American wind power congratulates President-elect Biden on his victory.


wind power

Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today

American Wind Power Statement on Biden highlights collaboration on renewable energy policy, clean energy jobs, carbon-free power, climate action, and a modern grid to grow the economy while keeping electricity costs low.

 

Key Points

AWEA commits to work with Biden on renewable policy, clean energy jobs, and a carbon-free U.S. grid.

✅ AWEA cites over 120,000 U.S. wind jobs ready to scale

✅ Supports 100% carbon-free power target by mid-century

✅ Aims to keep electricity costs low with renewable policy

 

American wind power congratulates President-elect Biden on his victory. "We look forward to collaborating with his administration and Congress, after pledges to scrap offshore wind in recent years, as we work together to shape a cleaner and more prosperous energy future for America, where wind and solar surpass coal in generation across the country.

The President-elect and his team have laid out an ambitious, comprehensive approach to energy policy that recognizes renewable energy's ability to grow America's economy and create a cleaner environment, as market majority for clean energy becomes a realistic prospect, while keeping electricity costs low and combating the threat of climate change as wind power surges across many regions.

The U.S. wind sector and its growing workforce of over 120,000 Americans stand ready to help put that plan into action and support the Biden administration in delivering on the immense promise of renewable energy to add well-paying jobs to the U.S. economy, with quarter-million wind jobs forecast in coming years, and reach the President-elect's 100% target for a carbon-free America by the middle of this century, alongside a 100% clean electricity by 2035 goal that charts the near-term path." - Tom Kiernan, CEO of the American Wind Energy Association.

Related News

More than half of new U.S. electric-generating capacity in 2023 will be solar

U.S. 2023 Utility-Scale Capacity Additions highlight surging solar power, expanding battery storage, wind projects, natural gas plants, and new nuclear reactors, boosting grid reliability in Texas and California with record planned installations.

 

Key Points

Planned grid expansions led by solar and battery storage, with wind, natural gas, and nuclear increasing U.S. capacity.

✅ 29.1 GW solar planned; Texas and California lead installations.

✅ 9.4 GW battery storage to more than double current capacity.

✅ Natural gas, wind, and 2.2 GW nuclear round out additions.

 

Developers plan to add 54.5 gigawatts (GW) of new utility-scale electric-generating capacity to the U.S. power grid in 2023, according to our Preliminary Monthly Electric Generator Inventory. More than half of this capacity will be solar power (54%), even as coal generation increase has been reported, followed by battery storage (17%).

 

Solar

U.S. utility-scale solar capacity has been rising rapidly EIA summer outlook since 2010. Despite its upward trend over the past decade 2018 milestone, additions of utility-scale solar capacity declined by 23% in 2022 compared with 2021. This drop in solar capacity additions was the result of supply chain disruptions and other pandemic-related challenges. We expect that some of those delayed 2022 projects will begin operating in 2023, when developers plan to install 29.1 GW of solar power in the United States. If all of this capacity comes online as planned, 2023 will have the most new utility-scale solar capacity added in a single year, more than doubling the current record (13.4 GW in 2021).

In 2023, the most new solar capacity, by far, will be in Texas (7.7 GW) and California (4.2 GW), together accounting for 41% of planned new solar capacity.

 

Battery storage

U.S. battery storage capacity has grown rapidly January generation jump over the past couple of years. In 2023, U.S. battery capacity will likely more than double. Developers have reported plans to add 9.4 GW of battery storage to the existing 8.8 GW of battery storage capacity.

Battery storage systems are increasingly installed with wind and solar power projects. Wind and solar are intermittent sources of generation; they only produce electricity when the wind is blowing or the sun is shining. Batteries can store excess electricity from wind and solar generators for later use. In 2023, we expect 71% of the new battery storage capacity will be in California and Texas, states with significant solar and wind capacity.

 

Natural gas

Developers plan to build 7.5 GW of new natural-gas fired capacity record natural gas output in 2023, 83% of which is from combined-cycle plants. The two largest natural gas plants expected to come online in 2023 are the 1,836 megawatt (MW) Guernsey Power Station in Ohio and the 1,214 MW CPV Three Rivers Energy Center in Illinois.

 

Wind

In 2023, developers plan to add 6.0 GW of utility-scale wind capacity, as renewables poised to eclipse coal in global power generation. Annual U.S. wind capacity additions have begun to slow, following record additions of more than 14 GW in both 2020 and 2021.

The most wind capacity will be added in Texas in 2023, at 2.0 GW. The only offshore wind capacity expected to come online this year is a 130.0 MW offshore windfarm in New York called South Fork Wind.

 

Nuclear

Two new nuclear reactors at the Vogtle nuclear power plant in Georgia nuclear and net-zero are scheduled to come online in 2023, several years later than originally planned. The reactors, with a combined 2.2 GW of capacity, are the first new nuclear units built in the United States in more than 30 years.

Developers and power plant owners report planned additions to us in our annual and monthly electric generator surveys. In the annual survey, we ask respondents to provide planned online dates for generators coming online in the next five years. The monthly survey tracks the status of generators coming online based on reported in-service dates.

 

 

Related News

View more

Biden's Climate Law Is Working, and Not Working

Inflation Reduction Act Clean Energy drives EV adoption and renewable power, but grid interconnection, permitting, and supply chain bottlenecks slow wind, solar, and offshore projects, risking emissions targets despite domestic manufacturing growth and tax incentives.

 

Key Points

An IRA push to scale EVs and renewables, meeting EV goals but lagging wind and solar amid grid and permitting delays.

✅ EV sales up 50%, 9.2% of 2023 new cars; growth may moderate.

✅ 32.3 GW added, below 46-79 GW/year needed for climate targets.

✅ Grid, permitting, and supply chain delays bottleneck wind and solar.

 

A year and a half following President Biden's enactment of an ambitious climate change bill, the landscape of the United States' clean energy transition, shaped by 2021 electricity lessons, presents a mix of successes and challenges. A recent study by a consortium of research organizations highlights that while electric vehicle (EV) sales have surged, aligning with the law's projections, the expansion of renewable energy sources like wind and solar has encountered significant hurdles.

The legislation, known as the Inflation Reduction Act, aimed for a dual thrust in America's climate strategy: boosting EV adoption, alongside EPA emission limits, and significantly increasing the generation of electricity from renewable resources. The Act, passed in 2022, was anticipated to propel the United States toward reducing its greenhouse gas emissions by approximately 40 percent from 2005 levels by the end of this decade, backed by extensive financial incentives for clean energy advancements.

Electric vehicle sales have indeed seen a remarkable uptick, with a more than 50 percent increase over the past year, as EV sales surge into 2024 across the market, culminating in EVs comprising 9.2 percent of all new car sales in the United States in 2023. This growth trajectory met the upper range of analysts' predictions post-law enactment, signaling a strong start toward achieving the Act's emission reduction targets.

However, the EV market faces uncertainties regarding the sustainability of this rapid growth. The initial surge in sales was largely driven by early adopters, and the market now confronts challenges such as high prices and limited charging infrastructure, while EVs still trail gas cars in overall market share. Despite these concerns, projections suggest that even a slowdown to 30-40 percent growth in EV sales for 2024 would align with the law's emission goals.

The renewable energy sector's progress is less straightforward. Despite achieving a record addition of 32.3 gigawatts of clean electricity capacity in the past year, the pace falls short of the projected 46 to 79 gigawatts needed annually to meet the United States' climate objectives. While there is potential for about 60 gigawatts of projects in the pipeline for this year, not all are expected to materialize on schedule, indicating a lag in the deployment of new renewable energy sources.

Logistical challenges are a significant barrier to scaling up renewable energy, especially as EV-driven electricity demand rises in the coming years. Lengthy grid connection processes, permitting delays, and local opposition hinder wind and solar project developments. Moreover, ambitious plans for offshore wind farms are hampered by supply chain issues and regulatory constraints.

To achieve the Inflation Reduction Act's ambitious targets, the United States needs to add 70 to 126 gigawatts of renewable capacity annually from 2025 to 2030—a formidable task given the current logistical and regulatory bottlenecks. The analysis underscores the urgency of addressing these non-cost barriers to unlock the full potential of the law's clean energy and emissions reduction ambitions.

In addition to promoting clean energy generation and EV adoption, the Inflation Reduction Act has spurred domestic manufacturing of clean energy technologies. With $44 billion invested in U.S. clean-energy manufacturing last year, this aspect of the law has seen considerable success, and permanent clean energy tax credits are being debated to sustain momentum, demonstrating the Act's capacity to drive economic and industrial transformation.

The law's impact extends to emerging clean energy technologies, offering tax incentives for advanced nuclear reactors, renewable hydrogen production, and carbon capture and storage projects. While these initiatives hold promise for further emissions reductions, their development and deployment are still in the early stages, with tangible outcomes expected in the longer term.

While the Inflation Reduction Act has catalyzed significant strides in certain areas of the United States' clean energy transition, including an EV inflection point in adoption trends, it faces substantial hurdles in fully realizing its objectives. Overcoming logistical, regulatory, and market challenges will be crucial for the nation to stay on course toward its ambitious climate goals, underscoring the need for continued innovation, investment, and policy refinement in the journey toward a sustainable energy future.

 

Related News

View more

Winds of Change: Vineyard Wind Ushers in a New Era for Clean Energy

Vineyard Wind Offshore Wind Farm delivers clean power to Massachusetts near Martha's Vineyard, with 62 turbines and 800 MW capacity, advancing renewable energy, cutting carbon, lowering costs, and driving net-zero emissions and green jobs.

 

Key Points

An 800 MW Massachusetts offshore project of 62 turbines supplying clean power to 400,000+ homes and cutting emissions.

✅ 800 MW powering 400,000+ MA homes and businesses

✅ 62 turbines, 13 MW each, 15 miles from Martha's Vineyard

✅ Cuts 1.6M tons CO2 annually; boosts jobs and port infrastructure

 

The crisp Atlantic air off the coast of Martha's Vineyard carried a new melody on February 2nd, 2024. Five colossal turbines, each taller than the Statue of Liberty, began their graceful rotations, marking the historic moment power began flowing from Vineyard Wind, the first large-scale offshore wind farm in the United States, enabled by Interior Department approval earlier in the project timeline. This momentous occasion signifies a seismic shift in Massachusetts' energy landscape, one that promises cleaner air, lower energy costs, and a more sustainable future for generations to come.

Nestled 15 miles southeast of Martha's Vineyard and Nantucket, Vineyard Wind is a colossal undertaking. The project, a joint venture between Avangrid Renewables and Copenhagen Infrastructure Partners, will ultimately encompass 62 turbines, each capable of generating a staggering 13 megawatts. Upon full completion later this year, Vineyard Wind will power over 400,000 homes and businesses across Massachusetts, contributing a remarkable 800 megawatts to the state's energy grid.

But the impact of Vineyard Wind extends far beyond mere numbers. This trailblazing project holds immense environmental significance. By harnessing the clean and inexhaustible power of the wind, Vineyard Wind is projected to annually reduce carbon emissions by a staggering 1.6 million metric tons – equivalent to taking 325,000 cars off the road. This translates to cleaner air, improved public health, and a crucial step towards mitigating the climate crisis.

Governor Maura Healey hailed the project as a "turning point" in Massachusetts' clean energy journey. "Across the Commonwealth, homes and businesses will now be powered by clean, affordable energy, contributing to cleaner air, lower energy costs, and pushing us closer to achieving net-zero emissions," she declared.

Vineyard Wind's impact isn't limited to the environment; it's also creating a wave of economic opportunity. Since its inception in 2017, the project has generated nearly 2,000 jobs, with close to 1,000 positions filled by union workers thanks to a dedicated Project Labor Agreement. Construction has also breathed new life into the New Bedford Marine Commerce Terminal, with South Coast construction activity accelerating around the port, transforming it into the nation's first port facility specifically designed for offshore wind, showcasing the project's commitment to local infrastructure development.

"Every milestone on Vineyard Wind 1 is special, but powering up these first turbines stands apart," emphasized Pedro Azagra, CEO of Avangrid Renewables. "This accomplishment reflects the years of dedication and collaboration that have defined this pioneering project. Each blade rotation and megawatt flowing to Massachusetts homes is a testament to the collective effort that brought offshore wind power to the United States."

Vineyard Wind isn't just a project; it's a catalyst for change. It perfectly aligns with Massachusetts' ambitious clean energy goals, which include achieving net-zero emissions by 2050 and procuring 3,200 megawatts of offshore wind by 2028, while BOEM lease requests in the Northeast continue to expand the development pipeline across the region. As Energy and Environmental Affairs Secretary Rebecca Tepper stated, "Standing up a new industry is no easy feat, but we're committed to forging ahead and growing this sector to lower energy costs, create good jobs, and build a cleaner, healthier Commonwealth."

The launch of Vineyard Wind transcends Massachusetts, serving as a beacon for the entire U.S. offshore wind industry, as New York's biggest offshore wind farm moves forward to amplify regional momentum. This demonstration of large-scale development paves the way for further investment and growth in this critical clean energy source. However, the journey isn't without its challenges, and questions persist about reaching 1 GW on the grid nationwide as stakeholders navigate timelines. Concerns regarding potential impacts on marine life and visual aesthetics remain, requiring careful consideration and ongoing community engagement.

Despite these challenges, Vineyard Wind stands as a powerful symbol of hope and progress. It represents a significant step towards a cleaner, more sustainable future, powered by renewable energy sources at a time when U.S. offshore wind is about to soar according to industry outlooks. It's a testament to the collaborative effort of policymakers, businesses, and communities working together to tackle the climate crisis. As the turbines continue their majestic rotations, they carry a message of hope, reminding us that a brighter, more sustainable future is within reach, powered by the wind of change.

Additional Considerations:

  • The project boasts a dedicated Fisheries Innovation Fund, fostering collaboration between the fishing and offshore wind industries to ensure sustainable coexistence.
  • Vineyard Wind has invested in education and training programs, preparing local residents for careers in the burgeoning wind energy sector.
  • The project's success opens doors for further offshore wind development in the U.S., such as Long Island proposals gaining attention, paving the way for a clean energy revolution.

 

Related News

View more

Harbour Air's electric aircraft a high-flying example of research investment

Harbour Air Electric Aircraft Project advances zero-emission aviation with CleanBC Go Electric ARC funding, converting seaplanes to battery-electric power, cutting emissions, enabling commercial passenger service, and creating skilled clean-tech jobs through R&D and electrification.

 

Key Points

Harbour Air's project electrifies seaplanes with CleanBC ARC support to enable zero-emission flights and cut emissions.

✅ $1.6M CleanBC ARC funds seaplane electrification retrofit

✅ Target: passenger-ready, zero-emission commercial service

✅ Creates 21 full-time clean-tech jobs in British Columbia

 

B.C.’s Harbour Air Seaplanes is building on its work in clean technology to decarbonize aviation, part of an aviation revolution underway, and create new jobs with support from the CleanBC Go Electric Advanced Research and Commercialization (ARC) program.

”Harbour Air is decarbonizing aviation and elevating the company to new altitudes as a clean-technology leader in B.C.'s transportation sector,” said Bruce Ralston, Minister of Energy, Mines and Low Carbon Innovation. “With support from our CleanBC Go Electric ARC program, Harbour Air's project not only supports our emission-reduction goals, but also creates good-paying clean-tech jobs, exemplifying the opportunities in the low-carbon economy.”

Harbour Air is receiving almost $1.6 million from the CleanBC Go Electric ARC program for its aircraft electrification project. The funding supports Harbour Air’s conversion of an existing aircraft to be fully electric-powered and builds on its successful December 2019 flight of the world’s first all-electric commercial aircraft, and subsequent first point-to-point electric flight milestones.

That flight marked the start of the third era in aviation: the electric age. Harbour Air is working on a new design of the electric motor installation and battery systems to gain efficiencies that will allow carrying commercial passengers, as it eyes first electric passenger flights in 2023. Approximately 21 full-time jobs will be created and sustained by the project.

“CleanBC is helping accelerate world-leading clean technology and innovation at Harbour Air that supports good jobs for people in our communities,” said George Heyman, Minister of Environment and Climate Change Strategy. “Once proven, the technology supports a switch from fossil fuels to advanced electric technology, and will provide a clean transportation option, such as electric ferries, that reduces pollution and shows the way forward for others in the sector.”

Harbour Air is a leader in clean-technology adoption. The company has also purchased a fully electric, zero-emission passenger shuttle bus to pick up and drop off passengers between Harbour Air’s downtown Vancouver and Richmond locations, and the Vancouver International Airport, where new EV chargers support travellers.

“It is great to see the Province stepping up to support innovation,” said Greg McDougall, Harbour Air CEO and ePlane test pilot. “This type of funding confirms the importance of encouraging companies in all sectors to focus on what they can be doing to look at more sustainable practices. We will use these resources to continue to develop and lead the transportation industry around the world in all-electric aviation.”

In total, $8.18 million is being distributed to 18 projects from the second round of CleanBC Go Electric ARC program funding. Recipients include Damon Motors and IRDI System, both based on the Lower Mainland. The 15 other successful projects will be announced this year.

The CleanBC Go Electric ARC program supports the electric vehicle (EV) sector in B.C., which leads the country in going electric, by providing reliable and targeted support for research and development, commercialization and demonstration of B.C.-based EV technologies, services and products.

“This project is a great example of the type of leading-edge innovation and tech advancements happening in our province,” said Brenda Bailey, Parliamentary Secretary for Technology and Innovation. “By further supporting the development of the first all-electric commercial aircraft, we are solidifying our position as world leaders in innovation and using technology to change what is possible.”

The CleanBC Roadmap to 2030 is B.C.’s plan to expand and accelerate climate action, including a major hydrogen project, building on the province’s natural advantages – abundant, clean electricity, high-value natural resources and a highly skilled workforce. It sets a path for increased collaboration to build a British Columbia that works for everyone.

 

Related News

View more

Wind Turbine Operations and Maintenance Industry Detailed Analysis and Forecast by 2025

Wind Turbine Operations and Maintenance Market is expanding as offshore and onshore renewables scale, driven by aging turbines, investment, UAV inspections, and predictive O&M services, despite skills shortages and rising logistics costs.

 

Key Points

Sector delivering inspection, repair, and predictive services to keep wind assets reliable onshore and offshore.

✅ Aging turbines and investor funding drive service demand

✅ UAV inspections and predictive analytics cut downtime

✅ Offshore growth offsets skills and logistics constraints

 

Wind turbines are capable of producing vast amounts of electricity at competitive prices, provided they are efficiently maintained and operated. Being a cleaner, greener source of energy, wind energy is also more reliable than other sources of power generation, with growth despite COVID-19 recorded across markets. Therefore, the demand for wind energy is slated to soar over the next few years, fuelling the growth of the global market for wind turbine operations and maintenance. By application, offshore and onshore wind turbine operations and maintenance are the two major segments of the market.

 

Global Wind Turbine Operations and Maintenance Market: Key Trends

The rising number of aging wind turbines emerges as a considerable potential for the growth of the market. The increasing downpour of funds from financial institutions and public and private investors has also been playing a significant role in the expansion of the market, with interest also flowing toward wave and tidal energy technologies that inform O&M practices. On the other hand, insufficient number of skilled personnel, coupled with increasing costs of logistics, remains a key concern restricting the growth of the market. However, the growing demand for offshore wind turbines across the globe is likely to materialize into fresh opportunities.

 

Global Wind Turbine Operations and Maintenance Market: Market Potential

A number of market players have been offering diverse services with a view to make a mark in the global market for wind turbine operations and maintenance. For instance, Scotland-based SgurrEnergy announced the provision of unmanned aerial vehicles (UAVs), commonly known as drones, as a part of its inspection services. Detailed and accurate assessments of wind turbines can be obtained through these drones, which are fitted with cameras, with four times quicker inspections than traditional methods, claims the company. This new approach has not only reduced downtime, but also has prevented the risks faced by inspection personnel.

The increasing number of approvals and new projects is preparing the ground for a rising demand for wind turbine operations and maintenance. In March 2017, for example, the Scottish government approved the installation of eight 6-megawatt wind turbines off the coast of Aberdeen, towards the northeast. The state of Maryland in the U.S. will witness the installation of a new offshore wind plant, encouraging greater adoption of wind energy in the country. The U.K., a leader in UK offshore wind deployment, has also been keeping pace with the developments, with the installation of a 400-MW offshore wind farm, off the Sussex coast throughout 2017. The Rampion project will be developed by E.on, who has partnered with Canada-based Enbridge Inc. and the UK Green Investment Bank plc.

 

Global Wind Turbine Operations and Maintenance Market: Regional Outlook

Based on geography, the global market for wind turbine operations and maintenance has been segmented into Asia Pacific, Europe, North America, and Rest of the World (RoW). Countries such as India, China, Spain, France, Germany, Scotland, and Brazil are some of the prominent users of wind energy and are therefore likely to account for a considerable share in the market. In the U.S., favorable government policies are backing the growth of the market, though analyses note that a prolonged solar ITC extension could pressure wind competitiveness. For instance, in 2013, a legislation that permits energy companies to transfer the costs of offshore wind credits to ratepayers was approved. Asia Pacific is a market with vast potential, with India and China being major contributors aiding the expansion of the market.

 

Global Wind Turbine Operations and Maintenance Market: Competitive Analysis

Some of the major companies operating in the global market for wind turbine operations and maintenance are Gamesa Corporacion Tecnologica, Xinjiang Goldwind Science & Technologies, Vestas Wind Systems A/S, Upwind Solutions, Inc, GE Wind Turbine, Guodian United Power Technology Company Ltd., Nordex SE, Enercon GmbH, Siemens Wind Power GmbH, and Suzlon Group. A number of firms have been focusing on mergers and acquisitions to extend their presence across new regions.

 

Related News

View more

EV owners can access more rebates for home, workplace charging

CleanBC Go Electric EV Charger Rebate empowers British Columbia condos, apartments, and workplaces with Level 2 charging infrastructure, ZEV adoption support, and stackable rebates aligned with the CleanBC Roadmap 2030 and municipal top-up incentives.

 

Key Points

A provincial program funding up to 50% of EV charger costs for condos, apartments, and workplaces across B.C.

✅ Up to 50% back, max $2,000 per eligible Level 2 charger

✅ EV Ready plans fund building upgrades for future charging

✅ Free advisor support: up to 5 hours for condos and workplaces

 

British Columbians wanting to charge their electric vehicles (EVs) at their condominium building or their place of work can access further funding through EV charger rebates to help buy and install EV chargers through CleanBC’s Go Electric EV Charger Rebate program.

“To better support British Columbians living in condominiums and apartments, we’re offering rebates to make more buildings EV ready,” said Bruce Ralston, Minister of Energy, Mines and Low Carbon Innovation. “With the highest uptake rates of EV adoption in North America, we want to make sure that more people supporting our transition to a low-carbon economy have easy access to charging infrastructure.”

The Province’s CleanBC Go Electric EV Charger Rebate program is receiving $10 million as part of Budget 2021 to help with the upfront costs that come with EVs. Condominiums, apartments and workplaces that purchase and install eligible EV chargers can receive a rebate up to 50% of costs to a maximum of $2,000 per charger. Customers who take advantage of the EV Charger Rebate may have access to top up rebates through participating municipalities and local governments.

“People in British Columbia are switching to electric vehicles in record numbers as part of the transition to a cleaner, better transportation system,” said George Heyman, Minister of Environment and Climate Change Strategy. “We are building on that progress and accelerating positive change through the CleanBC Roadmap. We’re making it more affordable to own an electric vehicle and charging station, with incentives for zero-emission vehicles, so people can improve their driving experience with no air and climate pollution, and lower fuel and maintenance costs overall.”

The strata council for a condo building in Vancouver’s Olympic Village neighbourhood made use of the EV Ready program, as well as new legislation easing strata EV installs and federal support to upgrade their building’s electrical infrastructure. The strata council worked together to first determine, through a load review, if there was enough incoming power to support a level 2 charger for every owner. Once this was determined, the strata’s chosen electrical contractor went to work with the base installation, as well as individual chargers for owners who ordered them. The strata council also ensured a charger was installed in the guest parking.

“The majority of owners in our building came together and gave our strata council approval to make the necessary updates to the building’s infrastructure to support electric vehicle charging where we live,” said Jim Bayles, vice-president of strata council. “While upgrading the electrical and installing the EV chargers was something we were going ahead with anyway, we were pleased to receive quick support from the Province through their CleanBC program as well as from the federal government.”

CleanBC’s EV Ready option supports the adoption of EV infrastructure at apartment and condominium buildings. EV Ready provides rebates for the development of EV Ready plans, a strategy for buildings supported by professionals to retrofit a condo with chargers and make at least one parking space per unit EV ready, and the installation of electrical modifications and upgrades needed to support widespread future access to EV charging for residents.

Up to five hours of free support services from an EV charging station adviser are available through the EV Charger Rebate program for condominiums, apartments and workplaces that need help moving from idea to installation.

Single-family homes, including duplexes and townhouses, can get a rebate of up to 50% of purchase and installation costs of an eligible EV charger to a maximum of $350 through the EV Charger Rebate program.

The Province is providing a range of rebates through its CleanBC Go Electric programs and building out the fast-charging network to ensure the increasing demand for EVs is supported. B.C. has one of the largest public-charging networks in Canada, including the BC's Electric Highway initiative, with more than 2,500 public charging stations throughout the province.

The CleanBC Go Electric EV Charger Rebate program aligns with the recently released CleanBC Roadmap to 2030. Announced on Oct. 25, 2021, the CleanBC Roadmap to 2030 details a range of expanded actions to expand EV charging and accelerate the transition to a net-zero future and achieve B.C.’s legislated greenhouse gas emissions targets.

CleanBC is a pathway to a more prosperous, balanced and sustainable future. It supports government’s commitment to climate action to meet B.C.’s emission targets and build a cleaner, stronger economy for everyone.

Quick Facts:

  • The CleanBC Go Electric EV Charger Rebate program provides a convenient single point of service for provincial and any local government rebates.
  • EV adviser services for multi-unit residential buildings and workplaces are available through Plug In BC.
  • British Columbia is leading the country in transitioning to EVs, even as a B.C. Hydro 'bottleneck' forecast highlights infrastructure needs, with more than 60,000 light-duty EVs on the road.
  • British Columbia was the first place in the world to have a 100% ZEV law and is leading North America in uptake rates of EVs at nearly 10% of new sales in 2020 – five years ahead of the original target.
  • The CleanBC Roadmap to 2030 commits B.C. to adjusting its ZEV Act to require automakers to meet an escalating annual percentage of new light-duty ZEV sales and leases, reaching 26% of light-duty vehicle sales by 2026, 90% by 2030 and 100% by 2035.

 

Learn More:

To learn more about home and workplace EV charging station rebates, eligibility and application processes, including the EV Ready program, visit: https://goelectricbc.gov.bc.ca/

To learn more about EV advisor services, visit: https://pluginbc.ca/ev-advisor-service/

To learn more about the suite of CleanBC Go Electric programming, visit: www.gov.bc.ca/zeroemissionvehicles

To learn more about the CleanBC Roadmap to 2030, visit: https://cleanbc.gov.bc.ca/

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified