Venture capital shifts to energy efficiencies

By New York Times


CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
In 2003, when Foundation Capital, a venture capital firm, started looking for new investors for Silver Spring Networks, one of its portfolio of companies, it was rejected by every firm it called.

Investors in clean technology were just not excited about Silver Spring, because it makes hardware and software that utilities use to connect electric meters in a digital grid. They were more interested in companies that envisioned making energy from the sunÂ’s rays, algae or tropical plants.

“People laughed at us,” said Adam Grosser, a partner at Foundation Capital.

Last summer, the thinking in Silicon Valley began to shift. Five top venture firms vied to invest in Silver Spring. The company chose Kleiner Perkins Caufield & Byers, perhaps the most well-known green technology investor, and two of its partners, John Doerr and Al Gore, joined Silver SpringÂ’s advisory board.

Venture capital is starting to move away from its infatuation with alternative energy and returning to one of its traditional strengths: applying information technology to improve the efficiency of energy consumption.

Many investors say developing new forms of energy can consume hundreds of millions of dollars over many years before showing any return. Mr. Grosser’s firm, however, is looking for technologies that reduce demand for energy. “We need to move markets with small amounts of money,” he said.

About half of the dollars invested in clean technology last year went to alternative energy companies. In the first quarter of 2009, though, only one-third of venture dollars invested in clean tech went to these companies, the National Venture Capital Association said.

Not all investors in clean technology think alternative energy companies must be capital-intensive. Khosla Ventures, one of the most prominent venture firms, has invested in companies that make fuel from corn, sugar, plants, wind and the sun.

“I think that’s a false generalization for people who take a very superficial view of clean technology,” said Vinod Khosla, the firm’s founder. “It’s not that hard to find ways around capital intensity. We are very active in doing that, and it involves technology or business strategy.”

Mark Heesen, president of the National Venture Capital Association, said the eBay or the Google of the clean tech industry is not going to come from energy-efficiency companies but from those that create new forms of fuel. “Does it cost more money to do that? Absolutely,” Mr. Heesen said. “But when it comes to game-changing technologies, you’re not going to get it with doubles and triples.”

Not all firms want to play that game. Sequoia Capital, which made its name investing in Google and Yahoo, avoided green technology because the start-ups did not fit the capital-efficient model Sequoia was looking for, said Michael L. Goguen, a partner at the firm who invests in clean tech.

After more investigation, though, Sequoia discovered that there were thousands of capital-efficient clean tech companies. They just “weren’t the companies that a lot of people were talking about, putting steel in the ground and building plants for fuels,” Mr. Goguen said.

Sequoia invested in SynapSense, for example, which makes sensors that help data centers use less energy. MDV, an early investor in clean tech, backed Nanosolar, a thin-film solar cell company that has already raised $500 million. Now, MDV is focusing more on saving money. It invested in Gordon Murray Design, a company that will design eco-friendly cars but not build them.

Foundation Capital, which hires former entrepreneurs, not bankers, as investing partners, early on set a firm rule for green tech: it would not invest in any start-ups that needed hundreds of millions of dollars in capital, government subsidies or high oil prices.

The partners started exploring clean technology in 2002 and estimate that they look at a thousand start-ups each year. They found nine and are now investing about a quarter of their $750 million fund in clean tech companies.

Warren Weiss, one of Foundation CapitalÂ’s clean tech partners, heard about Silver Spring, which was started in Milwaukee. It equips electric meters with networking cards so utilities can see power failures before customers call. In addition, customers can see which of their appliances use the most electricity and at which times of day they need to conserve.

In 2003, Mr. Weiss and Mr. Grosser visited a dingy, crowded warehouse and ate deep-fried Twinkies with whipped cream with the founders.

Foundation Capital invested $8 million, moved the company to a technology office park in Redwood City, Calif., hired a new chief executive, Scott Lang, and began pitching investors.

After Silver Spring ran out of cash in 2005, Foundation Capital kept it alive for 15 months with monthly loan checks. In 2007, it found a new investor, Duquesne Capital Management. Around that time, Silver Spring landed its first big contract, with Florida Power and Light. Other utilities called, including Pacific Gas & Electric and Pepco Holdings, based in Washington.

Today, backed by Kleiner Perkins and Google’s venture fund, Silver Spring is heralded as a promising green tech start-up with the potential to go public. “I think they have recognized our strategy is viable,” said Mr. Grosser about Kleiner Perkins.

Foundation Capital also invested in SunRun, which sells solar power to homeowners. It does not make solar panels, though. Instead, it offers solar power for a monthly fee so homeowners do not have to pay the installation and maintenance costs of rooftop panels.

Foundation CapitalÂ’s most successful investment so far is EnerNOC. It monitors energy in office buildings, grocery stores and hospitals and alerts operators to move power to places that need it most from those that need it least.

On a hot summer day, for example, EnerNOC will automatically shut off one-third of an office buildingÂ’s lights, turn the air-conditioning down three degrees and stop the fountain in the lobby so the energy can be used elsewhere.

Paul Holland, another Foundation Capital partner, met EnerNOC’s co-founders in 2002 at Dartmouth, where he was talking to business students. EnerNOC’s idea — to regulate energy supply and demand — stuck with him.

Two years later, the founders called him, and Foundation Capital invested $21 million.

EnerNOC went public in May 2007, five years after its first round of venture capital, and raised $98 million in its public offering of stock. Its revenue was $106 million last year, and that is expected to grow 55 percent this year, said Timothy G. Healy, its chief executive.

“There are a lot of people who went down that path of solar and fuels and wish they didn’t,” Mr. Grosser said. “From where we sit, we are very grateful we didn’t put a pile of money down.”

Related News

Roads Need More Electricity: They Will Make It Themselves

Electrically Smart Roads integrate solar road surfaces, inductive charging, IoT sensors, AI analytics, and V2X to power lighting, deicing, and monitoring, reducing grid dependence while enabling dynamic EV charging and real-time traffic management.

 

Key Points

Electrically smart roads generate power, sense conditions, and charge EVs using solar, IoT, AI, and dynamic infrastructure.

✅ Solar surfaces, verges, and gantries generate on-site electricity

✅ Inductive lanes enable dynamic EV charging at highway speeds

✅ Embedded IoT sensors and AI deliver real-time traffic insights

 

As more and more capabilities are added to roads instead of simply covering a country with extra roads, they are starting to make their own electricity, notably as solar road surface but then with added silent wind turbines, photovoltaic verges and barriers and more.

That toll gate, street light and traffic monitoring system all need electricity. Later, roads that deice and charge vehicles at speed will need huge amounts of electricity. For now, electricity for road systems is provided by very expensive infrastructure to the grid, and grid flexibility for EVs remains a concern, except for a few solar/ wind street lights in China and Korea for example. However, as more and more capabilities are added to roads instead of simply covering a country with extra roads, they are starting to make their own electricity, notably as solar road surface but then with added silent wind turbines, photovoltaic verges and barriers and more. There is also highly speculative work in the USA and UK on garnering power from road surface movement using piezoelectrics and electrodynamics and even its heat. 

#google#

China plans to create an intelligent transport system by 2030. The country hopes to build smart roads that will not only be able to charge electric cars as they drive but also monitor temperature, traffic flow and weight load using artificial intelligence. Indeed, like France, the Netherlands and the USA, where U.S. EV charging capacity is under scrutiny, it already has trials of extended lengths of solar road which cost no more than regular roads. In an alternative approach, vehicles go under tunnels of solar panels that also support lighting, light-emitting signage and monitoring equipment using the electricity made where it is needed. See the IDTechEx Research report, Electrically Smart Roads 2018-2028 for more.

Raghu Das, CEO of IDTechEx says, "The spiral vertical axis wind turbines VAWT in Asia rarely rotate because they are too low but much higher versions are planned on large UK roadside vehicle charging centres that should work well. H shaped VAWT is also gaining traction - much slower and quieter than the propeller shape which vibrates and keeps you awake at night in an urban area.

The price gap between the ubiquitous polycrystalline silicon solar cell and the much more efficient single crystal silicon is narrowing. That means that road furniture such as bus shelters and smart gantries will likely go for more solar rather than adding wind power in many cases, a shift mirrored by connected solar tech in homes, because wind power needs a lot of maintenance and its price is not dropping as rapidly."

The IDTechEx Research report, Off Grid Electric Vehicle Charging: Zero Emission 2018-2028 analyses that aspect, while vehicle-to-grid strategies may complement grid resources. The prototype of a smart road is already in place on an expressway outside of Jinan, providing better traffic updates as well as more accurate mapping. Verizon's IoT division has launched a project around intelligent asphalt, which it thinks has the potential to significantly reduce fossil fuel emissions and save time by reducing up to 44% of traffic backups. It has partnered with Sacramento, California, to test this theory.

"By embedding sensors into the pavement as well as installing cameras on traffic lights, we will be able to study and analyze the flow of traffic. Then, we will take all of that data and use it to optimize the timing of lights so that traffic flows easier and travel times are shorter," explains Sean Harrington, vice president of Verizon Smart Communities.

Colorado's Department of Transportation has recently announced its intention to be the first state to pilot smart roads by striking a five-year deal with a smart road company to test the technology. Like planned auto-deicing roads elsewhere, the aim of this project is, first and foremost, to save lives. The technology will detect when a car suddenly leaves a road and send emergency assistance to the area. The IDTechEx Research report Electrically Smart Roads 2018-2028 describes how others work on real time structural monitoring of roads and embedded interactive lighting and road surface signage.

"Smart pavement can make that determination and send that information directly into a vehicle," Peter Kozinski, director of CDOT's RoadX division, tells the Denver Post. "Data is the new asphalt of transportation."   Sensors, processors and other technology are embedded in the Colorado road to extend capability beyond accidents and reach into better road maintenance. Fast adoption relies on the ability to rapidly install sensor-laden pavement or lay concrete slabs. Attention therefore turns to fast adaptation of existing roads. Indeed, even for the heavy coil arrays used for dynamic vehicle charging, even as state power grids face new challenges, in Israel there are machines that can retrofit into the road surface at a remarkable two kilometres of cut and insert in a day.

"It's hard to imagine that these things are inexpensive, with all the electronics in them," Charles Schwartz, a professor of civil and environmental engineering at the University of Maryland, tells the Denver Post concerning the vehicle sensing project, "but CDOT is a fairly sophisticated agency, and this is an interesting pilot project. We can learn a lot, even if the test is only partially successful."

 

Related News

View more

Demise of nuclear plant plans ‘devastating’ to Welsh economy, MP claims

Wylfa Nuclear Project Cancellation reflects Hitachi's withdrawal, pulling £16bn from North Wales, risking jobs, reshaping UK nuclear power plans as renewables grow and Chinese involvement rises amid shifting energy market policies.

 

Key Points

An indefinite halt to Hitachi's Wylfa Newydd nuclear plant, removing about £16bn investment and jobs from North Wales.

✅ Hitachi withdraws funding amid changing energy market costs

✅ Puts 400 local roles and up to 10,000 construction jobs at risk

✅ UK shifts toward renewables as nuclear project support stalls

 

Chris Ruane said Japanese firm Hitachi’s announcement this morning about the Wylfa project would take £16 billion of investment out of the region.

He said it was the latest in a list of energy projects which had been scrapped as he responded to a statement from business secretary Greg Clark.

Mr Ruane, the Labour member for the Vale of Clywd, said: “In his statement he said the Government are relying now more on renewables, can I put the North Wales picture to him; 1,500 wind turbines were planned off the coast of North Wales. They were removed, those plans were cancelled by the private sector.

“The tidal lagoons for Wales were key to the development of the Welsh economy – the Government itself pulled the support for the Swansea Bay tidal lagoon. That had a knock-on effect for the huge lagoon planned off the coast of North Wales.

“And now today we hear of the cancellation of a £16 billion investment in the North Wales economy. This will devastate the North Wales economy. The people of North Wales need to know that the Prime Minister is batting for them and batting for the UK.”

Mr Clark blamed the changing landscape of the energy market for today’s announcement, and said Wales has been a “substantial and proud leader” in renewable energy during the UK’s green industrial revolution over recent years.

But another Labour MP from North Wales, Albert Owen, of Ynys Mon, said the Wylfa plant’s cancellation in his constituency is putting 400 jobs at risk, as well as the “potential of 8-10,000 construction jobs”, as well as hundreds of operational jobs and 33 apprenticeships.

He asked Mr Clark: “Can I say straightly can we work together to keep this project alive, to ensure that we create the momentum so it can be ready for a future developer or this developer with the right mechanism?”

The minister replied that he and his officials would “work together in a completely open-book way on the options” to try and salvage the project.

But in the Lords, Labour former security minister Lord West of Spithead said the UK’s nuclear industry was in crisis, noting that Europe is losing nuclear power as well.

“In the 1950s our nation led the world in nuclear power generation and decisions by successive governments, of all hues, have got us in the position today where we cannot even construct a large civil nuclear reaction,” he told peers at question time.

Lord West asked: “Are we content that now the only player seems to be Chinese and that by 2035… we are happy for the Chinese to control one third of the energy supply of our nation?”

Business, Energy and Industrial Strategy minister Lord Henley said the Government had hoped for a better announcement from Hitachi but that was not the case.

He said costs in the nuclear sector were rising, amid setbacks at Hinkley Point C, while costs for many renewables were coming down and this was one of the reasons for the problem.

Tory former energy secretary Lord Howell of Guildford said the Chinese were in “pole position” for the rebuilding and replacement “of our nuclear fleet” and this would have a major impact on UK energy policy and plans to meet net zero targets in the 2030s.

Plaid Cymru’s Lord Wigley warned that putting the Wylfa Newydd on indefinite hold would cause economic planning blight in north-west Wales and urged the Government to raise the level of support allocated to the region.

Lord Henley acknowledged the announcement was not welcome but added: “We remain committed to nuclear power. We will look to see what we can do. We still have a great deal of expertise in this country and we can work on that.”

 

Related News

View more

Canada Invests Over $960-Million in Renewable Energy and Grid Modernization Projects

Smart Renewables and Electrification Pathways Program enables clean energy and grid modernization across Canada, funding wind, solar, hydro, geothermal, tidal, and storage to cut GHG emissions and accelerate electrification toward a net-zero economy.

 

Key Points

A $964M Canadian program funding clean power and grid upgrades to cut emissions and build net-zero electrified economy.

✅ Funds wind, solar, hydro, geothermal, tidal, and storage projects

✅ Modernizes grids for reliability, digitalization, and resilience

✅ Supports net-zero by 2050 with Indigenous and utility partners

 

Harnessing Canada's immense clean energy resources requires transformational investments to modernize our electricity grid. The Government of Canada is investing in renewable energy and upgrading the electricity grid, moving toward an electric, connected and clean economy, to make clean, affordable electricity options more accessible in communities across Canada.

The Honourable Seamus O'Regan Jr., Minister of Natural Resources, today launched a $964-million program, alongside a recent federal green electricity contract in Alberta that underscores momentum, to support smart renewable energy and grid modernization projects that will lower emissions by investing in clean energy technologies, like wind, solar, storage, hydro, geothermal and tidal energy across Atlantic Canada.

The Smart Renewables and Electrification Pathways Program (SREPs) supports building Canada's low-emissions energy future and a renewable, electrified economy through projects that focus on non-emitting, cleaner energy technologies, such as storage, and modernizing electricity system operations.

Investing in these technologies reduces greenhouse gas emissions by creating a cleaner, more connected electrical system, supporting progress toward zero-emissions electricity by 2035 goals, while helping Canada reach net-zero emissions by 2050.

Minister O'Regan launched the program during the Canadian Electricity Association's (CEA) virtual regulatory forum on Electricity Regulation & the Four Disruptors – Decarbonization, Decentralization, Digitalization and Democratization, highlighting evolving regulatory approaches as B.C. streamlines clean energy approvals to support deployment nationwide. The launch also coincides with Canadian Environment Week, which celebrates Canada's environmental accomplishments and encourages Canadians to contribute to conserving and protecting the environment.

Through SREPs and other programming, the government is working with provinces and territories, with the Prairie Provinces leading renewable growth in the years ahead, utilities, Indigenous partners and others, including diverse businesses and communities, to deliver these clean and reliable energy initiatives. With Canadian innovation, technology and skilled energy workers, we can provide more communities, households and businesses with an increased supply of clean electricity and a cleaner electrical grid.

To help interested stakeholders find information on SREPs, a new webpage has been launched, which includes a comprehensive guide for eligible projects.

This supports Canada's strengthened climate plan, A Healthy Environment and a Healthy Economy. Canada is advancing projects that support the clean grid of the future and seize opportunities in the global electricity market to boost competitiveness. Collectively with investments from the Fall Economic Statement 2020 and Budget 2021, Canada will achieve our climate change commitments and ensure a healthier environment and more prosperous economy for future generations.

 

Related News

View more

IAEA Reviews Belarus’ Nuclear Power Infrastructure Development

Belarus Nuclear Power Infrastructure Review evaluates IAEA INIR Phase 3 readiness at Ostrovets NPP, VVER-1200 reactors, legal and regulatory framework, commissioning, safety, emergency preparedness, and energy diversification in a low-carbon program.

 

Key Points

An IAEA INIR Phase 3 assessment of Belarus readiness to commission and operate the Ostrovets NPP with VVER-1200 units.

✅ Reviews legal, regulatory, and institutional arrangements

✅ Confirms Phase 3 readiness for safe commissioning and operation

✅ Highlights good practices in peer reviews and emergency planning

 

An International Atomic Energy Agency (IAEA) team of experts today concluded a 12-day mission to Belarus to review its infrastructure development for a nuclear power programme. The Integrated Nuclear Infrastructure Review (INIR) was carried out at the invitation of the Government of Belarus.

Belarus, seeking to diversify its energy production with a reliable low-carbon source, and aware of the benefits of energy storage for grid flexibility, is building its first nuclear power plant (NPP) at the Ostrovets site, about 130 km north-west of the capital Minsk. The country has engaged with the Russian Federation to construct and commission two VVER-1200 pressurised water reactors at this site and expects the first unit to be connected to the grid this year.

The INIR mission reviewed the status of nuclear infrastructure development using the Phase 3 conditions of the IAEA’s Milestones Approach. The Ministry of Energy of Belarus hosted the mission.

The INIR team said Belarus is close to completing the required nuclear power infrastructure for starting the operation of its first NPP. The team made recommendations and suggestions aimed at assisting Belarus in making further progress in its readiness to commission and operate it, including planning for integration with variable renewables, as advances in new wind turbines are being deployed elsewhere to strengthen the overall energy mix.

“This mission marks an important step for Belarus in its preparations for the introduction of nuclear power,” said team leader Milko Kovachev, Head of the IAEA’s Nuclear Infrastructure Development Section. “We met well-prepared, motivated and competent professionals ready to openly discuss all infrastructure issues. The team saw a clear drive to meet the objectives of the programme and deliver benefits to the Belarusian people, such as supporting the country’s economic development, including growth in EV battery manufacturing sectors.”

The team comprised one expert from Algeria and two experts from the United Kingdom, as well as seven IAEA staff. It reviewed the status of 19 nuclear infrastructure issues using the IAEA evaluation methodology for Phase 3 of the Milestones Approach, noting that regional integration via an electricity highway can shape planning assumptions as well. It was the second INIR mission to Belarus, who hosted a mission covering Phases 1 and 2 in 2012.

Prior to the latest mission, Belarus prepared a Self-Evaluation Report covering all infrastructure issues and submitted the report and supporting documents to the IAEA.

The team highlighted areas where further actions would benefit Belarus, including the need to improve institutional arrangements and the legal and regulatory framework, drawing on international examples of streamlined licensing for advanced reactors to ensure a stable and predictable environment for the programme; and to finalize the remaining arrangements needed for sustainable operation of the nuclear power plant.

The team also identified good practices that would benefit other countries developing nuclear power in the areas of programme and project coordination, the use of independent peer reviews, cooperation with regulators from other countries, engagement with international stakeholders and emergency preparedness, and awareness of regional initiatives such as new electricity interconnectors that can enhance system resilience.

Mikhail Chudakov, IAEA Deputy Director General and Head of the Department of Nuclear Energy attended the Mission’s closing meeting. “Developing the infrastructure required for a nuclear power programme requires significant financial and human resources, and long lead times for preparation and the approval of major transmission projects that support clean power flows, and the construction activities,” he said. “Belarus has made commendable progress since the decision to launch a nuclear power programme 10 years ago.”

“Hosting the INIR mission, Belarus demonstrated its transparency and genuine interest to receive an objective professional assessment of the readiness of its nuclear power infrastructure for the commissioning of the country’s first nuclear power plant,” said Mikhail Mikhadyuk, Deputy Minister of Energy of the Republic of Belarus. ”The recommendations and suggestions we received will be an important guidance for our continuous efforts aimed at ensuring the highest level of safety and reliability of the Belarusian NPP."
 

 

Related News

View more

As Alberta electricity generators switch to gas, power price cap comes under spotlight

Alberta Energy-Only Electricity Market faces capacity market debate, AESO price cap review, and coal-to-gas shifts by TransAlta and Capital Power, balancing reliability with volatility as investment signals evolve across Alberta's grid.

 

Key Points

An energy market paying generators only for electricity sold, with AESO oversight and a price cap guiding new capacity.

✅ AESO reviewing $999 per MW-h wholesale price cap.

✅ UCP retained energy-only; capacity market plan cancelled.

✅ TransAlta and Capital Power shift to coal-to-gas.

 

The Kenney government’s decision to cancel the redesign of Alberta’s electricity system to a capacity market won’t side-track two of the province’s largest power generators from converting coal-fired facilities to burn natural gas as part of Alberta’s shift from coal to cleaner energy overall.

But other changes could be coming to the province’s existing energy-only electricity market — including the alteration of the $999 per megawatt-hour (MW-h) wholesale price cap in Alberta.

The heads of TransAlta Corp. and Capital Power Corp. are proceeding with strategies to convert existing coal-fired power generating facilities to use natural gas in the coming years.

Calgary-based TransAlta first announced in 2017 that it would make the switch, as the NDP government was in the midst of overhauling the electricity sector and wind generation began to outpace coal in the province.

At the time, the Notley government planned to phase out coal-fired power by 2030, even as Alberta moved to retire coal by 2023 in practice, and shift Alberta into an electricity capacity market in 2021.

Such a move, made on the recommendation of the Alberta Electric System Operator (AESO), was intended to reduce price volatility and ensure system reliability.

Under the energy-only market, generators receive payments for electricity produced and sold into the grid. In a capacity market, generators are also paid for having power available on demand, regardless of how often they sell energy into the provincial grid.

The UCP government decided last month to ditch plans for a capacity market after consulting with the sector, saying it would be better for consumers.

On a conference call, TransAlta CEO Dawn Farrell said the company will convert coal-fired generating plants to burn gas, although it may alter the mix between simple conversions and switching to so-called “hybrid” plants.

(A hybrid conversion is a larger and more-expensive switch, as it includes installing a new gas turbine and heat-recovery steam generator, but it creates a highly efficient combined cycle unit.)

“Our view is fundamentally that carbon will be priced over the next 20 years no matter what,” she said Friday.

“We cannot get off coal fast enough in this company, and gas right now in Alberta is extremely inexpensive…

“So our coal-to-gas strategy is completely predicated on our belief that it’s not smart to be in carbon-intensive fuels for the future.”

Elsewhere in Canada, the Stop the Shock campaign has advocated for reviving coal power, underscoring ongoing policy debates.

The company said it’s planning the coal-to-gas conversion and re-powering of some or all of the units at its Keephills and Sundance facilities to gas-fired generation sometime between 2020 and 2023.

Similarly, Capital Power CEO Brian Vaasjo said the Edmonton-based company is moving ahead with a project that will allow it to burn both coal and natural gas at its Genesee generating station, even as Ontario’s energy minister sought to explore a halt to natural gas generation elsewhere.

In June, the company announced it would spend an estimated $50 million between 2019 and 2021 to allow it to use gas at the facility.

“What we’re doing is going to be dual fuel, so we will be able to operate 100 per cent natural gas or 100 per cent coal and everything in between,” Vaasjo said in an interview.

“You can expect to see we will be burning coal in the winter when natural gas prices are high, and we will be burning natural gas in summer when gas prices are real low.”

The transition comes as the government’s decision to stick with the energy-only market has been welcomed by players in the industry, and as Alberta's electricity future increasingly leans on wind resources.

A study by electricity consultancy EDC Associates found the capacity market would result in consumers paying an extra $1.4 billion in direct costs in 2021-22, as it required more generation to come online earlier than expected.

These additional costs would have accumulated to $10 billion by 2030, said EDC chief executive Duane-Reid Carlson.

For Capital Power, the decision to stick with the current system makes the province more investable in the future. Vaasjo said there was great uncertainty about the transition to a capacity market, and the possibility of rules shifting further.

Officials with Enmax Corp. said the city-owned utility would not have invested in future generation under the proposed capacity market.

“There is no short-term need (today) for new generation, so we’re just looking at the market and saying, ‘OK, as it evolves, we will see what happens,’” said Enmax vice-president Tim Boston.

Sticking with the energy-only market doesn’t mean Alberta will keep the existing rules.

In a July 25 letter, Alberta Energy Minister Sonya Savage directed AESO chair Will Bridge to examine if changes to the existing market are needed and report back by July 2020.

AESO, which manages the power grid, has been asked to investigate whether the current price cap of $999 per megawatt-hour (MW-h) should be changed.

The price ceiling hasn’t been altered since the energy-only market was implemented by the Klein government about two decades ago.

While allowing prices to go higher would increase volatility, reflecting lessons from Europe’s power crisis about scarcity pricing, during periods of rising demand and limited supply, it would send a signal to generators when investment in new generation is required, said Kent Fellows, a research associate at the University of Calgary’s School of Public Policy.

“Keeping the price (cap) too low could end up costing us more in the long run,” he said.

In a 2016 report, AESO said the province examined raising the price cap to $5,000 per MW-h, but “determined that it was unlikely to be successful in attracting investment due to increased price volatility.”

However, the amount of future generation that will be required in Alberta has been scaled back by the province.

In the United States, the Electricity Reliability Council of Texas (ERCOT) allows wholesale power prices in the state to climb to a cap of $9,000 per megawatt hours as demand rises — as it did Tuesday in the midst of a heat wave, according to Bloomberg.

Jim Wachowich, legal counsel for the Consumers’ Coalition of Alberta, said while few players are exposed to spot electricity prices, he has yet to be convinced raising the cap would be good for Albertans.

“Someone has to show me the evidence, and I suspect that’s what the minister has asked the AESO to do,” he said.

Generators say they believe some tinkering is needed to the energy-only market to ensure new generation is built when it’s required.

“The No. 1 change that the government has to … think about is in pricing,” added Farrell.

“If you don’t have enough of a price signal in an energy-only market to attract new capital, you won’t get new capital — and you’ll run up against the wall.”

 

Related News

View more

The Innovative Solution Bringing Electricity To Crisis Stricken Areas

Toyota and Honda Moving e delivers hydrogen backup power via a fuel cell bus, portable batteries, and power exporters for disaster relief, emergency electricity, and grid outage support near charging stations and microgrids.

 

Key Points

A hydrogen mobile power system using a fuel cell bus and batteries to supply emergency electricity during disasters.

✅ Fuel cell bus outputs up to 18 kW, 454 kWh capacity

✅ Portable batteries and power exporter deliver site power

✅ Supports disaster relief near hydrogen charging stations

 

Without the uninterrupted supply of power and electricity, modern economies would be unable to function. A blackout can impact everything from transport to health care, communication, and even water supplies, as seen in a near-blackout in Japan that strained the grid. It is one of the key security concerns for every government on earth, a point underscored by Fatih Birol on electricity options during the pandemic, and the growth in the market for backup power reflects that fact. In 2018, the global Backup Power market was $14.9 billion and is expected to reach $22 billion by the end of 2025, growing at a CAGR of 5.0 percent between 2019 and 2025.

It is against this backdrop that Toyota and Honda have come up with a new and innovative solution to providing electricity during disasters. The two transport giants have launched a mobile power generation system that consists of a fuel cell bus that can carry a large amount of hydrogen, aligned with Japan's hydrogen energy system efforts underway, portable external power output devices, and portable batteries to disaster zones. The system, which is called ‘Moving e’ includes Toyota’s charging station fuel cell bus, Honda’s power exporter 9000 portable external power output device, two types of Honda’s portable batteries, and a Honda Mobile Power Pack Charge & Supply Concept charger/discharger for MPP. 

In simple terms, the bus would drive to a disaster zone, and while other approaches such as gravity energy storage are advancing, the portable batteries and power output devices would be used to extract electricity from the fuel cell bus and provide it wherever it is needed. The bus itself can generate 454kWh and has a maximum output of 18kW. That is more than enough energy to supply electricity for large indoor areas such as an evacuation area. The bus is also fitted with space for people to nap or rest during a disaster.

The two companies plan to test the effectiveness of the Moving e at multiple municipalities and businesses. These locations will have to be within 100km of a hydrogen station that is capable of refueling the bus. If the bus has to drive 200km, then its electricity supply to the disaster zone would drop from 490kwh to 240kWh. While there aren’t currently enough hydrogen stations to make this a realistic scenario for all disaster zones, especially as countries push for hydrogen-ready power plants in Germany and related infrastructure, hydrogen is growing increasingly competitive with gasoline and diesel.

While gas generators are still considered more reliable and generally cheaper than backup batteries for home use, cleaner backup power is growing increasingly popular, and novel storage like power-to-gas in Europe is also advancing across grids. This latest development by Toyota and Honda is another step forward for the battery and fuel cell industry, with initiatives like PEM hydrogen R&D in China accelerating progress, – especially considering the meteoric rise of hydrogen energy in recent years.
 

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified