Wind delivering benefits to B.C.

By Vancouver Sun


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Policy-makers in British Columbia have made it clear they see wind energy as an important and growing player in the province's future energy plans — driving job creation, new investment, and the delivery of clean energy.

The introduction of the Clean Energy Act reflects the province's strong support for investment in a clean, renewable and low-impact electricity system. The fastest growing source of new electricity around the world, wind energy proved its viability in the British Columbia market through BC Hydro's 2010 competitive call for clean power, with contracts for six projects totaling 534 MW of capacity. This new capacity will build on the $1.7 billion in new investment and 690 MW of new wind energy capacity installed across Canada in 2010.

Wind energy in Canada has increased almost tenfold in the last six years as governments seek ways to meet rising energy demand, reduce the environmental impacts of electricity generation and stimulate rural and industrial economic development. Canada's total installed wind energy capacity is now 4,008 MW, which is enough to provide electricity that would meet the needs of more than 1.2 million homes.

Ontario is the current provincial leader with roughly one-third of the county's wind energy development. Alberta and Quebec combined follow with approximately another third of capacity and the remaining seven provinces share the rest.

Policy development in all provinces is feeding this rapid growth. In 2009, the Ontario government introduced Ontario's new Feed-in Tariff FiT program under the Green Energy and Economy Act, the first of its kind in North America. Nova Scotia's new energy policy, released in 2010, creates a mandatory target of supplying 25 per cent of the province's electricity needs from renewable sources by 2015 and a goal of boosting that to 40 per cent by 2020. At the close of 2010, Hydro-Quebec announced the results of a unique tendering process for 500 MW of wind energy from first nations and regional municipalities that will help meet Quebec's ambitious objective of 4,000 MW of wind energy by 2015. These policy initiatives allow for the stable and sustained growth of an industry that through economies of scale will reduce the infrastructure and operations costs of this new technology over time.

The prospects for Canada's wind energy industry over the next few years are very promising and Canada is still only scratching the surface of its enormous wind energy potential and the economic benefits that will result.

To achieve these benefits, policymakers must ensure electricity markets incorporate the costs of environmental impacts from all sources of electricity generation, establish long-term targets and stable and sustained policies supporting wind energy to make Canada an internationally competitive destination for investment and facilitate the planning and build out of "wind friendly" transmission.

There is no doubt that 2010 has been another strong year for the wind energy industry in Canada.

With more than 1,000 MW likely to be installed in 2011, a record year is likely. In broad terms, each 1,000 MW of new wind energy creates about $2.75 billion in private sector investment, about 1,000 jobs and enough clean electricity to power more than 300,000 homes. It also can generate more than $3 million per year in lease payments to farmers and other landowners, and more than $3 million per year in new tax revenues for municipalities.

Related News

Biggest in Canada: Bruce Power doubles PPE donation

Bruce Power PPE Donation supports Canada COVID-19 response, supplying 1.2 million masks, gloves, and gowns to Ontario hospitals, long-term care, and first responders, plus face shields, hand sanitizer, and funding for testing and food banks.

 

Key Points

Bruce Power PPE Donation is a broad COVID-19 aid delivering PPE, supplies, and funding across Ontario.

✅ 1.2 million masks, gloves, gowns to Ontario care providers

✅ 3-D printed face shields and 50,000 bottles of sanitizer

✅ Funding testing research and supporting regional food banks

 

The world’s largest nuclear plant, which recently marked an operating record during sustained operations, just made Canada’s largest donation of personal protective equipment (PPE).

Bruce Power is doubling its initial donation of 600,000 masks, gloves and gowns for front-line health workers, to 1.2 million pieces of PPE.

The company, which operates the Bruce Nuclear station near Kincardine, Ont., where a major reactor refurbishment is underway, plans to have the equipment in the hands of hospitals, long-term care homes and first responders by the end of April.

It’s not the only thing Bruce Power is doing to help out Ontario during the COVID-19 pandemic:

 Bruce Power has donated $300,000 to 37 food banks in Midwestern Ontario, highlighting the broader economic benefits of Canadian nuclear projects for communities.

  •  They’re also working with NPX in Kincardine to make face shields with 3-D printers, leveraging local manufacturing contracts to accelerate production.
  •  They’re teaming up with the Power Worker’s Union to fund testing research in Toronto.
  •  They’re working with Three Sheets Brewing and Junction 56 Distillery to distribute 50,000 bottles of hand sanitizer to those that need it.

And that’s all on top of what they’ve been doing for years, producing Cobalt-60, a medical isotope to sterilize medical equipment, and, after a recent output upgrade at the site, producing about 30 per cent of Ontario’s electricity as the province advances the Pickering B refurbishment to bolster grid reliability.

Bruce Power has over 4,000 employees working out of their nuclear plant, on the shores of Lake Huron, as it explores the proposed Bruce C project for potential future capacity.

 

Related News

View more

Explainer: Europe gets ready to revamp its electricity market

EU Electricity Market Reform seeks to curb gas-driven volatility by expanding CfDs and PPAs, decoupling power from gas, and aligning consumer bills with low-cost renewables and nuclear, as Brussels advances market redesign.

 

Key Points

An EU plan to curb price spikes by expanding long-term contracts and tying bills to cheap renewables.

✅ Expands CfDs and PPAs to lock in predictable power prices

✅ Aims to decouple bills from gas-driven wholesale volatility

✅ Seeks investment certainty for renewables, nuclear, and grids

 

European Union energy ministers meet on Monday to debate upcoming power market reforms. Brussels is set to propose the revamp next month, but already countries are split over how to "fix" the energy system - or whether it needs fixing at all.

Here's what you need to know.


POST-CRISIS CHANGES
The European Commission pledged last year to reform the EU's electricity market rules, after record-high gas prices - caused by cuts to Russian gas flows - sent power prices soaring during an energy crisis for European companies and citizens.

The aim is to reform the electricity market to shield consumer energy bills from short-term swings in fossil fuel prices, and make sure that Europe's growing share of low-cost renewable electricity translates into lower prices, even though rolling back electricity prices poses challenges for policymakers.

Currently, power prices in Europe are set by the running cost of the plant that supplies the final chunk of power needed to meet overall demand. Often, that is a gas plant, so gas price spikes can send electricity prices soaring.

EU countries disagree on how far the reforms should go.

Spain, France and Greece are among those seeking a deep reform.

In a document shared with EU countries, seen by Reuters, Spain said the reforms should help national regulators to sign more long-term contracts with electricity generators to pay a fixed price for their power.

Nuclear and renewable energy producers, for example, would receive a "contract for difference" (CfD) from the government to provide power during their lifespan - potentially decades - at a stable price that reflects their average cost of production.

Similarly, France suggests, as part of a new electricity pricing scheme, requiring energy suppliers to sign long-term, fixed-price contracts with power generators - either through a CfD, or a private Power Purchase Agreement (PPA) between the parties.

French officials say this would give the power plant owner predictable revenue, while enabling consumers to have part of their energy bill comprised of this more stable price.

Germany, Denmark, Latvia and four other countries oppose a deep reform, and, as nine EU countries oppose reforms overall, have warned the EU against a "crisis mode" overhaul of a complex system that has taken decades to develop.

They say Europe's existing power market is functioning well, and has fostered years of lower power prices, supported renewable energy and helped avoid energy shortages.

Those countries support only limited tweaks, such as making it easier for consumers to choose between fluctuating and fixed-price power contracts.


'DECOUPLE' PRICES?
The Commission initially pitched the reform as a chance to "decouple" gas and power prices in Europe, suggesting a redesign of the current system of setting power prices. But EU officials say Brussels now appears to be leaning towards more modest changes.

A public consultation on the reforms last month steered clear of a deep energy market intervention. Rather, it suggested expanding Europe's use of long-term contracts, outlining a plan for more fixed-price contracts that provide power plants with a fixed price for their electricity, like CfDs or PPAs.

The Commission said this could be done by setting EU-wide rules for CfDs and letting countries voluntarily use them, or require new state-funded power plants to sign CfDs. The consultation mooted the idea of forcing existing power plants to sign CfDs, but said this could deter much-needed investments in renewable energy.


RISKS, REWARDS
Pro-reform countries like Spain say a revamped power market will bring down energy prices for consumers, by matching their bills more closely with the true cost of producing lower-carbon electricity.

France says the aim is to secure investment in low-carbon energy including renewables, and nuclear plants like those Paris plans to build. It also says lowering power prices should be part of Europe's response to massive industrial subsidies in the United States and China - by helping European firms keep a competitive edge.

But sceptics warn that drastic changes to the market could knock confidence among investors, putting at risk the hundreds of billions of euros in renewable energy investments the EU says are needed to quit Russian fossil fuels under its plan to dump Russian energy and meet climate goals.

Energy companies including Engie (ENGIE.PA), Orsted (ORSTED.CO) and Iberdrola (IBE.MC) have said making CfDs mandatory or imposing them retroactively on existing power plants could deter investment and trigger litigation from energy companies.


POLITICAL DEBATE
EU countries' energy ministers discuss the reforms on Monday, before formal negotiations begin.

The Commission, which drafts EU laws, plans to propose the reforms on Mar. 14. After that, EU countries and lawmakers negotiate the final law, which must win majority support from European Parliament lawmakers and a reinforced majority of at least 15 countries.

Negotiations on major EU legislation often take more than a year, but some countries are pushing for a fast-tracked deal. France wants the law to be finished this year.

That has already hit resistance from countries like Germany, highlighting a France-Germany tussle over the scope of reform as they say deeper changes cannot be rushed through, and they would need an "in-depth impact assessment" - something the Commission's upcoming proposal is not expected to include, because it has been drafted so quickly.

The timeline is further complicated by European Parliament elections in 2024. That has raised concerns in reform-hungry states that failure to strike a deal before the election could significantly delay the reforms, if negotiations have to pause until a new EU parliament is elected.

 

Related News

View more

Parisians vote to ban rental e-scooters from French capital by huge margin

Paris E-Scooter Ban: Voters back ending rental scooters after a public consultation, citing road safety, pedestrian clutter, and urban mobility concerns; impacts Lime, Dott, and Tier operations across the capital.

 

Key Points

A citywide prohibition on rental e-scooters, approved by voters, to improve safety, order, and walkability.

✅ Non-binding vote shows about 90% support citywide.

✅ About 15,000 rental scooters from Lime, Dott, Tier affected.

✅ Cites 2022 injuries, fatalities, and sidewalk clutter.

 

Parisians have voted to rid the streets of the French capital of rental electric scooters, with an overwhelming 90% of votes cast supporting a ban, official results show, amid a wider debate over the limits of the electric-car revolution and its real-world impact.

Paris was a pioneer when it introduced e-scooters, or trottinettes, in 2018 as the city’s authorities sought to promote non-polluting forms of urban transport, amid record EV adoption in France across the country.

But as the two-wheeled vehicles grew in popularity, especially among young people, and, with similar safety concerns prompting the TTC winter ban on lithium-ion e-bikes and scooters in Toronto, so did the number of accidents: in 2022, three people died and 459 were injured in e-scooter accidents in Paris.

In what was billed as a “public consultation” voters were asked: “For or against self-service scooters?”

Twenty-one polling stations were set up across the city and were open until 7pm local time. Although 1.6 million people are eligible to vote, turnout is expected to be low.

The ban won between 85.77% and 91.77% of the votes in the 20 Paris districts that published results, according to the City of Paris website on what was billed as a rare “public consultation” and prompted long queues at ballot boxes around the city. The vote was non-binding but city authorities have vowed to follow the result, echoing Britain's transport rethink that questions simple fixes.

Paris’s socialist mayor, Anne Hidalgo, has promoted cycling and bike-sharing but supported a ban on e-scooters, as France rolls out new EV incentive rules affecting Chinese manufacturers.

In an interview with Agence France-Presses last week, Hidalgo said “self-service scooters are the source of tension and worry” for Parisians and that a ban would “reduce nuisance” in public spaces, with broader benefits for air quality noted in EV use linked to fewer asthma ER visits in recent studies as well.

Paris has almost 15,000 e-scooters across its streets, operated by companies including Lime, Dott and Tier. Detractors argue that e-scooter users disrespect the rules of the road and regularly flout a ban on riding on pavements, even as France moves to discourage Chinese EV purchases to shape the broader mobility market. The vehicles are also often haphazardly parked or thrown into the River Seine.

In June 2021, a 31-year-old Italian woman was killed after being hit by an e-scooter with two passengers onboard while walking along the Seine.

“Scooters have become my biggest enemy. I’m scared of them,” Suzon Lambert, a 50-year-old teacher from Paris, told AFP. “Paris has become a sort of anarchy. There’s no space any more for pedestrians.”


Another Parisian told BFMTV: “It’s dangerous, and people use them badly. I’m fed up.”

Julian Sezgin, aged 15, said he often saw groups of two or three teenagers on e-scooters zooming past cars on busy roads. “I avoid going on e-scooters and prefer e-bikes as, in my opinion, they are safer and more efficient,” he told the Guardian.

Bianca Sclavi, an Italian who has lived in Paris for years, said the scooters go “too fast” and should be mechanically limited so they go slower. “They are dangerous because they zip in and out of traffic,” she said. “However, it is not as bad as when they first arrived … the most dangerous are the drunk tourists!”

 

Related News

View more

Scientists generate 'electricity from thin air.' Humidity could be a boundless source of energy.

Air Humidity Energy Harvesting converts thin air into clean electricity using air-gen devices with nanopores, delivering continuous renewable energy from ambient moisture, as demonstrated by UMass Amherst researchers in Advanced Materials.

 

Key Points

A method using nanoporous air-gen devices to harvest continuous clean electricity from ambient atmospheric moisture.

✅ Nanopores drive charge separation from ambient water molecules

✅ Works across materials: silicon, wood, bacterial films

✅ Predictable, continuous power unlike intermittent solar or wind

 

Sure, we all complain about the humidity on a sweltering summer day. But it turns out that same humidity could be a source of clean, pollution-free energy, aligning with efforts toward cheap, abundant electricity worldwide, a new study shows.

"Air humidity is a vast, sustainable reservoir of energy that, unlike wind and solar power resources, is continuously available," said the study, which was published recently in the journal Advanced Materials.

While humidity harvesting promises constant output, advances like a new fuel cell could help fix renewable energy storage challenges, researchers suggest.

“This is very exciting,” said Xiaomeng Liu, a graduate student at the University of Massachusetts-Amherst, and the paper’s lead author. “We are opening up a wide door for harvesting clean electricity from thin air.”

In fact, researchers say, nearly any material can be turned into a device that continuously harvests electricity from humidity in the air, a concept echoed by raindrop electricity demonstrations in other contexts.

“The air contains an enormous amount of electricity,” said Jun Yao, assistant professor of electrical and computer engineering at the University of Massachusetts-Amherst and the paper’s senior author. “Think of a cloud, which is nothing more than a mass of water droplets. Each of those droplets contains a charge, and when conditions are right, the cloud can produce a lightning bolt – but we don’t know how to reliably capture electricity from lightning.

"What we’ve done is to create a human-built, small-scale cloud that produces electricity for us predictably and continuously so that we can harvest it.”

The heart of the human-made cloud depends on what Yao and his colleagues refer to as an air-powered generator, or the "air-gen" effect, which relates to other atmospheric power concepts like night-sky electricity studies in the field.

In broader renewable systems, flexible resources such as West African hydropower can support variable wind and solar output, complementing atmospheric harvesting concepts as they mature.

The study builds on research from a study published in 2020. That year, scientists said this new technology "could have significant implications for the future of renewable energy, climate change and in the future of medicine." That study indicated that energy was able to be pulled from humidity by material that came from bacteria; related bio-inspired fuel cell design research explores better electricity generation, the new study finds that almost any material, such as silicon or wood, also could be used.

The device mentioned in the study is the size of a fingernail and thinner than a single hair. It is dotted with tiny holes known as nanopores, it was reported. "The holes have a diameter smaller than 100 nanometers, or less than a thousandth of the width of a strand of human hair."

 

Related News

View more

Washington State's Electric Vehicle Rebate Program

Washington EV Rebate Program drives EV adoption with incentives, funding, and clean energy goals, cutting greenhouse gas emissions. Residents embrace electric vehicles as charging infrastructure expands, supporting sustainable transportation and state climate targets.

 

Key Points

Washington EV Rebate Program provides incentives to cut EV costs, accelerate adoption, and support clean energy targets.

✅ Over half of allocated funding already utilized statewide.

✅ Incentives lower upfront costs and spur EV demand.

✅ Charging infrastructure expansion remains a key priority.

 

Washington State has reached a significant milestone in its electric vehicle (EV) rebate program, with more than half of the allocated funding already utilized. This rapid uptake highlights the growing interest in electric vehicles as residents seek more sustainable transportation options. As the state continues to prioritize environmental initiatives, this development showcases both the successes and challenges of promoting electric vehicle adoption.

A Growing Demand for Electric Vehicles

The substantial drawdown of rebate funds indicates a robust demand for electric vehicles in Washington. As consumers become increasingly aware of the environmental benefits associated with EVs—such as reduced greenhouse gas emissions and improved air quality—more individuals are making the switch from traditional gasoline-powered vehicles. Additionally, rising fuel prices and advancements in EV technology, alongside zero-emission incentives are further incentivizing this shift.

Washington's rebate program, which offers financial incentives to residents who purchase or lease eligible electric vehicles, plays a critical role in making EVs more accessible. The program helps to lower the upfront costs associated with purchasing electric vehicles, and similar approaches like New Brunswick EV rebates illustrate how regional incentives can boost adoption, thus encouraging more drivers to consider these greener alternatives. As the state moves toward its goal of a more sustainable transportation system, the popularity of the rebate program is a promising sign.

The Impact of Funding Utilization

With over half of the rebate funding already used, the program's popularity raises questions about the sustainability of its financial support and the readiness of state power grids to accommodate rising EV demand. Originally designed to spur adoption and reduce barriers to entry for potential EV buyers, the rapid depletion of funds could lead to future challenges in maintaining the program’s momentum.

The Washington State Department of Ecology, which oversees the rebate program, will need to assess the current funding levels and consider future allocations to meet the ongoing demand. If the funds run dry, it could slow down the adoption of electric vehicles, potentially impacting the state’s broader climate goals. Ensuring a consistent flow of funding will be essential for keeping the program viable and continuing to promote EV usage.

Environmental Benefits and Climate Goals

The increasing adoption of electric vehicles aligns with Washington’s ambitious climate goals, including a commitment to reduce carbon emissions significantly by 2030. The state aims to transition to a clean energy economy and has set a target for all new vehicles sold by 2035 to be electric, and initiatives such as the hybrid-electric ferry upgrade demonstrate progress across the transportation sector. The success of the rebate program is a crucial step in achieving these objectives.

As more residents switch to EVs, the overall impact on air quality and carbon emissions can be profound. Electric vehicles produce zero tailpipe emissions, which contributes to improved air quality, particularly in urban areas that struggle with pollution. The transition to electric vehicles can also help to reduce dependence on fossil fuels, further enhancing the state’s sustainability efforts.

Challenges Ahead

While the current uptake of the rebate program is encouraging, there are challenges that need to be addressed. One significant issue is the availability of EV models. Although the market is expanding, not all consumers have equal access to a variety of electric vehicle options. Affordability remains a barrier for many potential buyers, especially in lower-income communities, but targeted supports like EV charger rebates in B.C. can ease costs for households. Ensuring that all residents can access EVs and the associated incentives is vital for equitable participation in the transition to electric mobility.

Additionally, there are concerns about charging infrastructure. For many potential EV owners, the lack of accessible charging stations can deter them from making the switch. Expanding charging networks, particularly in underserved areas, is essential for supporting the growing number of electric vehicles on the road, and B.C. EV charging expansion offers a regional model for scaling access.

Looking to the Future

As Washington continues to advance its electric vehicle initiatives, the success of the rebate program is a promising indication of changing consumer attitudes toward sustainable transportation. With more than half of the funding already used, the focus will need to shift to sustaining the program and ensuring that it meets the needs of all residents, while complementary incentives like home and workplace charging rebates can amplify its impact.

Ultimately, Washington’s commitment to electric vehicles is not just about rebates; it’s about fostering a comprehensive ecosystem that supports clean energy, infrastructure, and equitable access. By addressing these challenges head-on, the state can continue to lead the way in the transition to electric mobility, benefiting both the environment and its residents in the long run.

 

Related News

View more

DOE Announces $28M Award for Wind Energy

DOE Wind Energy Funding backs 13 R&D projects advancing offshore wind, distributed energy, and utility-scale turbines, including microgrids, battery storage, nacelle and blade testing, tall towers, and rural grid integration across the United States.

 

Key Points

DOE Wind Energy Funding is a $28M R&D effort in offshore, distributed, and utility-scale wind to lower cost and risk.

✅ $6M for rural microgrids, storage, and grid integration.

✅ $7M for offshore R&D, nacelle and long-blade testing.

✅ Up to $10M demos; $5M for tall tower technology.

 

The U.S. Department of Energy announced that in order to advance wind energy in the U.S., 13 projects have been selected to receive $28 million. Project topics focus on technology development while covering distributed, offshore wind growth and utility-scale wind found on land.

The selections were announced by the DOE’s Assistant Secretary for the Office of Energy Efficiency and Renewable Energy, Daniel R. Simmons, at the American Wind Energy Association Offshore Windpower Conference in Boston, as New York's offshore project momentum grows nationwide.

 

Wind Project Awards

According to the DOE, four Wind Innovations for Rural Economic Development projects will receive a total of $6 million to go toward supporting rural utilities via facilitating research drawing on U.K. wind lessons for deployment that will allow wind projects to integrate with other distributed energy resources.

These endeavors include:

Bergey WindPower (Norman, Oklahoma) working on developing a standardized distributed wind/battery/generator micro-grid system for rural utilities;

Electric Power Research Institute (Palo Alto, California) working on developing modeling and operations for wind energy and battery storage technologies, as large-scale projects in New York progress, that can both help boost wind energy and facilitate rural grid stability;

Iowa State University (Ames, Iowa) working on optimization models and control algorithms to help rural utilities balance wind and other energy resources; and

The National Rural Electric Cooperative Association (Arlington, Virginia) providing the development of standardized wind engineering options to help rural-area adoption of wind.

Another six projects are to receive a total of $7 million to facilitate research and development in offshore wind, as New York site investigations advance, with these projects including:

Clemson University (North Charleston, South Carolina) improving offshore-scale wind turbine nacelle testing via a “hardware-in-the-loop capability enabling concurrent mechanical, electrical and controller testing on the 7.5-megawatt dynamometer at its Wind Turbine Drivetrain Testing Facility to accelerate 1 GW on the grid progress”; and

The Massachusetts Clean Energy Center (Boston) upgrading its Wind Technology Testing Center to facilitate structural testing of 85- to 120-meter-long (roughly 278- to 393-foot-long) blades, as BOEM lease requests expand, among other projects.

Additionally, two offshore wind technology demonstration projects will receive up to $10 million for developing initiatives connected to reducing wind energy risk and cost. One last project will also be granted $5 million for the development of tall tower technology that can help overcome restrictions associated with transportation.

“These projects will be instrumental in driving down technology costs and increasing consumer options for wind across the United States as part of our comprehensive energy portfolio,” said Simmons.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified