Bureaucrats against electric cars, and progress

By The Economist


NFPA 70e Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today
In these times of high petrol prices and worries about climate change, you might think that any country would be proud to enjoy a lead in manufacturing electric cars. Not Canada, it seems.

Two Canadian companies, ZENN Motor Company and Dynasty Electric Car, make small electric cars designed for city use; a third, which will use new battery technology developed by Exxon Mobil, plans to launch a model later this year.

But almost all these “low-speed vehicles” (or LSVs) are exported to the United States because Canada refuses to allow their use on public roads. Transport Canada, the regulatory agency, questions their safety. It doubts they would stand up in a collision with a delivery truck or a sport utility vehicle. Officials say they crash-tested one which didn't fare well, though they refuse to release the data. The agency wants LSVs confined to “controlled areas”, such as university campuses, military bases, parks and Canada's few gated communities. Its advice has carried weight with the provinces, which make the rules of the road.

It is true that the cars are made from lightweight metals and plastics. But the manufacturers allege political bias: Stephen Harper's conservative government has much support in oil-rich Alberta. Backed by thousands of would-be buyers, they are campaigning to reverse the agency's decision. “It's a ludicrous regulatory situation. All you can point to is oil and the big guys and think there's a conspiracy somewhere,” says Danny Epp of Dynasty.

Mr. Epp reckons that his car should be allowed on urban streets with speed limits of around 50kph (30mph) or less. But Dynasty recently gave up the battle. In March it announced that it is being bought by a Pakistani firm, which will move production to Karachi and export to the United States from there.

ZENN — that stands for zero emission, no noise — promises to fight on. Ian Clifford, its boss, points out that there has not been a single death related to LSVs in the United States, where 44 states allow them and some 45,000 such cars are in use. And gas-guzzlers imperil public safety by polluting the air, he notes. But Mr Clifford is not expecting change soon. He claims that his campaign against Transport Canada has made him enemies. “Two senior, entrenched bureaucrats have told me personally that if it is the last thing they do, they'll keep LSVs off the road in Canada,” he says.

Related News

Doug Ford ‘proud’ of decision to tear up hundreds of green energy contracts

Ontario Renewable Energy Cancellations highlight Doug Ford's move to scrap wind turbine contracts, citing electricity rate relief and taxpayer savings, while critics, the NDP, and industry warn of job losses, termination fees, and auditor scrutiny.

 

Key Points

Ontario's termination of renewable contracts, defended as cost and rate relief, faces disputes over savings and jobs.

✅ PCs cite electricity rate relief and taxpayer savings.

✅ Critics warn of job losses and termination fees.

✅ Auditor inquiry sought into contract cancellation costs.

 

Ontario Premier Doug Ford, whose new stance on wind power has drawn attention, said Thursday he is “proud” of his decision to tear up hundreds of renewable energy deals, a move that his government acknowledges could cost taxpayers more than $230 million.

Ford dismissed criticism that his Progressive Conservatives are wasting public money, telling a news conference that the cancellation of 750 contracts signed by the previous Liberal government will save cash, even as Ontario moves to reintroduce renewable energy projects in the coming years.

“I’m so proud of that,” Ford said of his decision. “I’m proud that we actually saved the taxpayers $790 million when we cancelled those terrible, terrible, terrible wind turbines that really for the last 15 years have destroyed our energy file.”

Later Thursday, Ford went further in defending the cancelled contracts, saying “if we had the chance to get rid of all the wind mills we would,” though a court ruling near Cornwall challenged such cancellations.

The NDP first reported the cost of the cancellations Tuesday, saying the $231 million figure was listed as “other transactions”, buried in government documents detailing spending in the 2018-2019 fiscal year.

The Progressive Conservatives have said the final cost of the cancellations, which include the decommissioning of a wind farm already under construction in Prince Edward County, Ont., has yet to be established, amid warnings about wind project cancellation costs from developers.

The government has said it tore up the deals because the province didn’t need the power and it was driving up electricity rates, and the decision will save millions over the life of the contracts. Industry officials have disputed those savings, saying the cancellations will just mean job losses for small business, and ignore wind power’s growing competitiveness in electricity markets.

