Wiring regulations go global

By Building Services Journal


CSA Z463 Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
One day – soon? – the world will have a single set of wiring regulations. In the meantime, check out the latest UK revision, says Steve Bradley.

With more and more UK services consultants winning contracts overseas, electrical design engineers can no longer rely simply on their knowledge of the British Wiring Regulations – they need an understanding of the codes used across the world. Fortunately there is some crossover, stemming from a shared base, such as the International Standards (IEC).

In the UK, BS 7671:2008 Requirements for Electrical Installations, IEE Wiring Regulations 17th Edition, comes into force on 1 July. The joint IET/BSI technical committee JPEL/64 (UK National Committee for the Wiring Regulations) is responsible for the maintenance of this standard. The regulations are based on European Standards (CENELEC), which in turn are based on International Standards.

The Wiring Regulations are the national standard in the UK for electrical installations up to 1000V AC or 1500V DC. They are also used in other countries, such as Mauritius, St Lucia, Sierra Leone, Sri Lanka and Uganda, and yet more countries adopt the general principles of BS 7671.

It is not only the UK that will see a new issue of Wiring Regulations this year. In the USA, engineers will be familiarising themselves with the National Electrical Code (NEC) 2008 Edition, which was approved by the American National Standards Institute last August.

The NEC, also known as NFPA 70, is the US standard for the safe installation of electrical wiring and equipment, and is part of the National Fire Codes series published by the National Fire Protection Association.

Unlike the BS 7671 Wiring Regulations, the NEC is updated and published on a three-year cycle. It is used in a number of other countries and has been translated into Japanese, Korean and Spanish.

The construction boom has made the United Arab Emirates a popular destination for UK engineers. They need to be aware, however, that the individual states have their own wiring regulations.

In Dubai, all electricity and water is supplied and regulated by the Dubai Electricity and Water Authority (DEWA). It has adopted most of the codes and regulations that we follow in the UK, specifically the BS 7671 Wiring Regulations, and in 1997 issued its Regulations for Electrical Installations. If an amendment, addition or revision is required, DEWA issues a memorandum informing the designer of the relevant information.

Abu Dhabi conducted a review of the three forms of wiring regulations, and consequently the Regulation and Supervision Bureau for water and electricity issued the Electricity Wiring Regulations 2007. The document adopted predominantly UK and European standards for the design of electrical systems and specification of equipment.

QatarÂ’s electricity and water corporation, Kahramaa, publishes its own wiring regulations, as does BahrainÂ’s Ministry of Electricity & Water. The general principles are consistent with BS 7671.

To be effective, wiring regulations must be suitable for for a countryÂ’s electrical infrastructure and electrical safety system. They must be capable of being interpreted, applied and enforced uniformly. They must also have compatibility with additional standards applicable to products whose installation, use and maintenance is intended to be governed by the wiring regulation standard.

Obviously, there are differences between each countryÂ’s specific regulations. A comparison analysis would not only highlight differences in the engineering principles and fundamental standards, but also in their applicability. For example, a comparison of the BS 7671 and NEC documents reveals that:

• both address installation, use and maintenance of premises’ wiring systems and equipment;

• both are applicable to wiring systems of premises for residential, commercial and industrial use;

• neither covers installations for generation, transmission or distribution of electrical energy;

• the NEC is a comprehensive set of electrical installation requirements that can be adopted and implemented without the need of additional standards;

• BS 7671 must be supplemented by the requirements or recommendations of certain other British standards (such as BS 5839-6:2004 Fire detection and fire alarm systems for buildings);

• BS 7671 is limited to installations within two nominal voltage ranges (i) extra-low voltage – normally not exceeding 50V AC or 120V ripple-free DC (ii) low voltage – normally exceeding extra-low voltage, but not exceeding 1000V AC or 1500V DC between conductors, or 600V AC or 900V DC between conductors and earth;

• both standards need effective co-ordination with appropriate product standards to be successful in implementing electrical safety.

The ultimate aim is that all countries will have the same wiring regulations. National differences make this still a dream, but we are moving slowly in that direction. Until then, UK electrical design engineers will need to ensure that designs for overseas projects comply with the wiring regulations of the location.

Related News

Extensive Disaster Planning at Electric & Gas Utilities Means Lights Will Stay On

Utility Pandemic Preparedness strengthens grid resilience through continuity planning, critical infrastructure protection, DOE-DHS coordination, onsite sequestration, skeleton crews, and deferred maintenance to ensure reliable electric and gas service for commercial and industrial customers.

 

Key Points

Plans that sustain grid operations during outbreaks using staffing limits, access controls, and deferred maintenance.

✅ Deferred maintenance and restricted site access

✅ Onsite sequestering and skeleton crew operations

✅ DOE-DHS coordination and control center staffing

 

Commercial and industrial businesses can rest assured that the current pandemic poses no real threat to our utilities, with the U.S. grid remaining reliable for now, as disaster planning has been key to electric and gas utilities in recent years, writes Forbes. Beginning a decade ago, the utility and energy industries evolved detailed pandemic plans, outlining what to know about the U.S. grid during outbreaks, which include putting off maintenance and routine activities until the worst of the pandemic has passed, restricting site access to essential personnel, and being able to run on a skeleton crew as more and more people become ill, a capability underscored by FPL's massive Irma response when crews faced prolonged outages.

One possible outcome of the current situation is that the US electric industry may require essential staff to live onsite at power plants and control centers, similar to Ontario work-site lockdown plans under consideration, if the outbreak worsens; bedding, food and other supplies are being stockpiled, reflecting local response preparations many utilities practice, Reuters reported. The Great River Energy cooperative, for example, has had a plan to sequester essential staff in place since the H1N1 bird flu crisis in 2009. The cooperative, which runs 10 power plants in Minnesota, says its disaster planning ensured it has enough cots, blankets and other necessities on site to keep staff healthy.

Electricity providers are now taking part in twice-weekly phone calls with officials at the DOE, the Department of Homeland Security, and other agencies, as Ontario demand shifts are monitored, according to the Los Angeles Times. By planning for a variety of worst case scenarios, including weeks-long restorations after major storms, “I have confidence that the sector will be prepared to respond no matter how this evolves,” says Scott Aaronson, VP of security and preparedness for the Edison Electric Institute.

 

Related News

View more

High Natural Gas Prices Make This The Time To Build Back Better - With Clean Electricity

Build Back Better Act Energy Savings curb volatile fossil fuel heating bills by accelerating electrification and renewable electricity, insulating households from natural gas, propane, and oil price spikes while cutting emissions and lowering energy costs.

 

Key Points

BBBA policies expand clean power and electrification to curb volatility, lower bills, and cut emissions.

✅ Tax credits for renewables, EVs, and efficient all-electric homes

✅ Shields households from natural gas, propane, and heating oil spikes

✅ Cuts methane, lowers bills, and improves grid reliability and jobs

 

Experts are forecasting serious sticker shock from home heating bills this winter. Nearly 60 percent of United States’ households heat their homes with fossil fuels, including natural gas, propane, or heating oil, and these consumers are expected to spend much more this winter because of fuel price increases.

That could greatly burden many families and businesses already operating on thin margins. Yet homes that use electricity for heating and cooking are largely insulated from the pain of volatile fuel markets, and they’re facing dramatically lower price increases as a result.

Projections say cost increases for households could range anywhere from 22% to 94% more, depending on the fuel used for heating and the severity of the winter temperatures. But the added expenditures for the 41% of U.S. households using electricity for heating are much less stark—these consumers will see only a 6% price increase on average. The projected fossil fuel price spikes are largely due to increased demand, limited supply, declining fuel stores, and shifting investment priorities in the face of climate change.

The fossil fuel industry is already seizing this moment to use high prices to persuade policymakers to vote against clean energy policies, particularly the Build Back Better Act (BBBA). Spokespeople with ties to the fossil fuel industry and some consumer groups are trying to pin higher fuel prices on the proposed legislation even before it has passed, even as analyses show the energy crisis is not spurring a green revolution on its own, let alone begun impacting fuel markets. But the claim the BBBA would cost Americans and the economy is false.

The facts tell a different story. Adopting smart climate policies and accelerating the clean energy transition are precisely the solutions to counter this vicious cycle by ending our dependance on volatile fossil fuels. The BBBA will ensure reliable, affordable clean electricity for millions of Americans, in line with a clean electricity standard many experts advocate—a key strategy for avoiding future vulnerability. Unlike fossil fuels subject to the whims of a global marketplace, wind and sunshine are always free. So renewable-generated electricity comes with an ultra-low fixed price decades into the future.

By expanding clean energy and electric vehicle tax credits, creating new incentives for efficient all-electric homes, and dedicating new funding for state and local programs, the BBBA provides practical solutions that build on lessons from Biden's climate law to protect Americans from price shocks, save consumers money, and reduce emissions fueling dangerous climate change.


What’s really causing the gas price spikes?
The U.S. Energy Information Administration’s winter 2021 energy price forecasts project that homes heated with natural gas, fuel oil, and propane will see average price increases of 30%, 43%, and 54%, respectively. Those who heat their homes with electricity, on the other hand, should expect a modest 6% increase. At the pump, drivers are seeing some of the highest gas prices in nearly a decade as the U.S. energy crisis ripples through electricity, gas, and EV markets today. And the U.S. is not alone. Countries around the globe are experiencing similar price jumps, including Britain's high winter energy costs this season.

A closer look confirms the cause of these high prices is not clean energy or climate policies—it’s fossil fuels themselves.  

First, the U.S. (and the world) are just now feeling the effects of the oil and gas industry’s reduced fuel production and spending due to the pandemic. COVID-19 brought the world’s economies to a screeching halt, and most countries have not returned to pre-COVID economic activity. During the past 20 months, the oil and gas industry curtailed its production to avoid oversupply as demand fell to all-time lows. Just as businesses were reopening, stored fuel was needed to meet high demand for cooling during 2021’s hottest summer on record, driving sky-high summer energy bills for many households. February’s Texas Big Freeze also disrupted gas distribution and production.

The world is moving again and demand for goods and services is rebounding to pre-pandemic levels. But even with higher energy demand, OPEC announced it would not inject more oil into the economy. Major oil companies have also held oil and gas spending flat in 2021, with their share of overall upstream spending at 25%, compared with nearly 40% in the mid-2010s. And as climate change threats loom in the financial world, investors are reducing their exposure to the risks of stranded assets, increasingly diversifying and divesting from fossil fuels. 

Second, despite strong and sustained growth for renewable energy, energy storage, and electric vehicles, the relatively slow pace to adopt fossil fuel alternatives at scale has left U.S. households and businesses tethered to an industry well-known for price volatility. Today, some oil drillers are using profits from higher gas prices to pay back debt and reward shareholders as demanded by investors, instead of increasing supply. Rising prices for a limited commodity in high demand is generating huge profits for many of the world’s largest companies at the expense of U.S. households.

Because 48% of homes use fossil gas for heating and another 10% heat with propane and fuel oil, more than half of U.S. households will feel the impact of rising prices on their home energy bills. One in four U.S. households continues to experience a high energy burden (meaning their energy expenses consume an inordinate amount of their income), including risks of pandemic power shut-offs that deepen energy insecurity, and many are still experiencing financial hardships exacerbated by the pandemic. Those with inefficient fossil-fueled appliances, homes, and cars will be hardest hit, and many families with fixed- and lower-incomes could be forced to choose between heat or other necessities.

We have the solutions—the BBBA will unlock their benefits for all households

Short-term band-aids may be enticing, but long-term policies are the only way out of this negative feedback loop. Clean energy and building electrification will prevent more costly disasters in the future, but they’re the very solutions the fossil fuel industry fights at every turn. All-electric homes and vehicles are a natural hedge against the price spikes we’re experiencing today since renewables are inherently devoid of fuel-related price fluctuations.

RMI analysis shows all-electric single-family homes in all regions of the country have lower energy bills than a comparable mixed fuel-homes (i.e., electricity and gas). Electric vehicles also save consumers money. Research from University of California, Berkeley and Energy Innovation found consumers could save a total of $2.7 trillion in 2050—or $1,000 per year, per household for the next 30 years—if we accelerate electric vehicle deployment in the coming decade.

The BBBA would help deliver these consumer savings by expanding and expediting clean energy, while ensuring equitable adoption among lower-income households and underserved communities. Extending and expanding clean energy tax credits; new incentives for electric vehicles (including used electric vehicles); and new incentives for energy efficient homes and all-electric appliances (and electrical upgrades) will reduce up-front costs and spur widespread adoption of all-electric homes, buildings, and cars.

A combination of grants, incentives, and programs will promote private sector investments in a decarbonized economy, while also funding and supporting state and local governments already leading the way. The BBBA also allocates dedicated funding and makes important modifications (such as higher rebate amounts and greater point-of-purchase availability) to ensure these technologies are available to low-income households, underserved urban and rural communities, tribes, frontline communities, and people living in multifamily housing.

Finally, the BBBA proposes to make oil and gas polluters pay for the harm they are causing to people’s health and the climate through a methane fee. This fee would cost companies less than 1% of their revenue, meaning the industry would retain over 99% of its profits. In return return we’d see substantial reductions of a powerful greenhouse gas and a healthier environment in communities living near fossil fuel production. These benefits also come with a stronger economy—Energy Innovation analysis shows the methane fee would create more than 70,000 jobs by 2050 and boost gross domestic product more than $250 billion from 2023 to 2050.

The facts speak for themselves. Gas prices are rising because of reasons totally unrelated to smart climate and clean energy policies, which research shows actually lower costs. For the first time in more than a decade, America has the opportunity to enact a comprehensive energy policy that will yield measurable savings to consumers and free us from oil and gas industry control over our wallets.

The BBBA will help the U.S. get off the fossil fuel rollercoaster and achieve a stable energy future, ensuring that today’s price spikes will be a thing of the past. Proving, once and for all, that the solution to our fossil fuel woes is not more fossil fuels.

 

Related News

View more

West Coast consumers won't benefit if Trump privatizes the electrical grid

BPA Privatization would sell the Bonneville Power Administration's transmission lines, raising FERC-regulated grid rates for ratepayers, impacting hydropower and the California-Oregon Intertie under the Trump 2018 budget proposal in the Pacific Northwest region.

 

Key Points

Selling Bonneville's transmission grid to private owners, raising rates and returns, shifting costs to ratepayers.

✅ Trump 2018 budget targets BPA transmission assets for sale.

✅ Higher capital costs, taxes, and profit would raise transmission rates.

✅ California-Oregon Intertie and hydropower flows face price impacts.

 

President Trump's 2018 budget proposal is so chock-full of noxious elements — replacing food stamps with "food boxes," drastically cutting Medicaid and Medicare, for a start — that it's unsurprising that one of its most misguided pieces has slipped under the radar.

That's the proposal to privatize the government-owned Bonneville Power Administration, which owns about three-quarters of the high-voltage electric transmission lines in a region that includes California, Washington state and Oregon, serving more than 13.5 million customers. By one authoritative estimate, any such sale would drive up the cost of transmission by 26%-44%.

The $5.2-billon price cited by the Trump administration, moreover, is nearly 20% below the actual value of the Bonneville grid — meaning that a private buyer would pocket an immediate windfall of $1.2 billion, at the expense of federal taxpayers and Bonneville customers.

Trump's plan for Portland, Ore.-based Bonneville is part of a larger proposal to sell off other government-owned electricity bodies, including the Colorado-based Western Area Power Administration and the Oklahoma-based Southwestern Power Administration. But Bonneville is by far the largest of the three, accounting for nearly 90% of the total $5.8 billion the budget anticipates collecting from the sales. The proposal is also part of the administration's

Both plans are said to be politically dead-on-arrival in Washington. But they offer a window into the thinking in the Trump White House.

"The word 'muddle' comes to mind," says Robert McCullough, a respected Portland energy consultant, referring to the justification for the privatization sale included in the Trump budget.

The White House suggests that selling the Bonneville grid would result in lower costs. But that narrative, McCullough wrote in a blistering assessment of the proposal, "displays a severe lack of understanding about the process of setting transmission rates."

McCullough's assessment is an update of a similar analysis he performed when the privatization scheme was first raised by the Trump administration last year. In that analysis issued in June, McCullough said the proposal "raises the question of why these valuable assets would be sold at a discount — and who would get the benefit of the discounted price."

The implications of a sale could be dire for Californians. Bonneville is the majority owner of the California-Oregon Intertie, an electrical transmission system that carries power, including Columbia River-generated hydropower and other clean-energy generation in British Columbia that supports the regional exchange, south to California in the summer and excess California generation to the Pacific Northwest in the winter.

But the idea has drawn fire throughout the region. When it was first broached last year, the Public Power Council, an association of utilities in the Northwest, assailed it as an apparent "transfer of value from the people of the Northwest to the U.S. Treasury," drawing parallels to Manitoba Hydro governance issues elsewhere.

The region's political leaders had especially harsh words for the idea this time around. "Oregonians raised hell last year when Trump tried to raise power bills for Pacific Northwesterners by selling off Bonneville Power, and yet his administration is back at it again," Sen. Ron Wyden (D-Ore.) said after the idea reappeared. "Our investment shouldn't be put up for sale to free up money for runaway military spending or tax cuts for billionaires." Sen. Maria Cantwell (D-Wash.) promised in a statement to work to "stop this bad idea in its tracks."

The notion of privatizing Bonneville predates the Trump administration; it was raised by Bill Clinton and again by George W. Bush, who thought the public would gain if the administration could sell its power at market rates. Both initiatives failed.

The same free-enterprise ideology underlies the Trump proposal. Privatizing the transmission lines "encourages a more efficient allocation of economic resources and mitigates unnecessary risk to taxpayers," the budget asserts. "Ownership of transmission assets is best carried out by the private sector where there are appropriate market and regulatory incentives."

But that's based on a misunderstanding of how transmission rates are set, McCullough says. Transmission is essentially a monopoly enterprise, with rates overseen by the Federal Energy Regulatory Commission based on the grid's costs, and with federal scrutiny of public utilities such as the TVA underscoring that oversight. There's very little in the way of market "incentives" involved in transmission, since no one has come forward to build a competing grid.

Those include the owners' cost of capital — which would be much higher for a private owner than a government agency, McCullough observes, as Hydro One investor uncertainty demonstrates in practice. A private owner, unlike the government-owned Bonneville, also would owe federal income taxes, which would be passed on to consumers.

Then there's the profit motive. Bonneville "currently sells and delivers its power at cost," McCullough wrote last year. "Under a private regime, an investor-owned utility would likely charge a higher rate of return, a pattern seen when UK network profits drew regulatory rebukes."

None of these considerations appears to have been factored into the White House budget proposal. "Either there's an unsophisticated person at the Office of Management and Budget thinking up these numbers himself," McCullough told me, "or there would seem to be ongoing negotiations with an unidentified third party." No such buyer has emerged in the past, however.

What's left is a blind faith in the magic of the market, compounded by ignorance about how the transmission market operates. Put it together, and there's reason to wonder if Trump is even serious about this plan.

 

Related News

View more

BC announces grid development, job creation

BC Hydro Power Pathway accelerates electrification with clean energy investments, new transmission lines, upgraded substations, and renewable projects like wind and solar, strengthening the grid, supporting decarbonization, and creating jobs across British Columbia's growing economy.

 

Key Points

A $36B, 10-year BC Hydro plan to expand clean power infrastructure, accelerate electrification, and support jobs.

✅ $36B for new lines, substations, dam upgrades, and distribution

✅ Supports 10,500-12,500 jobs per year across B.C.

✅ Adds wind and solar, leveraging hydro to balance renewables

 

BC Hydro is gearing up for a decade of extensive construction to enhance British Columbia's electrical system, supporting a burgeoning clean economy and community growth while generating new employment opportunities.

Premier David Eby emphasized the necessity of expanding the electrical system for industrial growth, residential needs, and future advancements. He highlighted the role of clean, affordable energy in reducing pollution, securing well-paying jobs, and fostering economic growth.

At the B.C. Natural Resources Forum in Prince George, Premier Eby unveiled a $36-billion investment plan for infrastructure projects in communities and regions and green energy solutions to provide clean, affordable electricity for future generations.

The Power Pathway: Building BC’s Energy Future, BC Hydro’s revised 10-year capital plan, involves nearly $36 billion in investments across the province from 2024-25 to 2033-34. This marks a 50% increase from the previous plan of $24 billion and includes a substantial rise in electrification and emissions-reduction projects (nearly $10 billion, up from $1 billion).

These upcoming construction projects are expected to support approximately 10,500 to 12,500 jobs annually. The plan is set to bolster and sustain BC Hydro’s capital investments as significant projects like Site C are near completion.

The plan addresses the increasing demand for electricity due to population and housing growth, industrial development, such as a major hydrogen project, and the transition from fossil fuels to clean electricity. Key projects include constructing new high-voltage transmission lines from Prince George to Terrace, building or expanding substations in high-growth areas, and upgrading dams and generating facilities for enhanced safety and efficiency.

Minister of Energy, Mines, and Low Carbon Innovation Josie Osborne stated that this plan aims to build a clean energy future and support EV charging expansion while creating construction jobs. With BC Hydro’s capital plan allocating almost $4 billion annually for the next decade, it will drive economic growth and ensure access to clean, affordable electricity.

BC Hydro aims to add new clean, renewable energy sources like wind and solar, while acknowledging power supply challenges that must be managed as capacity grows. B.C.’s hydroelectric dams, functioning as batteries, enable the integration of intermittent renewables into the grid, providing reliable backup.

Chris O’Riley, president and CEO of BC Hydro, said the grid is one of the world’s cleanest. The new $36 billion capital plan encompasses investments in generation assets, large transmission infrastructure, and local distribution networks.

In partnership with BC Hydro, Premier Eby also announced a new streamlined approval process to expedite electrification for high-demand industries and support job creation, complementing measures like the BC Hydro rebate and B.C. Affordability Credit that help households.

Minister of Environment and Climate Change Strategy George Heyman highlighted the importance of rapid electrification in collaboration with the private sector to achieve CleanBC climate goals by 2030, including corridor charging via the BC's Electric Highway, and maintain the competitiveness of B.C. industries. The new process will streamline approvals for industrial electrification projects, enhancing efficiency and funding certainty.

 

Related News

View more

Prevent Summer Power Outages

Summer Heatwave Electricity Shutoffs strain utilities and vulnerable communities, highlighting energy assistance, utility moratoriums, cooling centers, demand response, and grid resilience amid extreme heat, climate change, and rising air conditioning loads.

 

Key Points

Service disconnections for unpaid bills during extreme heat, risking vulnerable households and straining power grids.

✅ Moratoriums and flexible payment plans reduce shutoff risk.

✅ Cooling centers and assistance programs protect at-risk residents.

✅ Demand response, smart grids, and efficiency ease peak loads.

 

As summer temperatures soar, millions of people across the United States face the grim prospect of electricity shutoffs due to unpaid bills, as heat exacerbates electricity struggles for many families nationwide. This predicament highlights a critical issue exacerbated by extreme weather conditions and economic disparities.

The Challenge of Summer Heatwaves

Summer heatwaves not only strain power grids, as unprecedented electricity demand has shown, but also intensify energy consumption as households and businesses crank up their air conditioning units. This surge in demand places considerable stress on utilities, particularly in regions unaccustomed to prolonged heatwaves or lacking adequate infrastructure to cope with increased loads.

Vulnerable Populations

The threat of electricity shutoffs disproportionately affects vulnerable populations, including low-income households who face sky-high energy bills during extreme heat, elderly individuals, and those with underlying health conditions. Lack of access to air conditioning during extreme heat can lead to heat-related illnesses such as heat exhaustion and heatstroke, posing serious health risks.

Economic and Social Implications

The economic impact of electricity shutoffs extends beyond immediate discomfort, affecting productivity, food storage, and the ability to work remotely for those reliant on electronic devices, while rising electricity prices further strain household budgets. Socially, the inability to cool homes and maintain basic comforts strains community resilience and exacerbates inequalities.

Policy and Community Responses

In response to these challenges, policymakers and community organizations advocate for measures to prevent electricity shutoffs during heatwaves. Proposed solutions include extending moratoriums on shutoffs, informed by lessons from COVID-19 energy insecurity measures, implementing flexible payment plans, providing financial assistance to at-risk households, and enhancing communication about available resources.

Public Awareness and Preparedness

Raising public awareness about energy conservation during peak hours and promoting strategies to stay cool without overreliance on air conditioning are crucial steps towards mitigating electricity demand. Encouraging energy-efficient practices and investing in renewable energy sources also contribute to long-term resilience against climate-driven energy challenges.

Collaborative Efforts

Collaboration between government agencies, utilities, nonprofits, and community groups is essential in developing comprehensive strategies to safeguard vulnerable populations during heatwaves, especially when systems like the Texas power grid face renewed stress during prolonged heatwaves. By pooling resources and expertise, stakeholders can better coordinate emergency response efforts, distribute cooling centers, and ensure timely assistance to those in need.

Technology and Innovation

Advancements in smart grid technology and decentralized energy solutions offer promising avenues for enhancing grid resilience and minimizing disruptions during extreme weather events. These innovations enable more efficient energy management, demand response programs, and proactive monitoring of grid stability, though some utilities face summer supply-chain constraints that delay deployments.

Conclusion

As summer heatwaves become more frequent and severe, the risk of electricity shutoffs underscores the urgent need for proactive measures to protect vulnerable communities. By prioritizing equity, sustainability, and resilience in energy policy and practice, stakeholders can work towards ensuring reliable access to electricity, particularly during times of heightened climate vulnerability. Addressing these challenges requires collective action and a commitment to fostering inclusive and sustainable solutions that prioritize human well-being amid changing climate realities.

 

Related News

View more

Coal demand dropped in Europe over winter despite energy crisis

EU Winter Energy Mix 2022-2023 shows renewables, wind, solar, and hydro overtaking coal and gas, as demand fell amid high prices; Ember and IEA confirm lower emissions across Europe during the energy crisis.

 

Key Points

It describes Europe's winter power mix: reduced coal and gas, and record wind, solar, and hydro output.

✅ Coal generation fell 11% YoY; gas output declined even more.

✅ Renewables supplied 40%: wind, solar, and hydro outpaced fossil fuels.

✅ Ember and IEA confirm trends; mild winter tempered demand.

 

The EU burned less coal this winter during the energy crisis than in previous years, according to an analysis, quashing fears that consumption of the most polluting fossil fuel would soar as countries scrambled to find substitutes for lost supplies of Russian gas.

The study from energy think-tank Ember shows that between October 2022 and March 2023 coal generation fell 27 terawatt hours, or almost 11 per cent year on year, while gas generation fell 38 terawatt hours, as renewables crowded out gas and consumers cut electricity consumption in response to soaring prices.

Renewable energy supplies also rose, with combined wind and solar power and hydroelectric output outstripping fossil fuel generation for the first time, providing 40 per cent of all electricity supplies. The Financial Times checked Ember’s findings with the International Energy Agency, which said they broadly matched its own preliminary analysis of Europe’s electricity generation over the winter.

The study demonstrates that fears of a steep rebound in coal usage in Europe’s power mix were overstated, despite the continent’s worst energy crisis in 40 years following Russia’s full-scale invasion of Ukraine, even as stunted hydro and nuclear output in parts of Europe posed challenges.

While Russia slashed gas supplies to Europe and succeeded in boosting energy prices for consumers to record levels, the push by governments to rejuvenate old coal plants, including Germany's coal generation, to ensure the lights stayed on ultimately did not lead to increased consumption.

“With Europe successfully on the other side of this winter and major supply disruptions avoided, it is clear the threatened coal comeback did not materialise,” analysts at Ember said in the report.

“With fossil fuel generation down, EU power sector emissions during winter were the lowest they have ever been.”

Ember cautioned, however, that Europe had been assisted by a mild winter that helped cut electricity demand for heating and there was no guarantee of such weather next winter. Companies and households had also endured a lot of pain as a result of the higher prices that had led them to cut consumption, even though in some periods, such as the latest lockdown, power demand held firm in parts of Europe.

Total electricity consumption between October and March declined 94 terawatt hours, or 7 per cent, compared with the same period in winter 2021/22, continuing post-Covid transition dynamics across Europe.

“For a lot of people this winter was really hard with electricity prices that were extraordinarily high and we shouldn’t lose sight of that,” said Ember analyst Harriet Fox.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified