subsidized through CIB support as part of the electrification push.

When the two ships begin running on the Powell River to Texada, and Port McNeill, Alert Bay, and Sointula routes, two older vessels will be retired.

On Kootenay Lake, an electric-ready ferry is slated to begin operations in 2023, reflecting the province's wider shift.

"They are replacing a 47-car ferry, but on some routes they will be replacing a 25-car ferry, so those routes will see a considerable increase in service," said Collins.

Although the ships will not be servicing Colwood, the municipality's mayor is hoping that one day, they will.

"We can look at an electric ferry when we look at a West Shore ferry that would move Colwood residents to Victoria," said Mayor Rob Martin, noting that across the province electric school buses are hitting the road as well. "Here is a great example of what BC Ferries can do for us."

BC Ferries says it will be adding four more hybrid ships to its fleet by 2022, and is working on adding hybrid ships that could run from Victoria to Tsawwassen, similar to Washington State Ferries' hybrid upgrade underway in the region. 

B.C’s first hybrid-electric ferries arrived in Victoria on Saturday morning ushering in a new era of travel for BC Ferries passengers, as electric seaplane flights are also on the horizon for the region.

“It’s a really exciting day for us,” said Tessa Humphries, spokesperson for BC Ferries.

It took the ferries 60 days to arrive at the Breakwater District at Ogden Point. They came all the way from Constanta, Romania.

“These are battery-equipped ships that are designed for fully electric operation; they are outfitted with hybrid technology that bridges the gap until the EV charging infrastructure and funding is available in British Columbia,” said Humphries.

The two new "Island Class" vessels arrived at about 9 a.m. to a handful of people eagerly wanting to witness history.

Sometime in the next few days, the transport ship that brought the new ferries to B.C. will go out into the harbor and partially submerge to allow them to be offloaded, Humphries said.

The transfer process could happen in four to five days from now. After the final preparations are finished at the Breakwater District, the ships will be re-commissioned in Point Hope Maritime and then BC Ferries will officially take ownership.

“We know a lot of people are interested in this so we will put out advisory once we have more information as to a viewing area to see the whole process,” said Humphries.

Both Island Class ferries can carry 300 passengers and 47 vehicles. They won’t be sailing until later this year, but Humphries tells CTV News they will be named by the end of February. 

 

Related News

View more

California electricity pricing changes pose an existential threat to residential rooftop solar

California Rooftop Solar Rate Reforms propose shifting net metering to fixed access fees, peak-demand charges, and time-of-use pricing, aligning grid costs, distributed generation incentives, and retail rates for efficient, least-cost electricity and fair cost recovery.

 

Key Points

Policies replacing net metering with fixed fees, demand charges, and time-of-use rates to align costs and incentives.

✅ Large fixed access charge funds grid infrastructure

✅ Peak-demand pricing reflects capacity costs at system peak

✅ Time-varying rates align marginal costs and emissions

 

The California Public Service Commission has proposed revamping electricity rates for residential customers who produce electricity through their rooftop solar panels. In a recent New York Times op‐​ed, former Governor Arnold Schwarzenegger argued the changes pose an existential threat to residential rooftop solar. Interest groups favoring rooftop solar portray the current pricing system, often called net metering, in populist terms: “Net metering is the one opportunity for the little guy to get relief, and they want to put the kibosh on it.” And conventional news coverage suggests that because rooftop solar is an obvious good development and nefarious interests, incumbent utilities and their unionized employees, support the reform, well‐​meaning people should oppose it. A more thoughtful analysis would inquire about the characteristics and prices of a system that supplies electricity at least cost.

Currently, under net metering customers are billed for their net electricity use plus a minimum fixed charge each month. When their consumption exceeds their home production, they are billed for their net use from the electricity distribution system (the grid) at retail rates. When their production exceeds their consumption and the excess is supplied to the grid, residential consumers also are reimbursed at retail rates. During a billing period, if a consumer’s production equaled their consumption their electric bill would only be the monthly fixed charge.

Net metering would be fine if all the fixed costs of the electric distribution and transmission systems were included in the fixed monthly charge, but they are not. Between 66 and 77 percent of the expenses of California private utilities do not change when a customer increases or decreases consumption, but those expenses are recovered largely through charges per kWh of use rather than a large monthly fixed charge. Said differently, for every kWh that a PG&E solar household exported into the grid in 2019, it saved more than 26 cents, on average, while the utility’s costs only declined by about 8 cents or less including an estimate of the pollution costs of the system’s fossil fuel generators. The 18‐​cent difference pays for costs that don’t change with variation in a household’s consumptions, like much of the transmission and distribution system, energy efficiency programs, subsidies for low‐​income customers, and other fixed costs. Rooftop solar is so popular in California because its installation under a net metering system avoids the 18 cents, creating a solar cost shift onto non-solar customers. Rooftop solar is not the answer to all our environmental needs. It is simply a form of arbitrage around paying for the grid’s fixed costs.

What should electricity tariffs look like? This article in Regulation argues that efficient charges for electricity would consist of three components: a large fixed charge for the distribution and transmission lines, meter reading, vegetation trimming, etc.; a peak‐​demand charge related to your demand when the system’s peak demand occurs to pay for fixed capacity costs associated with peak use; and a charge for electricity use that reflects the time‐ and location‐​varying cost of additional electricity supply.

Actual utility tariffs do not reflect this ideal because of political concerns about the effects of large fixed monthly charges on low‐​income customers and the optics of explaining to customers that they must pay 50 or 60 dollars a month for access even if their use is zero. Instead, the current pricing system “taxes” electricity use to pay for fixed costs. And solar net metering is simply a way to avoid the tax. The proposed California rate reforms would explicitly impose a fixed monthly charge on rooftop solar systems that are also connected to the grid, a change that could bring major changes to your electric bill statewide, and would thus end the fixed‐​cost avoidance. Any distributional concerns that arise because of the effect of much larger fixed charges on lower‐​income customers could be managed through explicit tax deductions that are proportional to income.

The current rooftop solar subsidies in California also should end because they have perverse incentive effects on fossil fuel generators, even as the state exports its energy policies to neighbors. Solar output has increased so much in California that when it ends with every sunset, natural gas generated electricity has to increase very rapidly. But the natural gas generators whose output can be increased rapidly have more pollution and higher marginal costs than those natural gas plants (so called combined cycle plants) whose output is steadier. The rapid increase in California solar capacity has had the perverse effect of changing the composition of natural gas generators toward more costly and polluting units.

The reforms would not end the role of solar power. They would just shift production from high‐​cost rooftop to lower‐​cost centralized solar production, a transition cited in analyses of why electricity prices are soaring in California, whose average costs are comparable with electricity production in natural gas generators. And they would end the excessive subsidies to solar that have negatively altered the composition of natural gas generators.

Getting prices right does not generate citizen interest as much as the misguided notion that rooftop solar will save the world, and recent efforts to overturn income-based utility charges show how politicized the debate remains. But getting prices right would allow the decentralized choices of consumers and investors to achieve their goals at least cost.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.