NDP Leader Andrea Horwath has asked Ontario’s auditor general to investigate the contracts and their termination fees, amid debates over Ontario’s electricity future among leadership contenders. She called Ford’s remarks on Thursday “ridiculous.”

“Every jurisdiction around the world is trying to figure out how to bring more renewables onto their electricity grids,” she said. “This government is taking us backwards and costing us at the very least $231 million in tearing these energy contracts.”

At the federal level, a recent green electricity contract with an Edmonton company underscores that shift.

 

Related News

View more

Electricity alert ends after Alberta forced to rely on reserves to run grid

Alberta Power Grid Level 2 Alert signals AESO reserve power usage, load management, supply shortage from generator outages, low wind, and limited imports, urging peak demand conservation to avoid blackouts and preserve grid reliability.

 

Key Points

An AESO status where reserves power the grid and load management is used during supply constraints to prevent blackouts.

✅ Triggered by outages, low wind, and reduced import capacity

✅ Peak hours 4 to 7 pm saw conservation requests

✅ Several hundred MW margin from Level 3 load shedding

 

Alberta's energy grid ran on reserves Wednesday, after multiple factors led to a supply shortage, a scenario explored in U.S. grid COVID response discussions as operators plan for contingencies.

At 3:52 p.m. Wednesday, the Alberta Electric System Operator issued a Level 2 alert, meaning that reserves were being used to supply energy requirements and that load management procedures had been implemented, while operators elsewhere adopted Ontario power staffing lockdown measures during COVID-19 for continuity. The alert ended at 6:06 p.m.

"This is due to unplanned generator outages, low wind and a reduction of import capability," the agency said in a post to social media. "Supply is tight but still meeting demand."

AESO spokesperson Mike Deising said the intertie with Saskatchewan had tripped off, and an issue on the British Columbia side of the border, as seen during BC Hydro storm response events, meant the province couldn't import power. 

"There are no blackouts … this just means we're using our reserve power, and that's a standard procedure we'll deploy," he said. 

AESO had asked that people reduce their energy consumption between 4 and 7 p.m., similar to Cal ISO conservation calls during grid strain, which is typically when peak use occurs. 

Deising said the system was several hundred MWs away from needing to move to an alert Level 3, with utilities such as FortisAlberta precautions in place to support continuity, which is when power is cut off to some customers in order to keep the system operating. Deising said Level 2 alerts are fairly rare and occur every few years. The last Level 3 alert was in 2013. 

According to the supply and demand report on AESO's website, the load on the grid at 5 p.m. was 10,643 MW.

That's down significantly from last week, when a heat wave pushed demand to record highs on the grid, with loads in the 11,700 MW range, contrasting with Ontario demand drop during COVID when many stayed home. 

A heat warning was issued Wednesday for Edmonton and surrounding areas shortly before 4 p.m., with temperatures above 29 C expected over the next three days, with many households seeing residential electricity use up during such periods. 

 

Related News

View more

Western Canada drought impacting hydropower production as reservoirs run low

Western Canada Hydropower Drought strains British Columbia and Manitoba as reservoirs hit historic lows, cutting hydroelectric output and prompting power imports, natural gas peaking, and grid resilience planning amid climate change risks this winter.

 

Key Points

Climate-driven reservoir lows cut hydro in B.C. and Manitoba, prompting imports and backup gas to maintain reliability.

✅ Reservoirs at multi-year lows cut hydro generation capacity

✅ BC Hydro and Manitoba Hydro import electricity for reliability

✅ Natural gas turbines used; climate change elevates drought risk

 

Severe drought conditions in Western Canada are compelling two hydroelectricity-dependent provinces, British Columbia and Manitoba, to import power from other regions. These provinces, known for their reliance on hydroelectric power, are facing reduced electricity production due to low water levels in reservoirs this autumn and winter as energy-intensive customers encounter temporary connection limits.

While there is no immediate threat of power outages in either province, experts indicate that climate change is leading to more frequent and severe droughts. This trend places increasing pressure on hydroelectric power producers in the future, spurring interest in upgrading existing dams as part of adaptation strategies.

In British Columbia, several regions are experiencing "extreme" drought conditions as classified by the federal government. BC Hydro spokesperson Kyle Donaldson referred to these conditions as "historic," and a first call for power highlights the strain, noting that the corporation's large reservoirs in the north and southeast are at their lowest levels in many years.

To mitigate this, BC Hydro has been conserving water by utilizing less affected reservoirs and importing additional power from Alberta and various western U.S. states. Donaldson confirmed that these measures would persist in the upcoming months.

Manitoba is also facing challenges with below-normal levels in reservoirs and rivers. Since October, Manitoba Hydro has occasionally relied on its natural gas turbines to supplement hydroelectric production as electrical demand could double over the next two decades, a measure usually reserved for peak winter demand.

Bruce Owen, a spokesperson for Manitoba Hydro, reassured that there is no imminent risk of a power shortage. The corporation can import electricity from other regions, similar to how it exports clean energy in high-water years.

However, the cost implications are significant. Manitoba Hydro anticipates a financial loss for the current fiscal year, with more red ink tied to emerging generation needs, the second in a decade, with the previous one in 2021. That year, drought conditions led to a significant reduction in the company's power production capabilities, resulting in a $248-million loss.

The 2021 drought also affected hydropower production in the United States. The U.S. Department of Energy reported a 16% reduction in overall generation, with notable decreases at major facilities like Nevada's Hoover Dam, where production dropped by 25%.

Drought has long been a major concern for hydroelectricity producers, and they plan their operations with this risk in mind. Manitoba's record drought in 1940-41, for example, is a benchmark for Manitoba Hydro's operational planning to ensure sufficient electricity supply even in extreme low-water conditions.

Climate change, however, is increasing the frequency of such rare events, highlighting the need for more robust backup systems such as new turbine investments to enhance reliability. Blake Shaffer, an associate professor of economics at the University of Calgary specializing in electricity markets, emphasized the importance of hydroelectric systems incorporating the worsening drought forecasts due to climate change into their energy production planning.

 

Related News

View more

'That can keep you up at night': Lessons for Canada from Europe's power crisis

Canada Net-Zero Grid Lessons highlight Europe's energy transition risks: Germany's power prices, wind and solar variability, nuclear phaseout, grid reliability, storage, market design, policy reforms, and distributed energy resources for resilient decarbonization.

 

Key Points

Lessons stress an all-of-the-above mix, robust market design, storage, and nuclear to ensure reliability, affordability.

✅ Diversify: nuclear, hydro, wind, solar, storage for reliability.

✅ Reform markets and grid planning for integration and flexibility.

✅ Build fast: streamline permitting, invest in transmission and DERs.

 

Europe is currently suffering the consequences of an uncoordinated rush to carbon-free electricity that experts warn could hit Canada as well unless urgent action is taken.

Power prices in Germany, for example, hit a record 91 euros ($135 CAD) per megawatt-hour earlier this month. That is more than triple what electricity costs in Ontario, where greening the grid could require massive investment, even during periods of peak demand.

Experts blame the price spikes in large part on a chaotic transition to a specific set of renewable electricity sources - wind and solar - at the expense of other carbon-free supplies such as nuclear power. Germany, Europe’s largest economy, plans to close its last remaining nuclear power plant next year despite warnings that renewables are not being added to the German grid quickly enough to replace that lost supply.

As Canada prepares to transition its own electricity grid to 100 per cent net-zero supplies by 2035, with provinces like Ontario planning new wind and solar procurement, experts say the European power crisis offers lessons this country must heed in order to avoid a similar fate.

'A CAUTIONARY TALE'
“Some countries have rushed their transition without thinking about what people need and when they need it,” said Chris Bentley, managing director of Ryerson University’s Legal Innovation Zone who also served as Ontario’s Minister of Energy from 2011 to 2013, in an interview. “Germany has experienced a little bit of this issue recently when the wind wasn’t blowing.”

Wind power usually provides between 20 and 30 per cent of Germany’s electricity needs, but the below-average breeze across much of continental Europe in recent months has pushed that figure down.

“There is a cautionary tale from the experience in Europe,” said Francis Bradley, chief executive officer of the Canadian Electricity Association, in an interview. “There was also a cautionary tale from what took place this past winter in Texas,” he added, referring to widespread power failures in Texas spawned by a lack of backup power supplies during an unusually cold winter that led to many deaths.

The first lesson Canada must learn from those cautionary tales, Bradley said, “is the need to pursue an all-of-the-above approach.”

“It is absolutely essential that every opportunity and every potential technology for low-carbon or no-carbon electricity needs to be pursued and needs to be pursued to the fullest,” he said.

The more important lesson for Canada, according to Binnu Jeyakumar, is about the need for a more holistic, nuanced approach to our own net-zero transition.

“It is very easy to have runaway narratives that just pinpoint the blame on one or two issues, but the lesson here isn’t really about the reliability of renewables as there are failures that occur across all sources of electricity supply,” said Jeyakumar, director of clean energy for the Pembina Institute, in an interview. 

“The takeaway for us is that we need to get better at learning how to integrate an increasingly diverse electricity grid,” she said. “It is not necessarily the technologies themselves, it is about how we do grid planning, how are our markets structured and are we adapting them to the trends that are evolving in the electricity and energy sectors.”
 

'ABSOLUTELY ENORMOUS' CHALLENGE IS 'ALMOST MIND-BENDING'
Canada already gets the vast majority of its electricity from emission-free sources. Hydro provides roughly 60 per cent of our power, nuclear contributes another 15 per cent and renewables such as wind and solar contribute roughly seven per cent more, according to federal government data.

Tempting as it might be to view the remaining 18 per cent of Canadian electricity that is supplied by oil, natural gas and coal as a small enough proportion that it should be relatively easy to replace, with some analyses warning that scrapping coal abruptly can be costly for consumers, the reality is much more difficult.

“It is the law of diminishing returns or the 80-20 rule where the first 80 per cent is easy but the last 20 per cent is hard,” Bradley explained. “We already have an electricity sector that is 80 per cent GHG-free, so getting rid of that last 20 per cent is the really difficult part because the low-hanging fruit has already been picked.”

Key to successfully decarbonizing Canada’s power grid will be the recognition that electricity demand is constantly growing, a point reinforced by a recent power challenges report that underscores the scale. That means Canada needs to build out enough emission-free power sources to replace existing fossil fuel-based supplies while also ensuring adequate supplies for future demand.


“It is one thing to say that by 2035 we are going to have a decarbonized electricity system, but the challenge really is the amount of additional electricity that we are going to need between now and 2035,” said John Gorman, chief executive officer of the Canadian Nuclear Association, which has argued that nuclear is key to climate goals in Canada, and former CEO of the Canadian Solar Industries Association, in an interview. “It is absolutely enormous, I mean, it is almost mind-bending.”

Canada will need to triple the amount of electricity produced nationwide by 2050, according to a report from SNC-Lavalin published earlier this year, and provinces such as Ontario face a shortfall over the next few years, Gorman said. Gorman said that will require adding between five and seven gigawatts of new installed capacity to Canada’s electricity grid every year from 2021 through 2050 or more than twice the amount of new power supply Canada brings online annually right now.

For perspective, consider Ontario’s Bruce Power nuclear facility. It took 27 years to bring that plant to its current 6.4 gigawatt (GW) capacity, but meeting Canada’s decarbonization goals will require adding roughly the equivalent capacity of Bruce Power every year for the next three decades.

“The task of creating enough electricity in the coming years is truly enormous and governments have not really wrapped their heads around that yet,” Gorman said. “For those of us in the energy sector, it is the type of thing that can keep you up at night.”

GOVERNMENT POLICY 'HELD HOSTAGE' BY 'DINOSAURS'
The Pembina Institute’s Jeyakumar agreed “the last mile is often the most difficult” and will require “a concerted effort both at the federal level and the provincial level.”

Governments will “need to be able to support innovation and solutions such as non-wires alternatives,” she said. “Instead of building a massive new transmission line or beefing up an old one, you could put a storage facility at the end of an existing line. Distributed energy resources provide those kinds of non-wires alternatives and they are already cost-effective and competitive with oil and gas.”

For Glen Murray, who served as Ontario’s minister of infrastructure and transportation from early 2013 to mid-2014 before assuming the environment and climate change portfolio until his resignation in mid-2017, that is a key lesson governments have yet to learn.

“We are moving away from a centralized distribution model to distributed systems where individual buildings and homes and communities will supply their own electricity needs,” said Murray, who currently works for an urban planning software company in Winnipeg, in an interview. “Yet both the federal and provincial governments are assuming that we are going to continue to have large, centralized generation of power, but that is simply not going to be the case.”

“Government policy is not focused on driving that because they are held hostage by their own hydro utilities and the big gas companies,” Murray said. “They are controlling the agenda even though they are the dinosaurs.”

Referencing the SNC-Lavalin report, Gorman noted as many as 45 small, modular nuclear reactors as well as 20 conventional nuclear power plants will be required in the coming decades, with jurisdictions like Ontario exploring new large-scale nuclear as part of that mix: “And that is in the context of also maximizing all the other emission-free electricity sources we have available as well from wind to solar to hydro and marine renewables,” Gorman said, echoing the “all-of-the-above” mindset of the Canadian Electricity Association.

There are, however, “fundamental rules of the market and the regulatory system that make it an uneven playing field for these new technologies to compete,” said Jeyakumar, agreeing with Murray’s concerns. “These are all solvable problems but we need to work on them now.”
 

'2035 IS TOMORROW'
According to Bentley, the former Ontario energy minister-turned academic, “the government's role is to match the aspiration with the means to achieve that aspiration.”

“We have spent far more time as governments talking about the goals and the high-level promises [of a net-zero electricity grid by 2035] without spending as much time as we need to in order to recognize what a massive transformation this will mean,” Bentley said. “It is easy to talk about the end-goal, but how do you get there?”

The Canadian Electricity Assocation’s Bradley agreed “there are still a lot of outstanding questions about how we are going to turn those aspirations into actual policies. The 2035 goal is going to be very difficult to achieve in the absence of seeing exactly what the policies are that are going to move us in that direction.”

“It can take a decade to go through the processes of consultations and planning and then building and getting online,” Bradley said. “Particularly when you’re talking about big electricity projects, 2035 is tomorrow.”

Jeyakumar said “we cannot afford to wait any longer” for policies to be put in place as the decisions governments make today “will then lock us in for the next 30 or 40 years into specific technologies.”

“We need to consider it like saving for retirement,” said Gorman of the Canadian Nuclear Association. “Every year that you don’t contribute to your retirement savings just pushes your retirement one more year into the future.”

 

Related News

View more

Ontario Government Consults On Changes To Industrial Electricity Pricing And Programs

Ontario electricity pricing consultations will gather business input on OEB rate design, Industrial Conservation Initiative, dynamic pricing, global adjustment, and system costs through online feedback and sector-specific in-person sessions province-wide.

 

Key Points

Consultations gathering business input on rates, programs, and OEB policy to improve fairness and reduce system costs.

✅ Consults on ICI, GA, dynamic pricing structures

✅ Seeks views on OEB C&I rate design changes

✅ In-person sessions across key industrial sectors

 

The Ontario government has announced plans to hold consultations to seek input from businesses about industrial electricity pricing and programs. This will be done through Ontario's online consultations directory and though in-person sector-specific consultation sessions across the province. The in-person sessions will be held in all areas of Ontario, and will target "key industries," including automotive and the build-out of electric vehicle charging stations infrastructure, forestry, mining, agriculture, steel, manufacturing and chemicals.

On April 1, 2019, the Ontario government published a consultation notice for this process, confirming that it is looking for input on "electricity rate design, existing tax-based incentives, reducing system costs and regulatory and delivery costs," including related proposals such as the hydrogen rate reduction proposal under discussion. The consultation process includes a list of nine questions for respondents (and presumably participants in the in-person sessions) to address. These include questions about:

The benefits of the Industrial Conservation Initiative (described below), including how it could be changed to improve fairness and industrial competitiveness, and how it could complement programs like the Hydrogen Innovation Fund that support industrial innovation.

Dynamic pricing structures that allow for lower rates in return for responding to price signals versus a flat rate structure that potentially costs more, but is more stable and predictable, as Ontario's energy storage expansion accelerates.

Interest in an all-in commodity contract with an electricity retailer, even if it involves a risk premium.

Interested parties are invited to submit their comments before May 31, 2019.

The government's consultation announcement follows recent developments in the Ontario Energy Board's (OEB) review of electricity ratemaking for commercial and industrial customers, and intertie projects such as the Lake Erie Connector that could affect market dynamics.

In December 2018, the OEB published a paper from its Market Surveillance Panel (MSP) examining the Industrial Conservation Initiative (ICI), and potential alternative approaches. The ICI is a program that allows qualifying large industrial customers to base their global adjustment (GA) payments on their consumption during five peak demand hours in a year. Customers who find ways to reduce consumption at those times, perhaps through DERs and enabling energy storage options, will reduce their electricity costs. This shifts GA costs to other customers. The MSP found that the ICI does not fairly allocate costs to those who cause them and/or benefit from them, and recommends that a better approach should be developed.

In February 2019, the OEB released its Staff Report to the Board on Rate Design for Commercial and Industrial Electricity Customers, setting out recommendations for new rate designs for electricity commercial and industrial (C&I) rate classes as Ontario increasingly turns to battery storage to meet rising demand. As described in an earlier post, the Staff Report includes recommendations to: (i) establish a fixed distribution charge for commercial customers with demands under 10 kW; (ii) implement a demand charge (rather than the current volumetric charge) for C&I customers with demands between 10kW and 50kW; and (iii) introduce a "capacity reserve charge" for customers with load displacement generation to replace stand-by charges and provide for recognition of the benefits of this generation on the system. The OEB held a stakeholder information session in mid-March on this initiative, and interested parties are now filing submissions in response to the Staff Report.

Whether and how the OEB's processes will fit together with the government's consultation process remains to be seen.

 

Related News

View more

Lack of energy: Ottawa’s electricity consumption drops 10 per cent during pandemic

Ottawa Electricity Consumption Drop reflects COVID-19 impacts, with Hydro Ottawa and IESO reporting 10-12% lower demand, delayed morning peaks, and shifted weekend peak to 4 p.m., alongside provincial time-of-use rate relief.

 

Key Points

A 10-12% decline in Ottawa's electricity demand during COVID-19, with later morning peaks and weekend peak at 4 p.m.

✅ Weekday demand down 11%; weekends down 10% vs April 2019.

✅ Morning peak delayed about 4 hours; 6 a.m. usage down 17%.

✅ Weekend peak moved from 7 p.m. to 4 p.m.; rate relief ongoing.

 

Ottawa residents may be spending more time at home, with residential electricity use up even as the city’s overall energy use has dropped during the COVID-19 pandemic.

Hydro Ottawa says there was a 10-to-11 per cent drop in electricity consumption in April, with the biggest decline in electricity usage happening early in the morning, a pattern echoed by BC Hydro findings in its province.

Statistics provided to CTV News Ottawa show average hourly energy consumption in the City of Ottawa dropped 11 per cent during weekdays, mirroring Manitoba Hydro trends reported during the pandemic, and a 10 per cent decline in electricity consumption on weekends.

The drop in energy consumption came as many businesses in Ottawa closed their doors due to the COVID-19 measures and physical distancing guidelines.

“Based on our internal analysis, when comparing April 2020 to April 2019, Hydro Ottawa observed a lower, flatter rise in energy use in the morning, with peak demand delayed by approximately four hours.” Hydro Ottawa said in a statement to CTV News Ottawa.

“Morning routines appear to have the largest difference in energy consumption, most likely as a result of a collective slower pace to start the day as people are staying home.”

Hydro Ottawa says overall, there was an 11 per cent average hourly reduction in energy use on weekdays in April 2020, compared to April 2019. The biggest difference was the 6 a.m. hour, with a 17 per cent decrease.

On weekends, the average electricity usage dropped 10 per cent in April, compared to April 2019. The biggest difference was between 7 a.m. and 8 a.m., with a 13 per cent drop in hydro usage.

Hydro Ottawa says weekday peak continues to be at 4 p.m., while on weekends the peak has shifted from 7 p.m. before the pandemic to 4 p.m. now, though Hydro One has not cut peak rates for self-isolating customers.

The Independent Electricity System Operator says across Ontario, there has been a 10 to 12 per cent drop in energy consumption during the pandemic, a trend reflected in province-wide demand data that is the equivalent to half the demand of Toronto.

The Ontario Government has provided emergency electricity rate relief during the COVID-19 pandemic. Residential and small business consumers on time-of-use pricing, and later ultra-low overnight options, will continue to pay one price no matter what time of day the electricity is consumed until the end of May.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.