Consumers in Power Markets Will Soon Change the Industry


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today

Consumer-Driven Power Markets are reshaping electricity with transactive energy, demand response, DERs like rooftop solar, storage, and EVs, altering wholesale-retail dynamics, pricing, and regulation while spawning new business models and competition.

 

Key Points

Markets where consumers trade electricity via transactive energy and DERs, reshaping pricing and grid operations.

✅ Transactive energy and peer-to-peer trading emerge

✅ DERs: solar, storage, EVs enable prosumer participation

✅ Regulatory, pricing, and investment models face conflicts

 

MCLEAN, VIRGINIA - The role of consumers as competitive suppliers in power markets will greatly increase in the near future.This will significantly change the electricity industry, creating new business models and intensifying electricity competition and conflict. The electric power industry and its regulators will need to confront these changes now and make smart—but difficult—decisions in order for businesses to survive and thrive.

Markets that enable consumers to buy and sell electricity are being created across the country. Consumer participation in these markets will have profound impacts on the business of electricity and will set up new competitions and conflicts.

Consumers empowered by new technologies are seeking to take advantage of opportunities in these markets. Demand response, solar energy and other types of on-site generation, energy storage, electric vehicles, and the internet are combining to create these significant new opportunities as utility trends accelerate across the sector.

A new report by Bluewave Resources, LLC, “Rising Power: How Customer Participation in Power Markets Will Change the Electricity Business,” explores the power markets of the future and the business models that will be created for those markets.

Several types of markets are being created, including “transactive energy” markets in which consumers trade among themselves. These markets will be very different from today’s markets for consumer solar-generated electricity in that prices will be set by market conditions, not by regulators.

Jeff Price, Managing Partner of Bluewave, said, “Policy makers, regulators, and industry must make numerous difficult but crucial decisions as customer participation increases. Recent intense disputes over federal versus state jurisdiction and the price paid to homeowners for solar-panel-generated electricity are just the beginning of the disputes that are likely to arise.”

One critical issue sure to arise is how the many consumers who do not participate in these markets will be impacted. Different state retail markets in the same wholesale power market could also easily create a market reshuffle and significant disputes.

The report describes 21 business models and variations that could emerge in future power markets, including how utility revenue might evolve when electricity is effectively free in some scenarios. How these business models will perform will depend on as-yet unmade decisions, difficult-to-predict market conditions, and customer behaviors.

Electric distribution will need to change considerably. All this will require increased investment even as electricity demand is flat, pressuring traditional utility finances.
Where will this investment come from and who will pay?

The electric power industry is on the verge of major change. Smart but difficult decisions by both
government and industry will need to be made soon. Lack of decisions could weaken state
regulation, create further disputes, and seriously challenge the entire electric power industry.

Related News

‘Tsunami of data’ could consume one fifth of global electricity by 2025

ICT Electricity Demand is surging as data centers, 5G, IoT, and server farms expand, straining grids, boosting carbon emissions, and challenging climate targets unless efficiency, renewable energy, and smarter cooling dramatically improve.

 

Key Points

ICT electricity demand is power used by networks, devices, and data centers across the global communications sector.

✅ Projected to reach up to 20 percent of global electricity by 2025

✅ Driven by data centers, 5G traffic, IoT, and high-res streaming

✅ Mitigation: efficiency, renewable PPAs, advanced cooling, workload shifts

 

The communications industry could use 20% of all the world’s electricity by 2025, hampering attempts to meet climate change targets, even as countries like New Zealand's electrification plans seek broader decarbonization, and straining grids as demand by power-hungry server farms storing digital data from billions of smartphones, tablets and internet-connected devices grows exponentially.

The industry has long argued that it can considerably reduce carbon emissions by increasing efficiency and reducing waste, but academics are challenging industry assumptions. A new paper, due to be published by US researchers later this month, will forecast that information and communications technology could create up to 3.5% of global emissions by 2020 – surpassing aviation and shipping – and up to 14% 2040, around the same proportion as the US today.

Global computing power demand from internet-connected devices, high resolution video streaming, emails, surveillance cameras and a new generation of smart TVs is increasing 20% a year, consuming roughly 3-5% of the world’s electricity in 2015, says Swedish researcher Anders Andrae.

In an update o a 2016 peer-reviewed study, Andrae found that without dramatic increases in efficiency, the ICT industry could use 20% of all electricity and emit up to 5.5% of the world’s carbon emissions by 2025. This would be more than any country, except China, India and the USA, where China's data center electricity use is drawing scrutiny.

He expects industry power demand to increase from 200-300 terawatt hours (TWh) of electricity a year now, to 1,200 or even 3,000TWh by 2025. Data centres on their own could produce 1.9 gigatonnes (Gt) (or 3.2% of the global total) of carbon emissions, he says.

“The situation is alarming,” said Andrae, who works for the Chinese communications technology firm Huawei. “We have a tsunami of data approaching. Everything which can be is being digitalised. It is a perfect storm. 5G [the fifth generation of mobile technology] is coming, IP [internet protocol] traffic is much higher than estimated, and all cars and machines, robots and artificial intelligence are being digitalised, producing huge amounts of data which is stored in data centres.”

US researchers expect power consumption to triple in the next five years as one billion more people come online in developing countries, and the “internet of things” (IoT), driverless cars, robots, video surveillance and artificial intelligence grows exponentially in rich countries.

The industry has encouraged the idea that the digital transformation of economies and large-scale energy efficiencies will slash global emissions by 20% or more, but the scale and speed of the revolution has been a surprise.

Global internet traffic will increase nearly threefold in the next five years says the latest Cisco Visual Networking Index, a leading industry tracker of internet use.

“More than one billion new internet users are expected, growing from three billion in 2015 to 4.1bn by 2020. Over the next five years global IP networks will support up to 10bn new devices and connections, increasing from 16.3bn in 2015 to 26bn by 2020,” says Cisco.

A 2016 Berkeley laboratory report for the US government estimated the country’s data centres, which held about 350m terabytes of data in 2015, could together need over 100TWh of electricity a year by 2020. This is the equivalent of about 10 large nuclear power stations.

Data centre capacity is also rocketing in Europe, where the EU's plan to double electricity use by 2050 could compound demand, and Asia with London, Frankfurt, Paris and Amsterdam expected to add nearly 200MW of consumption in 2017, or the power equivalent of a medium size power station.

“We are seeing massive growth of data centres in all regions. Trends that started in the US are now standard in Europe. Asia is taking off massively,” says Mitual Patel, head of EMEA data centre research at global investment firm CBRE.

“The volume of data being handled by such centres is growing at unprecedented rates. They are seen as a key element in the next stage of growth for the ICT industry”, says Peter Corcoran, a researcher at the university of Ireland, Galway.

Using renewable energy sounds good but no one else benefits from what will be generated, and it skews national attempts to reduce emissions

Ireland, which with Denmark is becoming a data base for the world’s biggest tech companies, has 350MW connected to data centres but this is expected to triple to over 1,000MW, or the equivalent of a nuclear power station size plant, in the next five years.

Permission has been given for a further 550MW to be connected and 750MW more is in the pipeline, says Eirgrid, the country’s main grid operator.

“If all enquiries connect, the data centre load could account for 20% of Ireland’s peak demand,” says Eirgrid in its All-Island Generation Capacity Statement 2017-2026  report.

The data will be stored in vast new one million square feet or larger “hyper-scale” server farms, which companies are now building. The scale of these farms is huge; a single $1bn Apple data centre planned for Athenry in Co Galway, expects to eventually use 300MW of electricity, or over 8% of the national capacity and more than the daily entire usage of Dublin. It will require 144 large diesel generators as back up for when the wind does not blow.

 Facebook’s Lulea data centre in Sweden, located on the edge of the Arctic circle, uses outside air for cooling rather than air conditioning and runs on hydroelectic power generated on the nearby Lule River. Photograph: David Levene for the Guardian

Pressed by Greenpeace and other environment groups, large tech companies with a public face , including Google, Facebook, Apple, Intel and Amazon, have promised to use renewable energy to power data centres. In most cases they are buying it off grid but some are planning to build solar and wind farms close to their centres.

Greenpeace IT analyst Gary Cook says only about 20% of the electricity used in the world’s data centres is so far renewable, with 80% of the power still coming from fossil fuels.

“The good news is that some companies have certainly embraced their responsibility, and are moving quite aggressively to meet their rapid growth with renewable energy. Others are just growing aggressively,” he says.

Architect David Hughes, who has challenged Apple’s new centre in Ireland, says the government should not be taken in by the promises.

“Using renewable energy sounds good but no one else benefits from what will be generated, and it skews national attempts to reduce emissions. Data centres … have eaten into any progress we made to achieving Ireland’s 40% carbon emissions reduction target. They are just adding to demand and reducing our percentage. They are getting a free ride at the Irish citizens’ expense,” says Hughes.

Eirgrid estimates indicate that by 2025, one in every 3kWh generated in Ireland could be going to a data centre, he added. “We have sleepwalked our way into a 10% increase in electricity consumption.”

Fossil fuel plants may have to be kept open longer to power other parts of the country, and manage issues like SF6 use in electrical equipment, and the costs will fall on the consumer, he says. “We will have to upgrade our grid and build more power generation both wind and backup generation for when the wind isn’t there and this all goes onto people’s bills.”

Under a best case scenario, says Andrae, there will be massive continuous improvements of power saving, as the global energy transition gathers pace, renewable energy will become the norm and the explosive growth in demand for data will slow.

But equally, he says, demand could continue to rise dramatically if the industry keeps growing at 20% a year, driverless cars each with dozens of embedded sensors, and cypto-currencies like Bitcoin which need vast amounts of computer power become mainstream.

“There is a real risk that it all gets out of control. Policy makers need to keep a close eye on this,” says Andrae.

 

Related News

View more

Federal government spends $11.8M for smart grid technology in Sault Ste. Marie

Sault Ste. Marie Smart Grid Investment upgrades PUC Distribution infrastructure with federal funding, clean energy tech, outage reduction, customer insights, and reliability gains, creating 140 jobs and attracting industry to a resilient, efficient grid.

 

Key Points

A federally funded PUC Distribution project to modernize the citywide grid, cut outages, boost efficiency, and create jobs.

✅ $11.8M federal funding to PUC Distribution

✅ Citywide smart grid cuts outages and energy loss

✅ 140 jobs; attracts clean tech and industry

 

PUC Distribution Inc. in Sault Ste. Marie is receiving $11.8 million from the federal government to invest in infrastructure, as utilities nationwide have faced pandemic-related losses that underscore the need for resilient systems.

The MP for the riding, Terry Sheehan, made the announcement on Monday.

The money will go to the utility's smart grid project, where technologies like a centralized SCADA system can enhance situational awareness and control.

"This smart grid project offers a glimpse into our clean energy future and represents a new wave of economic activity for the region," Sheehan said.

"Along with job creation, new industries will be attracted to a modern grid, supported by stable electricity pricing that helps competitiveness, all while helping the environment."

His office says the investment will allow the utility to reduce outages, provide more information to customers to help make smarter electricity use choices, aligned with Ontario's energy-efficiency programs that encourage conservation, and offer more services.

"This is an innovative project that makes Sault Ste. Marie a leader," mayor Christian Provenzano said.

"We will be the first city in our country to implement a community-wide smart grid. Once it is complete, the smart grid will make our energy infrastructure more reliable, reduce energy loss and lead to a more innovative economy for our community."

The project will also create 140 new jobs.

"As a community-focused utility, we are always looking for innovative ways to help our customers save money amid concerns about hydro disconnections during winter, and reduce their carbon footprint," Rob Brewster, president and CEO of PUC Distribution said.

"The investment the government has made in our community will not only help modernize our city's electrical distribution system [as] once the project is complete, Sault Ste. Marie will have access to an electricity grid that can handle the growing demands of a city in the 21st century."

 

Related News

View more

Yale Report on Western Grid Integration: Just Say Yes

Western Grid Integration aligns CAISO with a regional transmission operator under FERC oversight, boosting renewables, reliability, and cost savings while respecting state energy policy, emissions goals, and utility regulation across the West.

 

Key Points

Western Grid Integration lets CAISO operate under FERC to cut costs, boost reliability, and accelerate renewables.

✅ Lowers wholesale costs via wider dispatch and resource sharing

✅ Improves reliability with regional balancing and reserves

✅ Preserves state policy authority under FERC oversight

 

A strong and timely endorsement for western grid integration forcefully rebuts claims that moving from a balkanized system with 38 separate entities to a regional operation could introduce environmental problems, raise costs, or, as critics warn, export California’s energy policies to other western states, or open state energy and climate policies to challenge by federal regulators. In fact, Yale University’s Environmental Protection Clinic identifies numerous economic and environmental benefits from allowing the California Independent System Operator to become a regional grid operator.

The groundbreaking report comprehensively examines the policy and legal merits of allowing the California Independent System Operator (CAISO) to become a regional grid operator, open to any western utility or generator that wants to join, as similar market structure overhauls proceed in New England.

The Yale report identifies the increasing constraints that today’s fragmented western grid imposes on system-wide electricity costs and reliability, addresses the potential benefits of integration, and evaluates  potential legal risks for the states involved. California receives particular attention because its legislature is considering the first step in the grid integration process, which involves authorizing the CAISO to create a fully independent board, even as it examines revamping electricity rates to clean the grid (other western states are unlikely to approve joining an entity whose governance is determined solely by California’s governor and legislature, as is the case now).

 

Elements of the report

The analysis examined all of California’s key energy and climate policies, from its cap on carbon emissions to its renewable energy goals and its pollution standards for power plants, and concludes that none would face additional legal risks under a fully integrated western grid. The operator of such a grid would be regulated by an independent federal agency (the Federal Energy Regulatory Commission)—but so is the CAISO itself, now and since its inception, by virtue of its extended involvement in interstate electricity commerce throughout the West. 

And if empowered to serve the entire region, the CAISO would not interfere with the longstanding rights of California and other states to regulate their utilities’ investments or set energy and climate policies. The study points out that grid operators don’t set energy policies for the states they serve; they help those states minimize costs, enhance reliability in the wake of California blackouts across the state, and avoid unnecessary pollution.

And as to whether an integrated grid would help renewable energy or fossil fuels, the report finds that renewable resources would be the inevitable winners, thanks to their lower operating costs, although the most important winners would be western utility customers, through lower bills, expanded retail choice options, and improved reliability.

 

Call to action

The Yale report concludes with what amounts to a call to action for California’s legislators:

“In sum, enhanced Western grid integration in general, and the emergence of a regional system operator in particular, would not expose California’s clean energy policies to additional legal risks. Shifting to a regional grid operator would enable more efficient, affordable and reliable integration of renewable resources without increasing the legal risk to California’s clean energy policies.”

The authors of the analysis, from the Yale Law School and the Yale School of Forestry and Environmental Studies, are Juliana Brint, Josh Constanti, Franz Hochstrasser. and Lucy Kessler. They dedicated months to the project, consulted with a diverse group of reviewers, and made the trek from New Haven to Folsom, CA, to visit the California Independent System Operator and interview key staff members.

 

 

Related News

View more

Manitoba Hydro hikes face opposition as hearings begin

Manitoba Hydro rate hikes face public hearings over electricity rates, utility bills, and debt, with impacts on low-income households, Indigenous communities, and Winnipeg services amid credit rating pressure and rising energy costs.

 

Key Points

Manitoba Hydro seeks 7.9% annual increases to stabilize finances and debt, impacting electricity costs for households.

✅ Proposed hikes: 7.9% yearly through 2023/24

✅ Driven by debt, credit rating declines, rising interest

✅ Disproportionate impact on low-income and Indigenous communities

 

Hearings began Monday into Manitoba Hydro’s request for consecutive annual rate hikes of 7.9 per cent.  The crown corporation is asking for the steep hikes to commence April 1, 2018.

The increases would continue through 2023/2024, under a multi-year rate plan before dropping to what Hydro calls “sustainable” levels.

Patti Ramage, legal counsel for Hydro, said while she understands no one welcomes the “exceptional” rate increases, the company is dealing with exceptional circumstances.

It’s the largest rate increase Hydro has ever asked for, though a scaled-back increase was discussed later, saying rising debt and declining credit ratings are affecting its financial stability.

President and CEO Kelvin Shepherd said Hydro is borrowing money to fund its interest payments, and acknowledged that isn’t an effective business model.

Hydro’s application states that it will be spending up to 63 per cent of its revenue on paying financial expenses if the current request for rate hikes is not approved.

If it does get the increase it wants, that number could shrink to 45 per cent – which Ramage says is still quite high, but preferable to the alternative.

She cited the need to take immediate action to fix Hydro’s finances instead of simply hoping for the best.

“The worst thing we can do is defer action… that’s why we need to get this right,” Ramage said.

A number of intervenors presented varying responses to Hydro’s push for increased rates, with many focusing on how the hikes would affect Manitobans with lower incomes.

Senwung Luk spoke on behalf of the Assembly of Manitoba Chiefs, and said the proposed rates would hit First Nations reserves particularly hard.

He noted that 44.2 per cent of housing on reserves in the province needs significant improvement, which means electricity use tends to be higher to compensate for the lower quality of infrastructure.

Luk says this problem is compounded by the higher rates of poverty in Indigenous populations, with 76 per cent of children on reserves in Manitoba living below the poverty line.

If the increase goes forward, he said the AMC hopes to see a reduced rate for those living on reserves, despite a recent appeal court ruling on such pricing.

Byron Williams, speaking on behalf of the Consumers Coalition, said the 7.9 per cent increase unreasonably favours the interests of Hydro, and is unjustly biased against virtually everyone else.

In Saskatchewan, the NDP criticized an SaskPower 8 per cent rate hike as unfair to customers, highlighting regional concerns.

Williams said customers using electric space heating would be more heavily targeted by the rate increase, facing an extra $13.14 a month as opposed to the $6.88 that would be tacked onto the bills of those not using electric space heating.

Williams also called Hydro’s financial forecasts unreliable, bringing the 7.9 per cent figure into question.

Lawyer George Orle, speaking for the Manitoba Keewatinowi Okimakanak, said the proposed rate hikes would “make a mockery” of the sacrifices made by First Nations across the province, given that so much of Hydro’s infrastructure is on Indigenous land.

The city of Winnipeg also spoke out against the jump, saying property taxes could rise or services could be cut if the hikes go ahead to compensate for increased, unsustainable electricity costs.

In British Columbia, a BC Hydro 3 per cent increase also moved forward, drawing attention to affordability.

A common theme at the hearing was that Hydro’s request was not backed by facts, and that it was heading towards fear-mongering.

Manitoba Hydro’s CEO begged to differ as he plead his case during the first hearing of a process that is expected to take 10 weeks.

 

Related News

View more

Canada’s Opportunity in the Global Electricity Market

Canada Clean Electricity Exports leverage hydroelectric power, energy storage, and transmission interconnections to meet rising IEA-forecast demand, support electrification, decarbonize grids, and attract green finance with stable policy and advanced technology.

 

Key Points

Canada's cross-border power sales from hydro and renewables, enabled by storage, transmission, and supportive policy.

✅ Hydro leads generation; expand transmission interties to the US

✅ Deploy storage to balance wind and solar variability

✅ Streamline regulation and green finance to scale exports

 

As global electricity demand continues to surge, Canada finds itself uniquely positioned to capitalize on this expanding market by choosing an electric, connected and clean pathway that scales with demand. With its vast natural resources, advanced technology, and stable political environment, Canada can play a crucial role in meeting the world’s energy needs while also advancing its own economic interests.

The International Energy Agency (IEA) has projected that global electricity demand will grow significantly over the next decade, driven by factors such as population growth, urbanization, and the increasing electrification of various sectors, including transportation and industry. This presents a golden opportunity for Canada to bolster its energy security as it boasts an abundance of renewable energy sources, particularly hydroelectric power. Currently, hydroelectricity accounts for about 60% of Canada’s total electricity generation, making it one of the largest producers of this clean energy source in the world.

The growing emphasis on renewable energy aligns perfectly with Canada’s strengths, with the Prairie Provinces emerging as leaders in new wind and solar capacity across the country. As countries worldwide strive to reduce their carbon footprints and transition to greener energy solutions, Canada’s clean energy resources can be harnessed not only to meet domestic needs but also to export electricity to neighboring countries and beyond. The U.S., for instance, is already a significant market for Canadian electricity, with interconnections facilitating the flow of power across borders. Expanding these connections and investing in infrastructure could further increase Canada’s electricity exports.

Moreover, advancements in energy storage technology present another avenue for Canada to enhance its role in the global electricity market. With the rise of intermittent energy sources like wind and solar, the ability to store excess electricity generated during peak production times becomes essential. Canada’s expertise in technology and innovation positions it well to develop and deploy energy storage solutions that can stabilize the grid through grid modernization projects and ensure a reliable supply of electricity.

Additionally, Canada’s commitment to reducing greenhouse gas emissions and combating climate change aligns with the global shift towards sustainable energy. By investing in renewable energy projects and supporting research and development, Canada can not only meet its climate targets, including zero-emissions electricity by 2035, but also attract international investment. Green financing initiatives are becoming increasingly popular, and Canada can leverage its reputation as a leader in environmental stewardship to tap into this growing market.

However, to fully realize these opportunities, Canada must address some key challenges. Regulatory hurdles, infrastructure limitations, and the need for a coordinated national energy strategy are critical issues that must be navigated. Streamlining regulations and fostering collaboration between federal and provincial governments will be essential in creating a conducive environment for investment in renewable energy projects.

Furthermore, public acceptance and community engagement are vital components of developing new energy projects, especially where solar power adoption lags and outreach is needed. Ensuring that local communities benefit from these initiatives—whether through job creation, economic investment, or shared revenues—will help garner support and facilitate smoother project implementation.

In addition to domestic efforts, Canada should also position itself as a global leader in energy diplomacy. By collaborating with other nations to share best practices, technologies, and resources, Canada can strengthen its influence in international energy discussions. Engaging in multilateral initiatives aimed at addressing energy poverty and promoting sustainable development will not only enhance Canada’s standing on the world stage but also open doors for Canadian companies to expand their reach.

In conclusion, as the global demand for electricity rises, Canada stands at a crossroads, with a tremendous opportunity to lead in the clean energy sector. By leveraging its natural resources, investing in technology, and fostering international partnerships, Canada can not only meet its energy needs but also pursue zero-emission electricity by 2035 while positioning itself as a key player in the global electricity market. The path forward will require strategic planning, investment, and collaboration, but the potential rewards are significant—both for Canada and the planet.

 

Related News

View more

Tesla’s Powerwall as the beating heart of your home

GMP Tesla Powerwall Program replaces utility meters with smart battery storage, enabling virtual power plant services, demand response, and resilient homes, integrating solar readiness, EV charging support, and smart grid controls across Vermont households.

 

Key Points

Green Mountain Power uses Tesla Powerwalls as smart meters, creating a VPP for demand response and home backup.

✅ $30 monthly for 10 years or $3,000 upfront for two units

✅ Utility controls batteries for peak shaving and demand response

✅ Enables backup power, solar readiness, and EV charging support

 

There are more than 100 million single-family homes in the United States of America. If each of these homes were to have two 13.5 kWh Tesla Powerwalls, that would total 2.7 Terawatt-hours worth of electricity stored. Prior research has suggested that this volume of energy storage could get us halfway to the 5.4 TWh of storage needed to let the nation get 80% of its electricity from solar and wind, as states like California increasingly turn to grid batteries to support the transition.

Vermont utility Green Mountain Power (GMP) seeks to remove standard electric utility metering hardware and replace it with the equipment inside of a Tesla Powerwall, as part of a broader digital grid evolution underway. Mary Powell, President and CEO of Green Mountain Power, says, “We have a vision of a battery system in every single home” and they’ve got a patent pending software solution to make it happen.

The Resilient Home program will install two standard Tesla Powerwalls each in 250 homes in GMP’s service area. The homeowner will pay either $30 a month for ten years ($3,600), or $3,000 up front. At the end of the ten year period, payments end, but the unit can stay in the home for an additional five years – or as long as it has a usable life.

A single Powerwall costs approximately $6,800, making this a major discount.

GMP notes that the home must have reliable internet access to allow GMP and Tesla to communicate with the Powerwall. GMP will control the functions of the Powerwall, effectively operating a virtual power plant across participating homes, expanding the scope of programs like those that saved the state’s ratepayers more than $500,000 during peak demand events last year. The utility specifically notes that customers agree to share stored energy with GMP on several peak demand days each year.

The hardware can be designed to interact with current backup generators during power outages, or emerging fuel cell solutions that maintain battery charge longer during extended outages, however, the units will not charge from the generator. As noted the utility will be making use of the hardware during normal operating times, however, during a power outage the private home owner will be able to use the electricity to back up both their house and top off their car.

The utility told pv magazine USA that the Powerwalls are standard from the factory, with GMP’s patent pending software solution being the special sauce (has a hint of recent UL certifications). GMP said the program will also get home owners “adoption ready” for solar power, including microgrid energy storage markets, and other smart devices.

Sonnen’s ecoLinx is already directly interacting with a home’s electrical panel (literally throwing wifi enabled circuit breakers). Now with Tesla Powerwalls being used to replace utility meters, we see one further layer of integration that will lead to design changes that will drive residential solar toward $1/W. Electric utilities are also experimenting with controlling module level electronics and smart solar inverters in 100% residential penetration situations. And of course, considering that California is requiring solar – and probably storage in the future – in all new homes, we should expect to see further experimentation in this model. Off grid solar inverter manufacturers already include electric panels with their offerings.

If we add in the electric car, and have vehicle-to-grid abilities, we start to see a very strong amount of electricity generation and energy storage, helping to keep the lights on during grid stress, potentially happening in more than 100 million residential power plants. Resilient homes indeed.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.