TVA to start using scrubbers at plant

By Associated Press


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
The Tennessee Valley Authority has begun operating two smokestack scrubbers at its Kingston Fossil Plant.

The scrubbers will reduce sulfur dioxide emissions from the plant's nine boilers, which can create sulfates that affect air quality.

Kingston was one of four coal-fired plants in Tennessee and Alabama involved in a federal lawsuit brought by North Carolina over air quality.

TVA said that five of its 11 coal-fired power plants have scrubbers installed. Construction on the two scrubbers began in 2006. The first scrubber at Kingston was completed in December and the second was completed in April for a total cost of $475 million.

TVA has reduced its total sulfur dioxide emissions by 91 percent since 1977 by operating scrubbers and burning low sulfur coal.

"We now have state-of-the-art control equipment on all of our units at Kingston, allowing us to generate the electricity needed by our customers," Kingston Plant Manager Leslie Nale said in a statement. "This translates into cleaner air in the Great Smoky Mountains and across the region."

TVA is the nation's largest public utility, supplying electricity to about 8.7 million consumers in Tennessee and parts of Alabama, Mississippi, Georgia, Kentucky, North Carolina and Virginia.

Related News

Quebec Halts Crypto Mining Electricity Requests

Hydro-Quebec Crypto Mining Pause signals a temporary halt as blockchain power requests surge; energy regulator review will weigh electricity demand, winter peak constraints, tariffs, investments, and local jobs to optimize grid stability and revenues.

 

Key Points

A provincial halt on new miner power requests as Hydro-Quebec sets rules to safeguard demand, winter peaks, and rates.

✅ Temporary halt on new electricity sales to crypto miners

✅ Regulator to rank projects by jobs, investment, and revenue

✅ Winter peak demand and tariffs central to new framework

 

Major Canadian electricity provider Hydro-Québec will temporarily stop processing requests from cryptocurrency miners in order for the company to fulfil its obligations to supply energy to the entire province, while its global ambitions adjust to changing demand, according to a press release published June 7.

Hydro-Québec is experiencing “unprecedented” demand from blockchain companies, which reportedly exceeds the electric utility’s short and medium-term capacity. In this regard, the Quebec provincial government has ordered Hydro-Québec to halt electric power sales to cryptocurrency miners, and, following the New Hampshire rejection of Northern Pass announced a new framework for this category of electricity consumers.

In the coming days, Hydro-Québec will reportedly file an application to local energy regulator Régie de l'énergie, proposing a selection process for blockchain industry projects so as “not to miss the opportunities offered by this industry.” Regulators will reportedly target companies which can offer the province the most profitable economic advantages, including investments and local job creation.

#google#

Régie de l'énergie is instructed to consider “the need for a reserved block of energy for this category of consumers, the possibility of maximizing Hydro-Québec's revenues, and issues related to the winter peak period” as well as interprovincial arrangements like the Ontario-Québec electricity deal under discussion. Éric Filion, President of Hydro-Québec Distribution, said:

"The blockchain industry is a promising avenue for Hydro-Québec. Guidelines are nevertheless required to ensure that the development of this industry maximizes spinoffs for Québec without resulting in rate increases for our customers. We are actively participating in the Régie de l'énergie's process so that these guidelines can be produced as quickly as possible."

With this move, the government of Québec deviates from its decision to reportedly open the electricity market to miners at the end of last month, even as an Ontario-Quebec energy swap helps manage electricity demands. In March, the government said it was not interested in providing cheap electricity to Bitcoin miners, stating that cryptocurrency mining at a discount without any sort of “added value” for the local economy was unfavorable.

 

Related News

View more

Canadian Gov't and PEI invest in new transmission line to support wind energy production

Skinners Pond Transmission Line expands PEI's renewable energy grid, enabling wind power integration, grid reliability, and capacity for the planned 40 MW windfarm, funded through the Green Infrastructure Stream to support sustainable economic growth.

 

Key Points

A 106-km grid project enabling PEI wind power, increasing capacity and reliability, linking Skinners Pond to Sherbrooke.

✅ 106-km line connects Skinners Pond to Sherbrooke substation

✅ Integrates 40 MW windfarm capacity by 2025

✅ Funded by Canada and PEI via Green Infrastructure Stream

 

The health and well-being of Canadians are the top priorities of the Governments of Canada and Prince Edward Island. But the COVID-19 pandemic has affected more than Canadians' personal health. It is having a profound effect on the economy.

That is why governments have been taking decisive action together to support families, businesses and communities, and continue to look ahead to planning for our electricity future and see what more can be done.

Today, Bobby Morrissey, Member of Parliament for Egmont, on behalf of the Honourable Catherine McKenna, Minister of Infrastructure and Communities, the Honourable Dennis King, Premier of Prince Edward Island, the Honourable Dennis King, Premier of Prince Edward Island, and the Honourable Steven Myers, Prince Edward Island Minister of Transportation, Infrastructure and Energy, announced funding to build a new transmission line from Sherbrooke to Skinners Pond, as part of broader Canadian collaboration on clean energy, with several premiers nuclear reactor technology to support future needs as well.

The new 106-kilometre transmission line and its related equipment will support future wind energy generation projects in western Prince Edward Island, complementing the Eastern Kings wind farm expansion already advancing. Once completed, the transmission line will increase the province's capacity to manage the anticipated 40 megawatts from the future Skinner's Pond Windfarm planned for 2025 and provide connectivity to the Sherbrooke substation to the northeast of Summerside.

The Government of Canada is investing $21.25 million and the Government of Prince Edward Island is providing $22.75 million in this project, reflecting broader investments in new turbines across Canada, through the Green Infrastructure Stream (GIS) of the Investing in Canada infrastructure program.

This projects is one in a series of important project announcements that will be made across the province over the coming weeks. The Governments of Canada and Prince Edward Island are working cooperatively to support jobs, improve communities and build confidence, while safely and sustainably restoring economic growth, as Nova Scotia increases wind and solar projects across the region.

"Investing in renewable energy infrastructure is essential to building healthy, inclusive, and resilient communities. The new Skinners Pond transmission line will support Prince Edward Island's production of green energy, focusing on wind resources rather than expanded biomass use in the mix. Projects like this also support economic growth and help us build a greener future for the next generation of Islanders."

Bobby Morrissey, Member of Parliament for Egmont, on behalf of the Honourable Catherine McKenna, Minister of Infrastructure and Communities

"We live on an Island that has tremendous potential in further developing renewable energy. We have an opportunity to become more sustainable and be innovative in our approach, and learn from regions where provinces like Manitoba have clean energy to help neighbouring provinces through interties. The strategic investment we are making today in the Skinner's Pond transmission line will allow Prince Edward Island to further harness the natural power of wind to create clean, locally produced and locally used energy that will benefit of all Islanders."

 

Related News

View more

$1.6 Billion Battery Plant Charges Niagara Region for Electric Vehicle Future

Ontario EV Battery Separator Plant anchors Canada's EV supply chain, with Asahi Kasei producing lithium-ion battery separators in Niagara Region to support Honda's Alliston assembly, clean transportation growth, and sustainable manufacturing jobs.

 

Key Points

Asahi Kasei's Niagara Region plant makes lithium-ion battery separators supplying Honda's EV factory in Ontario.

✅ Starts up by 2027 to align with Honda EV output timeline.

✅ Backed by clean tech tax credits and public investment.

✅ Boosts local jobs, R&D, and clean transportation leadership.

 

The automotive industry is undergoing a seismic shift, and Canada is firmly planting its flag in the electric vehicle (EV) revolution, propelled by recent EV assembly deals across the country. A new $1.6 billion battery component plant in Ontario's Niagara Region signifies a significant step towards a cleaner, more sustainable transportation future. This Asahi Kasei facility, a key player in Honda's $15 billion electric vehicle supply chain investment, promises to create jobs, boost the local economy, and solidify Ontario's position as a leader in clean transportation technology.

Honda's ambitious project forms part of Honda's Ontario EV investment that involves constructing a dedicated battery plant adjacent to their existing Alliston, Ontario assembly facility. This new plant will focus on producing fully electric vehicles, requiring a robust supply chain for critical components. Asahi Kasei's Niagara Region plant enters the picture here, specializing in the production of battery separators – a thin film crucial for separating the positive and negative electrodes within a lithium-ion battery. These separators play a vital role in ensuring the battery functions safely and efficiently.

The Niagara Region plant is expected to be operational by 2 027, perfectly aligning with Honda's EV production timeline. This strategic partnership benefits both companies: Honda secures a reliable source for a vital component, while Asahi Kasei capitalizes on the burgeoning demand for EV parts. The project is a catalyst for economic growth in Ontario, creating jobs in construction and manufacturing, supporting an EV jobs boom province-wide, and potentially future research and development sectors. Additionally, it positions the province as a hub for clean transportation technology, attracting further investment and fostering innovation.

This announcement isn't an isolated event. News of Volkswagen constructing a separate EV battery plant in St. Thomas, Ontario, and the continuation of a major EV battery project near Montreal further underscore Canada's commitment to electric vehicles. These developments signify a clear shift in the country's automotive landscape, with a focus on sustainable solutions.

Government support has undoubtedly played a crucial role in attracting these investments. The Honda deal involves up to $5 billion in public funds. Asahi Kasei's Niagara Region plant is also expected to benefit from federal and provincial clean technology tax credits. This demonstrates a collaborative effort between government and industry, including investments by Canada and Quebec in battery assembly, to foster a thriving EV ecosystem in Canada.

The economic and environmental benefits of this project are undeniable. Battery production is expected to create thousands of jobs, while the shift towards electric vehicles will lead to reduced emissions and a cleaner environment. Ontario stands to gain significantly from this transition, becoming a leader in clean energy technology and attracting skilled workers and businesses catering to the EV sector, especially as the U.S. auto pivot to EVs accelerates across the border.

However, challenges remain. Concerns about the environmental impact of battery production, particularly the sourcing of raw materials and the potential for hazardous waste, need to be addressed. Additionally, ensuring a skilled workforce capable of handling the complexities of EV technology is paramount.

Despite these challenges, the future of electric vehicles in Canada appears bright. Major automakers are making significant investments, government support is growing, and consumer interest in EVs is on the rise. The Niagara Region plant serves as a tangible symbol of Canada's commitment to a cleaner and more sustainable transportation future. With careful planning and continued Canada-U.S. collaboration across the sector, this project has the potential to revolutionize the Canadian automotive industry and pave the way for a greener tomorrow.

 

Related News

View more

Can Canada actually produce enough clean electricity to power a net-zero grid by 2050?

Canada Clean Electricity drives a net-zero grid by 2035, scaling renewables like wind, solar, and hydro, with storage, smart grids, interprovincial transmission, and electrification of vehicles, buildings, and industry to cut emissions and costs.

 

Key Points

Canada Clean Electricity is a shift to a net-zero grid by 2035 using renewables, storage, and smart grids to decarbonize

✅ Doubles non-emitting generation for electrified transport and heating

✅ Expands wind, solar, hydro with storage and smart-grid balancing

✅ Builds interprovincial lines and faster permitting with Indigenous partners

 

By Merran Smith and Mark Zacharias

Canada is an electricity heavyweight. In addition to being the world’s sixth-largest electricity producer and third-largest electricity exporter in the global electricity market today, Canada can boast an electricity grid that is now 83 per cent emission-free, not to mention residential electricity rates that are the cheapest in the Group of Seven countries.

Indeed, on the face of it, the country’s clean electricity system appears poised for success. With an abundance of sunshine and blustery plains, Alberta and Saskatchewan, the Prairie provinces most often cited for wind and solar, have wind- and solar-power potential that rivals the best on the continent. Meanwhile, British Columbia, Manitoba, Quebec, and Newfoundland and Labrador have long excelled at generating low-cost hydro power.

So it would only be natural to assume that Canada, with this solid head start and its generous geography, is already positioned to provide enough affordable clean electricity to power our much-touted net-zero and economic ambitions.

But the reality is that Canada, like most countries, is not yet prepared for a world increasingly committed to carbon neutrality, in part because demand for solar electricity has lagged, even as overall momentum grows.

The federal government’s forthcoming Clean Electricity Standard – a policy promised by the governing Liberals during the most recent election campaign and restated for an international audience by Prime Minister Justin Trudeau at the United Nations’ COP26 climate summit – would require all electricity in the country to be net zero by 2035 nationwide, setting a new benchmark. But while that’s an encouraging start, it is by no means the end goal. Electrification – that is, hooking up our vehicles, heating systems and industry to a clean electricity grid – will require Canada to produce roughly twice as much non-emitting electricity as it does today in just under three decades.

This massive ramp-up in clean electricity will require significant investment from governments and utilities, along with their co-operation on measures and projects such as interprovincial power lines to build an electric, connected and clean system that can deliver benefits nationwide. It will require energy storage solutions, smart grids to balance supply and demand, and energy-efficient buildings and appliances to cut energy waste.

While Canada has mostly relied on large-scale hydroelectric and nuclear power in the past, newer sources of electricity such as solar, wind, geothermal, and biomass with carbon capture and storage will, in many cases, be the superior option going forward, thanks to the rapidly falling costs of such technology and shorter construction times. And yet Canada added less solar and wind generation in the past five years than all but three G20 countries – Indonesia, Russia and Saudi Arabia, with some experts calling it a solar power laggard in recent years. That will need to change, quickly.

In addition, Canada’s Constitution places electricity policy under provincial jurisdiction, which has produced a patchwork of electricity systems across the country that use different energy sources, regulatory models, and approaches to trade and collaboration. While this model has worked to date, given our low consumer rates and high power reliability, collaborative action and a cohesive vision will be needed – not just for a 100-per-cent clean grid by 2035, but for a net-zero-enabling one by 2050.

Right now, it takes too long to move a clean power project from the proposal stage to operation – and far too long if we hope to attain a clean grid by 2035 and a net-zero-enabling one by 2050. This means that federal, provincial, territorial and Indigenous governments must work with rural communities and industry stakeholders to accelerate the approvals, financing and construction of clean energy projects and provide investor certainty.

In doing so, Canada can set a course to carbon neutrality while driving job creation and economic competitiveness, a transition many analyses deem practical and profitable in the long run. Our closest trading partners and many of the world’s largest companies and investors are demanding cleaner goods. A clean grid underpins clean production, just as it underpins our climate goals.

The International Energy Agency estimates that, for the world to reach net zero by 2050, clean electricity generation worldwide must increase by more than 2.5 times between today and 2050. Countries are already plotting their energy pathways, and there is much to learn from each other.

Consider South Australia. The state currently gets 62 per cent of its electricity from wind and solar and, combined with grid-scale battery storage, has not lost a single hour of electricity in the past five years. South Australia expects 100 per cent of its electricity to come from renewable sources before 2030. An added bonus given today’s high energy prices: Annual household electricity costs have declined there by 303 Australian dollars ($276) since 2018.

The transition to clean energy is not about sacrificing our way of life – it’s about improving it. But we’ll need the power to make it happen. That work needs to start now.

Merran Smith is the executive director of Clean Energy Canada, a program at the Morris J. Wosk Centre for Dialogue at Simon Fraser University in Vancouver. Mark Zacharias is a special adviser at Clean Energy Canada and visiting professor at the Simon Fraser University School of Public Policy.

 

Related News

View more

Iran, Iraq Discuss Further Cooperation in Energy Sector

Iran-Iraq Electricity Cooperation advances with power grid synchronization, cross-border energy trade, 400-kV transmission lines, and education partnerships, boosting grid reliability, infrastructure investment, and electricity exports between Tehran and Baghdad for improved supply and stability.

 

Key Points

A bilateral initiative to synchronize grids, expand networks, and sustain electricity exports, improving reliability.

✅ 400-kV Amarah-Karkheh line enables synchronized operations.

✅ Extends electricity export contracts to meet Iraq demand.

✅ Enhances grid reliability, training, and infrastructure investment.

 

Aradakanian has focused his one-day visit to Iraq on discussions pertaining to promoting bilateral collaboration between the two neighboring nations in the field of electricity, grid development deals and synchronizing power grid between Tehran and Baghdad, cooperating in education, and expansion of power networks.

He is also scheduled to meet with Iraqi top officials in a bid to boost cooperation in the relevant fields.

Back in December 2019, Ardakanian announced that Iran will continue exports of electricity to Iraq by renewing earlier contract as it is supplying about 40% of Iraq's power today.

"Iran has signed a 3-year-long cooperation agreement with Iraq to help the country's power industry in different aspects. The documents states at its end that we will export electricity to Iraq as far as they need," Ardakanian told FNA on December 9, 2019.

The contract to "export Iran's electricity" to Iraq will be extended, he added.

Ardakanian also said that Iran and Iraq's power grids have become synchronized in a move that supports Iran's regional power hub plans since a month ago.

In 2004 Iran started selling electricity to Iraq. Iran electricity exports to the western neighbor are at its highest level of 1,361 megawatts per day now, as the country weighs summer power sufficiency ahead of peak demand.

The new Amarah-Karkheh 400-KV transmission line stretching over 73 kilometers, is now synchronized to provide electricity to both countries, reflecting regional power export trends as well. It also paves the way for increasing export to power-hungry Iraq in the near future.

With synchronization of the two grids, the quality of electricity in Iraq will improve as the country explores nuclear power options to tackle shortages.

According to official data, 82% of Iraq's electricity is generated by thermal power plants that use gas as feedstock, while Iran is converting thermal plants to combined cycle to save energy. This is expected to reach 84% by 2027.

 

Related News

View more

Indian government takes steps to get nuclear back on track

India Nuclear Generation Shortfall highlights missed five-year plan targets due to uranium fuel scarcity, commissioning delays at Kudankulam, PFBR slippage, and PHWR equipment bottlenecks under IAEA safeguards and domestic supply constraints.

 

Key Points

A gap between planned and actual nuclear output due to fuel shortages, reactor delays, and first-of-a-kind hurdles.

✅ Fuel scarcity pre-2009-10 constrained unsafeguarded reactors.

✅ Kudankulam delays from protests, litigation, and remobilisation.

✅ FOAK PHWR equipment bottlenecks and PFBR slippage.

 

A lack of available domestically produced nuclear fuel and delays in constructing and commissioning nuclear power plants, including first-of-a-kind plants and the Prototype Fast Breeder Reactor (PFBR), meant that India failed to meet its nuclear generation targets under the governmental plans over the decade to 2017, even as global project milestones were being recorded elsewhere.

India's nuclear generation target under its 11th five-year plan, covering the period 2007-2012, was 163,395 million units (MUs) and the 12th five-year Plan (2012-17) was 241,748 MUs, Minister of state for the Department of Atomic Energy and the Prime Minister's Office Jitendra Singh told parliament on 6 February. Actual nuclear generation in those periods was 109,642 MUs and 183,488 MUs respectively, Singh said in a written answer to questions in the Lok Sabah.

Singh attributed the shortfall in generation to a lack of availability of the necessary quantities of domestically produced fuel during the three years before 2009-2010; delays to the commissioning of two 1000 MWe nuclear power plants at Kudankulam due to local protests and legal challenges; and delays in the completion of two indigenously designed pressurised heavy water reactors and the PFBR.

Kudankulam 1 and 2 are VVER-1000 pressurised water reactors (PWRs) supplied by Russia's Atomstroyexport under a Russian-financed contract. The units were built by Nuclear Power Corporation of India Ltd (NPCIL) and were commissioned and are operated by NPCIL under International Atomic Energy Agency (IAEA) safeguards, with supervision from Russian specialists, while China's nuclear program advanced on a steady development track in the same period. Construction of the units - the first PWRs to enter operation in India - began in 2002.

Singh said local protests resulted in the halt of commissioning work at Kudankulam for nine months from September 2011 to March 2012, when he said project commissioning had been at its peak. As a consequence, additional time was needed to remobilise the workforce and contractors, he said. Litigation by anti-nuclear groups, and compliance with supreme court directives, impacted commissioning in 2013, he said. Unit 1 entered commercial operation in December 2014 and unit 2 in April 2017.

Delays in the manufacture and supply by domestic industry of critical equipment for first-of-a-kind 700 MWe pressurised heavy water reactors -  Kakrapar units 3 and 4, and Rajasthan units 7 and 8 - has led to delays in the completion of those units, the minister said, as well as noting the delay in completion of the PFBR, which is being built at Kalpakkam by Bhavini. In answer to a separate question, Singh said the PFBR is in an "advance stage of integrated commissioning" and is "expected to approach first criticality by the year 2020."

Eight of India's operating nuclear power plants are not under IAEA safeguards and can therefore only use indigenously-sourced uranium. The other 14 units operate under IAEA safeguards and can use imported uranium. The Indian government has taken several measures to secure fuel supplies for reactors in operation and under construction, amid coal supply rationing pressures elsewhere in the power sector, concluding fuel supply contracts with several countries for existing and future reactors under IAEA Safeguards and by "augmentation" of fuel supplies from domestic sources, Singh said.

Kakrapar 3 and 4, with Kakrapar 3 criticality already reported, and Rajasthan 7 and 8 are all currently expected to enter service in 2022, according to World Nuclear Association information.

 

Joint venture discussions

In February 2016 the government amended the Atomic Energy Act to allow NPCIL to form joint venture companies with other public sector undertakings (PSUs) for involvement in nuclear power generation and possibly other aspects of the fuel cycle, reflecting green industrial strategies shaping future reactor waves globally. In answer to another question, Singh confirmed that NPCIL has entered into joint ventures with NTPC Limited (National Thermal Power Corporation, India's largest power company) and Indian Oil Corporation Limited. Two joint venture companies - Anushakti Vidhyut Nigam Limited and NPCIL-Indian Oil Nuclear Energy Corporation Limited - have been incorporated, and discussions on possible projects to be set up by the joint venture companies are in progress.

An exploratory discussion had also been held with Oil & Natural Gas Corporation, Singh said. Indian Railways - which has in the past been identified as a potential joint venture partner for NPCIL - had "conveyed that they were not contemplating entering into an MoU for setting up of nuclear power plants," Singh said.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified