Canada, India reach nuclear deal

By Globe and Mail


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Ottawa and Delhi have concluded negotiations on a deal allowing Canadian companies to resume sales of uranium and nuclear technology to India for the first time since it used CanadaÂ’s know-how to develop warheads 35 years ago.

Prime Minister Stephen Harper, whose minority government is eagerly courting Indo-Canadian voters and India's nuclear industry market, made the announcement while at a Commonwealth leadersÂ’ summit in Port of Spain, Trinidad.

“This agreement is a testimony to the undeniable potential that Canada and India can offer each other and the world,” Mr. Harper said in a statement after meeting with Indian Prime Minister Manmohan Singh.

IndiaÂ’s civilian nuclear energy market is be worth anywhere from $25-billion to $50-billion in business opportunities over the next 20 years.

The Conservative government declined to release the text of the India-Canada deal, however, saying it would only be released when implementing legislation is tabled in Parliament. The minority Tory government will require the support of MPs from one opposition party in order to pass the agreement.

Indo-Canadian relations have been cool for 30 years. Canada was furious when India developed a nuclear-weapons program in 1974 by misappropriating Canadian nuclear-reactor technology.

But over the past two years, both countries have been attempting to improve relations, which should be close, if only because more than a million Canadians are of Indian ancestry, with only China sending more immigrants here each year.

There have been 11 ministerial visits to India for almost three years, including five this year alone.

The gradual – and by no means total – evolution of the Indian economy from state control and high tariffs toward more open-market principles has contributed to white-hot economic growth. In the midst of a global recession, India's economy will expand by 6 per cent this year.

With growth comes hunger for energy. India's 17 nuclear reactors provide only 2.5 per cent of the country's electricity, but that figure is expected to double within a decade.

Former U.S. president George W. Bush negotiated an agreement in which India separated its civilian and military nuclear programs, subjecting the former to the safeguards of the International Atomic Energy Agency. France followed suit, and already has a contract to provide India with two new reactors. Canada wants to tap this market as well.

Resistance comes from those who point to India's unreliability in keeping its word when it comes to nuclear-energy safeguards. And there is the question of whether such an agreement would also include the sale of uranium to fuel Indian power plants. Australia, another major supplier of uranium, is resisting selling uranium to India unless it signs the Nuclear Non-Proliferation Agreement, which is unlikely, given that both India and its rival Pakistan are nuclear powers.

But the fact remains that Canada's hand is weak and India's strong.

India and China are the two big markets for nuclear-energy technology, with dozens of new reactors planned or under construction.

If Canada wants to have any hope of keeping its nuclear-energy industry alive, it must reach civilian nuclear agreements with both countries. And there is talk in Ottawa that Atomic Energy of Canada, Ltd. could enter into technology, marketing or even ownership partnerships with the Indians.

Related News

Covid-19 puts brake on Turkey’s solar sector

Turkey Net Metering Suspension freezes regulator reviews, stalling rooftop solar permits and grid interconnections amid COVID-19, pausing licensing workflows, EPC pipelines, and electricity bill credits that drive commercial and household prosumer adoption.

 

Key Points

A pause on technical reviews freezing net metering applications and slowing rooftop solar deployment in Turkey.

✅ Monthly technical committee meetings suspended indefinitely

✅ Rooftop solar permits and grid interconnections on hold

✅ EPC firms urge remote evaluations for transparency

 

The decision by the Turkish Energy Market Regulatory Authority to halt part of the system of processing net metering applications risks bringing the only vibrant segment of the nation’s solar industry to a grinding halt, a risk amplified as global renewables face Covid-19 disruptions across markets.

The regulator has suspended monthly meetings of the committee which makes technical evaluations of net metering applications, citing concerns about the spread of Covid-19, which has already seen U.S. utility-scale solar face delays this year.

The availability of electricity bill credits for net-metering-approved households which inject surplus power into the grid, similar to how British households can sell power back to energy firms, has seen the rooftop projects the scheme is typically associated with remain the only source of new solar generation capacity in Turkey of late.

However the energy regulator’s decision to suspend technical evaluation committee meetings until further notice has seen the largely online licensing process for new solar systems practically cease; by contrast, Berlin is being urged to remove PV barriers to keep projects moving.

The Turkish solar industry has claimed the move is unnecessary, with solar engineering, procurement and construction services businesses pointing out the committee could meet to evaluate projects remotely. It has been argued such a move would streamline the application process and make it more transparent, regardless of the current public health crisis.

 

Net metering 

Turkey introduced net metering for rooftop installations last May and pv magazine has reported the specifics of the scheme, amid debates like New England's grid upgrade costs over who pays.

National grid operator Teias confirmed recently the country added 109 MW of new solar capacity in the first quarter, most of it net-metered rooftop systems, even as Australian distributors warn excess solar can strain local networks.

Net metering has been particularly attractive to commercial electricity users because the owners of small and medium-sized businesses pay more for power, as solar reshapes electricity prices in Northern Europe, than either households or large scale industrial consumers.

Until the recent technical committee decision by the regulator, the chief obstacle to net metering adoption had been the nation’s economic travails. The Turkish lira has lost 14% of its value since January and around 36% over the last two years. The central bank has been using its foreign reserves to support state lenders and the lira but the national currency slipped near an all-time low on Friday and foreign analysts predict the central bank reserves could run dry in July.

The level of exports shipped last month was down 41% on April last year and imports fell 28% by the same comparison, further depressing the willingness of companies to make capital investments such as rooftop solar.

 

Related News

View more

Growing pot sucks up electricity and pumps out an astounding amount of carbon dioxide — it doesn't have to

Sustainable Cannabis Cultivation leverages greenhouse design, renewable energy, automation, and water recapture to cut electricity use, emissions, and pesticides, delivering premium yields with natural light, smart sensors, and efficient HVAC and irrigation control.

 

Key Points

A data-driven, low-impact method that cuts energy, water, and chemicals while preserving premium yields.

✅ 70-90% less electricity vs. conventional indoor grows

✅ Natural light, solar, and rainwater recapture reduce footprint

✅ Automation, sensors, and HVAC stabilize microclimates

 

In the seven months since the Trudeau government legalized recreational marijuana use, licensed producers across the country have been locked in a frenetic race to grow mass quantities of cannabis for the new market.

But amid the rush for scale, questions of sustainability have often taken a back seat, and in Canada, solar adoption has lagged in key sectors.

According to EQ Research LLC, a U.S.-based clean-energy consulting firm, cannabis facilities can need up to 150 kilowatt-hours of electricity per year per square foot. Such input is on par with data centres, which are themselves 50 to 200 times more energy-intensive than a typical office building, and achieving zero-emission electricity by 2035 would help mitigate the associated footprint.

At the Lawrence Berkley National Laboratory in California, a senior scientist estimated that one per cent of U.S. electricity use came from grow ops. The same research — published in 2012 — also found that the procedures for refining a kilogram of weed emit around 4,600 kilograms of carbon dioxide to the atmosphere, equivalent to operating three million cars for a year, though a shift to zero-emissions electricity by 2035 could substantially cut those emissions.

“All factors considered, a very large expenditure of energy and consequent ‘environmental imprint’ is associated with the indoor cultivation of marijuana,” wrote Ernie Small, a principal research scientist for Agriculture and Agri-Food Canada, in the 2018 edition of the Biodiversity Journal.

Those issues have left some turning to technology to try to reduce the industry’s footprint — and the economic costs that come with it — even as more energy sources make better projects for forward-looking developers.

“The core drawback of most greenhouse environments is that you’re just getting large rooms, which are harder to control,” says Dan Sutton, the chief executive officer of Tantalus Labs., a B.C.-based cannabis producer. “What we did was build a system specifically for cannabis.”

Sutton is referring to SunLab, the culmination of four years of construction, and at present the main site where his company nurtures rows of the flowering plant. The 120,000-square foot structure was engineered for one purpose: to prove the merits of a sustainable approach.

“We’re actually taking time-series data on 30 different environmental parameters — really simple ones like temperature and humidity — all the way down to pH of the soil and water flow,” says Sutton. “So if the temperature gets a little too cold, the system recognizes that and kicks on heaters, and if the system senses that the environment is too hot in the summertime, then it automatically vents.”

A lot is achieved without requiring much human intervention, he adds. Unlike conventional indoor operations, SunLab demands up to 90 per cent less electricity, avoids using pesticides, and draws from natural light and recaptured rainwater to feed its crops.

The liquid passes through a triple-filtration process before it is pumped into drip irrigation tubing. “That allows us to deliver a purity of water input that is cleaner than bottled water,” says Sutton.

As transpiration occurs, a state-of-the-art, high-capacity airflow suspended below the ceiling cycles air at seven-minute intervals, repeatedly cooling the air and preventing outbreaks of mould, while genetically modified “guardian” insects swoop in to eliminate predatory pests.

“When we first started, people never believed we would cultivate premium quality cannabis or cannabis that belongs on the top shelf, shoulder to shoulder with the best in the world and the best of indoor,” says Sutton.

Challenges still exist, but they pale in comparison to the obstacles that American companies with an interest in adopting greener solutions persistently face, and in provinces like Alberta, an Alberta renewable energy surge is reshaping the opportunity set.

Although cannabis is legal in a number of states, it remains illegal federally, which means access to capital and regulatory clarity south of the border can be difficult to come by.

“Right now getting a new project built is expensive to do because you can’t get traditional bank loans,” says Canndescent CEO Adrian Sedlin, speaking by phone from California.

In retrofitting the company’s farm to accommodate a sizeable solar field, he struggled to secure investors, even as a solar-powered cannabis facility in Edmonton showcased similar potential.

“We spent over a year and a half trying to get it financed,” says Sedlin. “Finding someone was the hard part.”

Decriminalizing the drug would ultimately increase the supply of capital and lower the costs for innovative designs, something Sedlin says would help incentivize producers to switch to more effective and ecologically sound techniques.

Some analysts argue that selling renewable energy in Alberta could become a major growth avenue that benefits energy-intensive industries like cannabis cultivation.

Canndescent, however, is already there.

“We’re now harnessing the sun to reduce our reliance on fossil fuels and going to sustainable, or replenishable, energy sources, while leveraging the best and most efficient water practices,” says Sedlin. “It’s the right thing to do.”

 

Related News

View more

Russian Strikes on Western Ukraine Cause Power Outages

Ukraine Energy Grid Attacks intensify as missile strikes and drone raids hit power plants, substations, and transmission lines, causing blackouts, disrupted logistics, and humanitarian strain during winter, despite repairs, air defense, and allied aid.

 

Key Points

Missile and drone strikes on Ukraine's power grid to force blackouts, strain civilians, and disrupt military logistics.

✅ Targets: power plants, substations, transmission lines

✅ Impacts: blackouts, heating loss, hospital strain

✅ Goals: erode morale, disrupt logistics, force aid burdens

 

Russia’s continued strikes on Ukraine have taken a severe toll on the country’s critical infrastructure, particularly its energy grid, as Ukraine continues to keep the lights on despite sustained bombardment. In recent months, Western Ukraine has increasingly become a target of missile and drone attacks, leading to widespread power outages and compounding the challenges faced by the civilian population. These strikes aim to cripple Ukraine's resilience during a harsh winter season and disrupt its wartime operations.

Targeting Energy Infrastructure

Russian missile and drone assaults on Ukraine’s energy grid are part of a broader strategy to weaken the country’s morale and capacity to sustain the war effort. The attacks have primarily focused on power plants, transmission lines, and substations. Western Ukraine, previously considered a relative safe haven due to its distance from front-line combat zones, is now experiencing the brunt of this campaign.

The consequences of these strikes are severe. Rolling blackouts and unplanned outages have disrupted daily life for millions of Ukrainians, though authorities say there are electricity reserves that could stabilize supply if no new strikes occur, leaving homes without heating during freezing temperatures, hospitals operating on emergency power, and businesses struggling to maintain operations. The infrastructure damage has also affected water supplies and public transportation, further straining civilian life.

Aimed at Civilian and Military Impact

Russia’s targeting of Ukraine’s power grid has dual purposes. On one hand, it aims to undermine civilian morale by creating hardships during the cold winter months, even as Ukraine works to keep the lights on this winter through contingency measures. On the other, it seeks to hinder Ukraine’s military logistics and operations, which heavily rely on a stable energy supply for transportation, communications, and manufacturing of military equipment.

These attacks coincide with a broader strategy of attritional warfare, where Moscow hopes to exhaust Ukraine’s resources and diminish its ability to continue its counteroffensive operations. By disrupting critical infrastructure, Russia increases pressure on Ukraine's allies to step up humanitarian and military aid, stretching their capacities.

Humanitarian Consequences

The impact of these power cuts on the civilian population is profound. Millions of Ukrainians are enduring freezing temperatures without consistent access to electricity or heating. Vulnerable populations, such as the elderly, children, and those with disabilities, face heightened risks of hypothermia and other health issues.

Hospitals and healthcare facilities are under immense strain, relying on backup generators that cannot sustain prolonged use. In rural areas, where infrastructure is already weaker, the effects are even more pronounced, leaving many communities isolated and unable to access essential services.

Humanitarian organizations have ramped up efforts to provide aid, including distributing generators, warm clothing, and food supplies, while many households pursue new energy solutions to weather blackouts. However, the scale of the crisis often outpaces the resources available, leaving many Ukrainians to rely on their resilience and community networks.

Ukraine's Response

Despite the challenges, Ukraine has demonstrated remarkable resilience in the face of these attacks. The government and utility companies are working around the clock to repair damaged infrastructure and restore power to affected areas. Mobile repair teams and international assistance have played crucial roles in mitigating the impact of these strikes.

Ukraine’s Western allies have also stepped in to provide support. The European Union, the United States, and other countries have supplied Ukraine with energy equipment, financial aid, and technical expertise to help rebuild its energy grid, though recent decisions like the U.S. ending support for grid restoration complicate planning and procurement. Additionally, advanced air defense systems provided by Western nations have helped intercept some of the incoming missiles and drones, though not all attacks can be thwarted.

Russia’s Escalation Strategy

Russia’s focus on Western Ukraine reflects a shift in its strategy. Previously, attacks were concentrated on front-line areas and major urban centers in the east and south. However, by targeting the western regions, Moscow seeks to disrupt the relatively stable zones where displaced Ukrainians and critical supply chains are located.

Western Ukraine is also a hub for receiving and distributing international aid and military supplies. Striking this region not only undermines Ukraine’s internal stability but also sends a message to its allies about Russia’s willingness to escalate the conflict further.

Broader Implications

The attacks on Ukraine’s energy grid have broader geopolitical implications. By targeting infrastructure, Russia intensifies the pressure on Ukraine’s allies to continue providing support, even as Kyiv has at times helped Spain amid blackouts when capacity allowed, testing their unity and resolve. The destruction also poses long-term challenges for Ukraine’s post-war recovery, as rebuilding a modern and resilient energy system will require significant investments and time.

Moreover, these attacks highlight the vulnerability of civilian infrastructure in modern warfare, echoing that electricity is civilization amid winter conditions. The deliberate targeting of non-combatant assets underscores the need for international efforts to strengthen the protection of critical infrastructure and address the humanitarian consequences of such tactics.

The Russian attacks on Western Ukraine's power grid are a stark reminder of the devastating human and economic costs of the ongoing conflict. While Ukraine continues to demonstrate resilience and adaptability, the scale of destruction underscores the need for sustained international support. As the war drags on, the focus must remain on mitigating civilian suffering, rebuilding critical infrastructure, and pursuing a resolution that ends the violence and stabilizes the region.

 

Related News

View more

Hydro One crews restore power to more than 277,000 customers following damaging storms in Ontario

Hydro One Power Restoration showcases outage recovery after a severe windstorm, with crews repairing downed power lines, broken poles and crossarms, partnering with utilities and contractors to boost grid resilience and promote emergency kit preparedness.

 

Key Points

A coordinated response by Hydro One and partners to repair storm damage, restore outages, strengthen grid resilience.

✅ Crews repaired downed lines, broken poles, and crossarms

✅ Partners and contractors aided rapid outage restoration

✅ Investments improve grid resilience and emergency readiness

 

Hydro One crews have restored power to more than 277,000 customers following back-to-back storms, with impacts felt in communities like Sudbury where local crews worked to reconnect service, including a damaging windstorm on that caused 57 broken poles, 27 broken crossarms, as well as downed power lines and fallen trees on lines. Hydro One crews restored power to more than 140,000 customers within 24 hours of Friday's windstorm, even as Toronto outages persisted for some customers elsewhere.

'We understand power outages bring life to a halt, which is why we are continuously improving our storm response, as employee COVID-19 support demonstrated, while making smart investments in a resilient, reliable and sustainable electricity system to energize life for families, businesses and communities for years to come,' said David Lebeter, Chief Operating Officer, Hydro One. 'We thank our customers for their patience as our crews worked tirelessly, alongside our utility partners and contractors, including Ontario crews in Florida, to restore power as quickly and as safely as possible.'

Hydro One thanks all of its utility partners and contractors who assisted with restoration efforts following the windstorm (alongside similar Quebec outages that highlighted the broader impact), including Durham High Voltage, EPCOR, ERTH Power, K-Line Construction Ltd., Lakeland Power Distribution Ltd., North Bay Hydro, Sproule Powerline Construction Ltd. and Valard Construction.

Hydro One encourages customers to restock their emergency kits following these storms, which utilities such as BC Hydro have also characterized as atypical, and to be aware of support programs like our pandemic relief fund that can help during difficult periods, to ensure they're prepared for an emergency or extended power outage.

 

Related News

View more

China's Path to Carbon Neutrality

China Unified Power Market enables carbon neutrality through renewable integration, cross-provincial electricity trading, smart grid upgrades, energy storage, and market reform, reducing coal dependence and improving grid flexibility, efficiency, and emissions mitigation.

 

Key Points

A national power market integrating renewables and grids to cut coal use and accelerate carbon neutrality.

✅ Harmonizes pricing and cross-provincial electricity trading.

✅ Boosts renewable integration with storage and smart grids.

✅ Improves dispatch efficiency, reliability, and emissions cuts.

 

China's ambitious goal to achieve carbon neutrality has become a focal point in global climate discussions around the global energy transition worldwide, with experts emphasizing the pivotal role of a unified power market in realizing this objective. This article explores China's commitment to carbon neutrality, the challenges it faces, and how a unified power market could facilitate the transition to a low-carbon economy.

China's Commitment to Carbon Neutrality

China, as the world's largest emitter of greenhouse gases, has committed to achieving carbon neutrality by 2060. This ambitious goal signals a significant shift towards reducing carbon emissions and mitigating climate change impacts. Achieving carbon neutrality requires transitioning away from fossil fuels, including investing in carbon-free electricity pathways and enhancing energy efficiency across sectors such as industry, transportation, and residential energy consumption.

Challenges in China's Energy Landscape

China's energy landscape is characterized by its heavy reliance on coal, which accounts for a substantial portion of electricity generation and contributes significantly to carbon emissions. Transitioning to renewable energy sources such as wind, solar, hydroelectric, and nuclear power is essential to reducing carbon emissions and achieving carbon neutrality. However, integrating these renewable sources into the existing energy grid poses technical, regulatory, and financial challenges that often hinge on adequate clean electricity investment levels and policy coordination.

Role of a Unified Power Market

A unified power market in China could play a crucial role in facilitating the transition to a low-carbon economy. By integrating regional power grids and promoting cross-provincial electricity trading, a unified market can optimize the use of renewable energy resources, incorporate lessons from decarbonizing electricity grids initiatives to enhance grid stability, and reduce reliance on coal-fired power plants. This market mechanism encourages competition among energy producers, incentivizes investment in renewable energy projects, and improves overall efficiency in electricity generation and distribution.

Benefits of a Unified Power Market

Implementing a unified power market in China offers several benefits in advancing its carbon neutrality goals. It promotes renewable energy development by providing a larger market for electricity generated from wind, solar, and other clean sources that underpin the race to net-zero in many economies. It also enhances grid flexibility, enabling better management of fluctuations in renewable energy supply and demand. Moreover, a unified market encourages innovation in energy storage technologies and smart grid infrastructure, essential components for integrating variable renewable energy sources.

Policy and Regulatory Considerations

Achieving a unified power market in China requires coordinated policy efforts and regulatory reforms. This includes harmonizing electricity pricing mechanisms, streamlining administrative procedures for electricity trading across provinces, and ensuring fair competition among energy producers. Clear and consistent policies that support renewable energy deployment and grid modernization, and align with insights on climate policy and grid implications from other jurisdictions, are essential to attracting investment and fostering a sustainable energy transition.

International Collaboration and Leadership

China's commitment to carbon neutrality presents opportunities for international collaboration and leadership in climate action. Engaging with global partners, sharing best practices, and promoting technology transfer, as seen with Canada's 2050 net-zero target commitments, can accelerate progress towards a low-carbon future. By demonstrating leadership in clean energy innovation and climate resilience, China can contribute to global efforts to mitigate climate change and achieve sustainable development goals.

Conclusion

China's pursuit of carbon neutrality by 2060 represents a monumental endeavor that requires transformative changes in its energy sector. A unified power market holds promise as a critical enabler in this transition, facilitating the integration of renewable energy sources, enhancing grid flexibility, and optimizing energy efficiency. By prioritizing policy coherence, regulatory reform, and international cooperation, China can pave the way towards a sustainable energy future while addressing global climate challenges.

 

Related News

View more

New England takes key step to 1.2 GW of Quebec hydro as Maine approves transmission line

NECEC Clean Energy Connect advances with Maine DEP permits, Hydro-Québec contracts, and rigorous transmission line mitigation, including tapered vegetation, culvert upgrades, and forest conservation, delivering low-carbon power, broadband fiber, and projected ratepayer savings.

 

Key Points

A Maine transmission project delivering Hydro-Québec power with strict DEP mitigation, lower bills, and added broadband.

✅ DEP permits mandate tapered vegetation, culvert upgrades, land conservation

✅ Hydro-Québec to supply 9.55 TWh/yr via MA contracts; bill savings 2-4%

✅ Added broadband fiber in Somerset and Franklin; local tax benefits

 

The Maine DEP reviewed the Clean Energy Connect project for more than two years, while regional interest in cross-border transmission continued to grow, before issuing permits that included additional environmental mitigation elements.

"Collectively, the requirements of the permit require an unprecedented level of environmental protection and compensatory land conservation for the construction of a transmission line in the state of Maine," DEP said in a May 11 statement.

Requirements include limits on transmission corridor width, forest preservation, culvert replacement and vegetation management projects, while broader grid programs like vehicle-to-grid integration enhance clean energy utilization across the region.

"In our original proposal we worked hard to develop a project that provided robust mitigation measures to protect the environment," NECEC Transmission CEO Thorn Dickinson said in a statement. "And through this permitting process, we now have made an exceedingly good project even better for Maine."

NECEC will be built on land owned or controlled by Central Maine Power. The 53 miles of new corridor on working forest land will use a new clearing technique for tapered vegetation, while the remainder of the project follows existing power lines.

Environmentalists said they agreed with the decision, and the mitigation measures state regulators took, noting similar momentum behind new wind investments in other parts of Canada.

"Building new ways to deliver low-carbon energy to our region is a critical piece of tackling the climate crisis," CLF Senior Attorney Phelps Turner said in a statement. "DEP was absolutely right to impose significant environmental conditions on this project and ensure that it does not harm critical wildlife areas."

Once complete, Turner said the transmission line will allow the region "to retire dirty fossil fuel plants in the coming years, which is a win for our health and our climate."

The Massachusetts Department of Public Utilities in June 2019 advanced the project by approving contracts for the state's utilities to purchase 9,554,940 MWh annually from Hydro-Quebec. Officials said the project is expected to provide approximately 2% to 4% savings on monthly energy bills.

Total net benefits to Massachusetts ratepayers over the 20-year contract, including both direct and indirect benefits, are expected to be approximately $4 billion, according to the state's estimates.

NECEC "will also deliver significant economic benefits to Maine and the region, including lower electricity prices, increased local real estate taxes and reduced energy costs with examples like battery-backed community microgrids demonstrating local resilience, expanded fiber optic cable for broadband service in Somerset and Franklin counties and funding of economic development for Western Maine," project developers said in a statement.​

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.