Solar plasma knocked out power 20 years ago

By Scientific American


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Though triskaidekaphobes — those who fear the number 13 — recoil over Friday the 13th, they can take solace knowing that there is only a very low probability that the sun will bombard Earth like it did on March 13, 1989.

Two decades ago, one of the most extreme examples of space weather in modern times wracked the planet. Space weather comes primarily from the sun, which constantly sends particles and energy Earth's way via the so-called solar wind.

But like conventional terrestrial weather, storms and other disruptions on the sun occur. The sun frequently emits bursts of matter and energy called flares, which are triggered by a star's natural magnetic turbulence. Occasionally, however, the sun also belches a billion-ton plume of superheated plasma (ionized gas), known as a coronal mass ejection (CME). If this massive bubble of plasma and radiation is aimed right at Earth, it can pose a serious threat to satellite operations and even to power grids on the ground, along with modern civilization that depends on their electricity.

On March 10, 1989, a CME about the size of 36 Earths erupted from the sun's roiling surface and ripped through space at a million miles (1.6 million kilometers) per hour. Two days later, the torrid gas cloud crashed against Earth's magnetosphere — the magnetic field generated by the planet's spinning molten iron core that helps deflect the solar wind and more potent solar jetsam. This blast from the sun severely disrupted the magnetosphere and set off a geomagnetic superstorm.

As Sten Odenwald, an astrophysicist at The Catholic University of America in Washington, D.C., relates in his book The 23rd Cycle, what ensued was one of the grandest displays of auroras — usually manifested as the aurora borealis (northern lights) or aurora australis (southern lights) — in recent times. Auroras form when Earth's magnetic field funnels highly energetic particles toward the poles where the field emanates. There, the charged particles strike molecules in Earth's atmosphere that release photons of various colors (red hues come from oxygen, for example) and light up polar regions in frequent auroral displays.

But the event of March 13 (the date fell on a Monday that year) was no mere breath of solar wind or a flare that kindled a transient, flickering light show. Undulating, multicolored auroras spread as far south as Texas and Cuba, and a red glow appeared in the night sky over most of the world. Some startled people who had never seen an aurora before even feared that nuclear war had broken out, Odenwald recounts.

Some satellites, the closest to the action, suffered electronic glitches. "That wasn't so much an issue then, as there were far fewer satellites in orbit compared to now," Odenwald says. The space storm's effects extended all the way to Earth's surface and even below it in the form of geomagnetically induced currents (GICs). These electrical surges infiltrated power grids all over North America and northern Europe, and even destroyed a transformer at a nuclear power plant in New Jersey.

Most significantly, at about 2:45 A.M. local time on Monday, March 13, Canada's Hydro-Québec power utility's grid crashed when safety systems sensed a power overload caused by the currents pulsing through the ground. The failure knocked out electricity to six million people in northeastern Canada for as long as nine hours — the biggest outage ever caused by a geomagnetic storm.

Of course, electrical generation for distribution to homes and businesses is not even 130 years old. And far bigger geomagnetic storms have struck in the recent past (in 1859 and 1921, most prominently), and are all but certain to in the future.

The sun currently is experiencing what is called the solar minimum — the least magnetically active period of an 11-year cycle. As telltale dark blotches on its surface called sunspots multiply, indicating magnetic upswells, solar flares and CMEs grow in frequency, peaking just after the solar maximum. The next such tempestuous season is slated for 2012 or so.

Anticipating this next round of solar monsoons, the National Academy of Sciences recently released a study based on a workshop in summer 2008 that broadly addressed many of the socioeconomic ramifications of space storms. "There's been no other report like this for space weather," says lead study author Daniel Baker, a space physicist at the University of Colorado at Boulder's Laboratory for Atmospheric and Space Physics (LASP). "And what we found was that space weather affects many industries in some surprising ways."

The chances of a truly devastating power outage from space weather remain low, the report says. But should one occur, it warns, modern society's dependence on electrical power to maintain everything from banking systems to potable water supplies could indeed cause a national — if not international — emergency costing trillions of dollars over years of recovery.

"People are of a mind that because nothing too terrible has happened in the past, that something won't now," Odenwald says. "We've heard that kind of logic before, and we got Hurricane Katrina. The cost of not preparing for extreme space weather could be dramatic."

Space weather's effects on energy infrastructure are not just limited to the power grid. It also contributes to rust and corrosion in oil and gas pipelines. In much the same way that power lines are affected, long connected structures can experience large voltage differentials from one area to the next, leading to the flow of unwanted electrical current. "A person or even something the size of a house is not affected by these ground currents because they're too small," Odenwald says. "But if you were somehow holding hands with another person a hundred kilometers away, say, then you would have a voltage difference." In Alaska, engineers have found that the Trans-Alaska Pipeline degrades faster than expected due to the frequent ground currents in northern latitudes.

On flights over polar regions during geomagnetic events, airplanes can experience radio blackouts and equipment disruptions. And satellites can go haywire, upsetting prosaic pursuits like watching television, or more crucially disturbing the global positioning system (GPS). Numerous industries rely on GPS for accurate navigation and orientation, and the military uses GPS for key purposes, including missile tracking and guidance.

In light of these far-flung effects of inclement space weather, concerned experts have called for expanding our prediction capabilities. The current fleet of government science satellites can forecast the possibility of a major space storm only a few days out. (One craft, the Advanced Composition Explorer (ACE), can fire off critical alerts if a CME is within 45 minutes of striking Earth.) Civilian space weather alerts come courtesy of the National Oceanic & Atmospheric Administration's Space Weather Prediction Center.

Related News

Lawmakers push bill to connect Texas grid to rest of the nation

Connect the Grid Act links ERCOT to neighboring grids via high-voltage interconnections, enhancing reliability, resilience, and renewables integration. It enables power imports and exports with SPP, MISO, and the Western Interconnection under FERC oversight.

 

Key Points

A plan to link ERCOT with neighboring grids, improving reliability, enabling energy trade, and integrating renewables.

✅ High-voltage ties with SPP, MISO, and the Western Interconnection

✅ Enables imports during crises and exports of surplus power

✅ Brings ERCOT under FERC oversight; DoE to study Mexico links

 

In the aftermath of the devastating 2021 Texas blackouts, which exposed the vulnerabilities of the state's energy infrastructure, a significant legislative effort is underway to transform Texas from an energy island into a connected component of the broader U.S. power grid. Spearheaded by U.S. Representative Greg Casar, D-Austin, the proposed Connect the Grid Act is part of a push for smarter electricity infrastructure that seeks to remedy the isolation of the Electric Reliability Council of Texas (ERCOT) from neighboring power grids, a condition that significantly contributed to the crisis during Winter Storm Uri.

The blackouts, which left millions without power and resulted in significant loss of life and economic damage, underscored the inherent risks of Texas's unique energy infrastructure. Unlike the rest of the continental U.S., Texas's grid operates independently, limiting its ability to import electricity during emergencies. This isolation was a critical factor in the state's inability to respond effectively to the increased demand for power during the storm.

Recognizing the urgent need for a more resilient and integrated energy system, Rep. Casar's legislation aims to establish high-voltage connections between ERCOT and adjacent grid-operating organizations, including the Southern Power Pool, MISO, and the Western Interconnection. This would not only improve the reliability of Texas's power supply by enabling energy imports during crises but also allow the state to export surplus energy, thereby enhancing the economic efficiency and sustainability of its energy market.

The Connect the Grid Act proposes a range for the new connections' transfer capabilities, aiming to significantly boost the amount of power that can be shared between Texas and its neighbors. Such interconnectivity is anticipated to reduce energy costs for consumers by mitigating scarcity and enabling access to Texas's vast renewable energy resources, even as grid modernization affordability remains a point of debate among stakeholders. However, the bill faces opposition due to concerns over federal oversight, as it would bring ERCOT under the jurisdiction of the Federal Energy Regulatory Commission (FERC).

Some analysts note that policies such as later school start dates can ease late-summer peak demand as well.

At a press conference held at the IBEW Local 520 headquarters, Rep. Casar, along with environmental groups, labor unions, and frontline workers, highlighted the benefits of the proposed legislation. The bill also includes provisions for a Department of Energy study on the potential benefits of interconnecting with Mexico, and parallels proposals for macrogrids in Canada that seek greater reliability across borders.

The Connect the Grid Act reflects a broader national trend towards increasing the interconnectivity of regional power grids, a move deemed essential for the transition to renewable energy and combating climate change risks to the U.S. grid through expanded interconnection. By enabling the flow of clean energy from renewable-rich areas like Texas to energy-hungry urban centers, the legislation supports a more sustainable and resilient national energy infrastructure.

Critics of Texas's grid independence, including energy experts and federal regulators, have long advocated for such interconnections. They argue that increased access to neighboring grids could have mitigated the effects of the 2021 blackouts and emphasize the importance of a grid that can withstand extreme weather events. The Federal Energy Regulatory Commission and the North American Electric Reliability Corp. have both explored mandates and studies to promote electricity transfer between regional grids, while states like California grid upgrades are investing to modernize networks as well, highlighting the national importance of grid interconnectivity.

Despite the potential challenges of increased federal regulation, proponents of the Connect the Grid Act argue that the benefits of interconnection far outweigh the drawbacks. By reducing energy costs, enhancing grid reliability, and promoting renewable energy, the legislation aims to secure a more sustainable and equitable energy future for Texas and the nation.

If passed, the Connect the Grid Act would mark a historic shift in Texas's energy policy, ending the state's long-standing isolation and positioning it as a key player in the national and potentially international energy landscape, and echoes calls for a western Canadian electricity grid to strengthen regional ties. The bill sets a completion deadline of January 1, 2035, for the construction of the new connections, with other projects, like the one by Pattern Energy, potentially connecting ERCOT to parts of the Southeastern grid even earlier, by 2029. This legislative effort represents a critical step towards ensuring that Texas can meet its energy needs reliably and sustainably, while also contributing to the broader goal of transitioning to a cleaner, more resilient power system.

 

Related News

View more

Power customers in British Columbia, Quebec have faced fees for refusing the installation of smart meters

NB Power Smart Meter Opt-Out Fees reflect cost causation principles set before the Energy and Utilities Board, covering meter reading charges, transmitter-disable options, rollout targets, and education plans across New Brunswick's smart metering program.

 

Key Points

Fees NB Power may apply to customers opting out of smart meters, reflecting cost causation and meter-reading costs.

✅ Based on cost causation and meter reading expenses

✅ BC and Quebec charge monthly opt-out surcharges

✅ Policy finalized during rollout after EUB review

 

NB Power customers who do not want a smart meter installed on their home could be facing a stiff fee for that decision, but so far the utility is not saying how much it might be.  

"It will be based on the principles of cost causation, but we have not gotten into the detail of what that fee would be at this point," said NB Power Senior Vice President of Operations Lori Clark at Energy and Utilities Board hearings on Friday.

In other jurisdictions that have already adopted smart meters, customers not wanting to participate have faced hundreds of dollars in extra charges, while Texas utilities' pullback from smart-home networks shows approaches can differ.

In British Columbia, power customers are charged a meter reading fee of $32.40 per month if they refuse a smart meter, or $20 per month if they accept a smart meter but insist its radio transmitter be turned off. That's a cost of between $240 and $388.80 per year for customers to opt out.

In Quebec, smart meters were installed beginning in 2012. Customers who refused the devices were initially charged $98 to opt out plus a meter reading fee of $17 per month. That was eventually cut by Quebec's energy board in 2014 to a $15 refusal fee and a $5 per month meter reading surcharge.

NB Power said it may be a year or more before it settles on its own fee.

"The opt out policy will be developed and implemented as part of the roll out.  It will be one of the last things we do," said Clark.

 

Customers need to be on board

NB Power is in front of the New Brunswick Energy and Utilities Board seeking permission to spend $122.7 million to install 350,000 smart meters province wide, as neighboring markets grapple with major rate increases that heighten affordability concerns.  

The meters are capable of transmitting consumption data of customers back to NB Power in real time, which the utility said will allow for a number of innovations in pricing and service, and help address old meter inaccuracies that affected some households.

The meters require near universal adoption by customers to maximize their financial benefit — like eliminating more than $20 million a year NB Power currently spends to read meters manually. The utility has said the switch will not succeed if too many customers opt out.

"We certainly wouldn't be looking at making an investment of this size without having the customer with us," said Clark.

On Thursday, Kent County resident Daniel LeBlanc, who along with Roger Richard, is opposing the introduction of smart meters for health reasons, predicted a cool reception for the technology in many parts of the province, given concerns that include health effects and billing disputes in Nova Scotia reported elsewhere.

"If one were to ask most of the people in the rural areas, I'm not sure you would get a lot of takers for this infrastructure," said LeBlanc, who is concerned with the long-term effect microwave frequencies used by the meters to transmit data may have on human health.

That issue is before the EUB next week.

 

Haven't tested the waters

NB Power acknowledged it has not measured public opinion on adopting smart meters but is confident it can convince customers it is a good idea for them and the utility, even as seasonal rate proposals in New Brunswick have prompted consumer backlash.

"People don't understand what the smart meter is," said Clark. "We need to educate our customers first to allow them to make an informed decision so that will be part of the roll out plan."

Clark noted that smart meters, helped by stiff opting out penalties, were eventually accepted by 98 per cent of customers in British Columbia and by 97.4 per cent of customers in Quebec.

"We will check and adjust along the way if there are issues with customer uptake," said Clark.

 

"This is very similar to what has been done in other jurisdictions and they haven't had those challenges."

 

Related News

View more

Southern California Edison Faces Lawsuits Over Role in California Wildfires

SCE Wildfire Lawsuits allege utility equipment and power lines sparked deadly Los Angeles blazes; investigations, inverse condemnation, and stricter utility regulations focus on liability, vegetation management, and wildfire safety amid Santa Ana winds.

 

Key Points

Residents sue SCE, alleging power lines ignited LA wildfires; seeking compensation under inverse condemnation.

✅ Videos cited show sparking lines near alleged ignition points.

✅ SCE denies wrongdoing; probes and inspections ongoing.

✅ Inverse condemnation may apply regardless of negligence.

 

In the aftermath of devastating wildfires in Los Angeles, residents have initiated legal action, similar to other mega-fire lawsuits underway in California, against Southern California Edison (SCE), alleging that the utility's equipment was responsible for sparking one of the most destructive fires. The fires have resulted in significant loss of life and property, prompting investigations into the causes and accountability of the involved parties.

The Fires and Their Impact

In early January 2025, Los Angeles experienced severe wildfires that ravaged neighborhoods, leading to the loss of at least 29 lives and the destruction of approximately 155 square kilometers of land. Areas such as Pacific Palisades and Altadena were among the hardest hit. The fires were exacerbated by arid conditions and strong Santa Ana winds, which contributed to their rapid spread and intensity.

Allegations Against Southern California Edison

Residents have filed lawsuits against SCE, asserting that the utility's equipment, particularly power lines, ignited the fires. Some plaintiffs have presented videos they claim show sparking power lines in the vicinity of the fire's origin. These legal actions seek to hold SCE accountable for the damages incurred, including property loss, personal injury, and emotional distress.

SCE's Response and Legal Context

Southern California Edison has denied any wrongdoing, stating that it has not detected any anomalies in its equipment that could have led to the fires. The utility has pledged to cooperate fully with investigations to determine the causes of the fires. California's legal framework, particularly the doctrine of "inverse condemnation," allows property owners to seek compensation from utilities for damages caused by public services, even without proof of negligence. This legal principle has been central in previous cases involving utility companies and wildfire damages, and similar allegations have arisen in other jurisdictions, such as an alleged faulty transformer case, highlighting shared risks.

Historical Context and Precedents

This situation is not unprecedented. In 2018, Pacific Gas and Electric (PG&E) faced similar allegations when its equipment was implicated in the Camp Fire, the deadliest wildfire in California's history. PG&E's equipment was found to have ignited the fire, and the company later pleaded guilty in the Camp Fire, leading to extensive litigation and financial repercussions for the company, while its bankruptcy plan won support from wildfire victims during restructuring. The case highlighted the significant risks utilities face regarding wildfire safety and the importance of maintaining infrastructure to prevent such disasters.

Implications for California's Utility Regulations

The current lawsuits against SCE underscore the ongoing challenges California faces in balancing utility operations with wildfire prevention, as regulators face calls for action amid rising electricity bills. The state has implemented stricter regulations and oversight, and lawmakers have moved to crack down on utility spending to mitigate wildfire risks associated with utility infrastructure. Utilities are now required to invest in enhanced safety measures, including equipment inspections, vegetation management, and the implementation of advanced technologies to detect and prevent potential fire hazards. These regulatory changes aim to reduce the incidence of utility-related wildfires and protect communities from future disasters.

The legal actions against Southern California Edison reflect the complex interplay between utility operations, public safety, and environmental stewardship. As investigations continue, the outcomes of these lawsuits may influence future policies and practices concerning utility infrastructure and wildfire prevention in California. The state remains committed to enhancing safety measures to protect its residents and natural resources from the devastating effects of wildfires.

 

Related News

View more

FPL stages massive response to Irma but power may not be back for days or weeks

FPL Power Restoration mobilizes Florida linemen and mutual-aid utility crews to repair the grid, track outages with smart meters, prioritize hospitals and essential services, and accelerate hurricane recovery across the state.

 

Key Points

FPL Power Restoration is the utility's hurricane effort to rebuild the grid and quickly restore service across Florida.

✅ 18,000 mutual-aid utility workers deployed from 28 states

✅ Smart meters pinpoint outages and accelerate repairs

✅ Critical facilities prioritized before neighborhood restorations

 

Teams of Florida Power & Light linemen, assisted by thousands of out-of-state utility workers and 200 Ontario workers who joined the effort, scrambled across Florida Monday to tackle the Herculean task of turning the lights back on in the Sunshine State.

The job is quite simply mind-boggling as Irma caused extensive damages to the power grid and the outages have broken previous records, and in other storms Louisiana's grid needed a complete rebuild after Hurricane Laura to restore service.

By 3 p.m. Monday, some 3.47 million of the company's 4.9 million customers in Florida were without power. This breaks the record of 3.24 million knocked off the grid during Hurricane Wilma in 2005, according to FPL spokesman Bill Orlove.

Prepared to face massive outages, FPL brought some 18,000 utility workers from 28 states here to join FPL crews, including Canadian power crews arriving to help restore service, to enable them to act more quickly.

“That’s the thing about the utility industry,” said  Alys Daly, an FPL spokeswoman. “It’s truly a family.”

Even with what is believed to be the largest assembly of utility workers ever assembled for a single storm in the United States, power restoration is expected to take weeks, not days in some areas.

FPL vowed to work as quickly as possible as they assess the damage and send out crews to restore power.

"We understand that people need to have power right away to get their lives back to normal," Daly said.

The priority, she said, were medical and emergency management facilities and then essential service providers like gas stations and grocery stores.

After that, FPL will endeavor to repair the problems that will restore power to the maximum number of people possible. Then it's individual neighborhoods.

As of 3 p.m. Monday, 219,040 of FPL's 307,600 customers on the Space Coast had no power. That's an improvement over the 260,600 earlier in the day.

Daly was unable to say Monday how many crews FPL had working in Brevard County. In some areas, power came back relatively swiftly, much quicker than expected.

" I was definitely surprised at how quickly they got our power back on here in NE Palm Bay," said Kelli Coats. "We lost power last night around 9 p.m Sunday and regained power around 8:30 a.m. today."

Others, many of them beachside, were looking at a full 24 hours without power and it's possible it could extend into Tuesday or longer.

One reason for improved response times since 2005, Daly said, is the installation of nearly 5 million "Smart Meters" at residences. These new devices, which replaced older analog models, allows FPL crews to track a neighborhood's power status via handheld computers, pinpointing the cause of an outage so it can be repaired.

Quick restoration is key as stores and restaurants struggle to re-open, and Gulf Power crews restored power in the early push. Without electricity many of them just can't re-start operations and get goods and services to consumers.

At the Atlanta-based Waffle House, which Federal Emergency Management Administration use to gauge the severity of damage and service to an area, restaurant executives are reviewing its operations in Florida and should have a better handle Monday afternoon how quickly restaurants will re-open.

"Right now, we're in an assessment phase," said Pat Warner, spokesman for Waffle House. "We're looking at which stores have power and which ones have damage."

FEMA's color-coded Waffle House Index started after the hurricanes in the early 2000s. It works like this: When an official phones a Waffle House to see if it is open,  the next stop is to assess it's level of service. If it's open and serving a full menu, the index is green. When the restaurant is open but serving a limited menu, it's yellow. When it's closed, it's red.

 

Related News

View more

The Evolution of Electric Vehicle Charging Infrastructure in the US

US EV Charging Infrastructure is evolving with interoperable NACS and CCS standards, Tesla Supercharger access, federal funding, ultra-fast charging, mobile apps, and battery advances that reduce range anxiety and expand reliable, nationwide fast-charging access.

 

Key Points

Nationwide network, standards, and funding enabling fast, interoperable EV charging access for drivers across the US.

✅ NACS and CCS interoperability expands cross-network access

✅ Tesla Superchargers opening to more brands accelerate adoption

✅ Federal funding builds fast chargers along highways and communities

 

The landscape of electric vehicle (EV) charging infrastructure in the United States is rapidly evolving, driven by technological advancements, collaborative efforts between automakers and charging networks across the country, and government initiatives to support sustainable transportation.

Interoperability and Collaboration

Recent developments highlight a shift towards interoperability among charging networks, even as control over charging continues to be contested across the market today. The introduction of the North American Charging Standard (NACS) and the adoption of the Combined Charging System (CCS) by major automakers underscore efforts to standardize charging protocols. This move aims to enhance convenience for EV drivers by allowing them to use multiple charging networks seamlessly.

Tesla's Role and Expansion

Tesla, a trailblazer in the EV industry, has expanded its Supercharger network to accommodate other EV brands. This initiative represents a significant step towards inclusivity, addressing range anxiety and supporting the broader adoption of electric vehicles. Tesla's expansive network of fast-charging stations across the US continues to play a pivotal role in shaping the EV charging landscape.

Government Support and Infrastructure Investment

The federal government's commitment to infrastructure development is crucial in advancing EV adoption. The Bipartisan Infrastructure Law allocates substantial funding for EV charging station deployment along highways and in underserved communities, while automakers plan 30,000 chargers to complement public investment today. These investments aim to expand access to charging infrastructure, promote economic growth, and reduce greenhouse gas emissions associated with transportation.

Technological Advancements and User Experience

Technological innovations in EV charging, including energy storage and mobile charging solutions, continue to improve user experience and efficiency. Ultra-fast charging capabilities, coupled with user-friendly interfaces and mobile apps, simplify the charging process for consumers. Advancements in battery technology also contribute to faster charging times and increased vehicle range, enhancing the practicality and appeal of electric vehicles.

Challenges and Future Outlook

Despite progress, challenges remain in scaling EV charging infrastructure to meet growing demand. Issues such as grid capacity constraints are coming into sharp focus, alongside permitting processes and funding barriers that necessitate continued collaboration between stakeholders. Addressing these challenges is crucial in supporting the transition to sustainable transportation and achieving national climate goals.

Conclusion

The evolution of EV charging infrastructure in the United States reflects a transformative shift towards sustainable mobility solutions. Through interoperability, government support, technological innovation, and industry collaboration, stakeholders are paving the way for a robust and accessible charging ecosystem. As investments and innovations continue to shape the landscape, and amid surging U.S. EV sales across 2024, the trajectory of EV infrastructure development promises to accelerate, ensuring reliable and widespread access to charging solutions that support a cleaner and greener future.

 

Related News

View more

Alberta Introduces New Electricity Rules

Alberta Rate of Last Resort streamlines electricity regulations to stabilize the default rate, curb price volatility, and protect rural communities, low-income households, and seniors while preserving competition in the province's energy market.

 

Key Points

Alberta's Rate of Last Resort sets biennial default electricity prices, curbing volatility and protecting customers.

✅ Biennial default rate to limit price spikes

✅ Focus on rural, senior, and low-income customers

✅ Encourages competitive contracts and market stability

 

The Alberta government is overhauling its electricity regulations as part of a market overhaul aimed at reducing spikes in electricity prices for consumers and businesses. The new rules, set to be introduced this spring, are intended to stabilize the default electricity rate paid by many Albertans.


Background on the Rate of Last Resort

Albertans currently have the option to sign up for competitive contracts with electricity providers. These contracts can sometimes offer lower rates than the default electricity rate, officially known as the Regulated Rate Option (RRO). However, these competitive rates can fluctuate significantly. Currently, those unable to secure these contracts or those who are on the default rate are experiencing rising electricity prices and high levels of price volatility.

To address this, the Alberta government is renaming the default rate as the Rate of Last Resort designation (RoLR) under the new framework. This aims to reduce the sense of security that some consumers might associate with the current name, which the government feels is misleading.


Key Changes Under New Regulations

The new regulations, which include proposed market changes that affect pricing, focus on:

  • Price Stabilization: Default electricity rates will be set every two years for each utility provider, providing greater predictability by enabling a consumer price cap and reducing the potential for extreme price swings.
  • Rural and Underserved Communities: The changes are intended to particularly benefit rural Albertans and those on the default rate, including low-income individuals and seniors. These groups often lack access to the competitive rates offered by some providers and have been disproportionately affected by recent price increases.
  • Promoting Economic Stability: The goal is to lower the cost of utilities for all Albertans, leading to overall lower costs of living and doing business. The government anticipates these changes will create a more attractive environment for investment and job creation.


Opposition Views

Critics argue that limiting the flexibility of prices for the default electricity rate could interfere with market dynamics and stifle market competition among providers. Some worry it could ultimately lead to higher prices in the long term. Others advocate directly subsidizing low-income households rather than introducing broad price controls.


Balancing Affordability and the Market

The Alberta government maintains that the proposed changes will strike a balance between ensuring affordable electricity for vulnerable Albertans and preserving a competitive energy market. Provincial officials emphasize that the new regulations should not deter consumers from seeking out competitive rates if they choose to.


The Path Ahead

The new electricity regulations are part of the Alberta government's broader Affordable Utilities Program, alongside electricity policy changes across the province. The legislation is expected to be introduced and debated in the provincial legislature this spring with the potential of coming into effect later in the year. Experts expect these changes will significantly impact the Alberta electricity market and ignite further discussion about how best to manage rising utility costs for consumers and businesses.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified