BC's Kootenay Region makes electric cars a priority


Kootenay electric cars

Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today

Accelerate Kootenays EV charging stations expand along Highway 3, adding DC fast charging and Level 2 plugs to cut range anxiety for electric vehicles in B.C., linking communities like Castlegar, Greenwood, and the Alberta border.

 

Key Points

A regional network of DC fast and Level 2 chargers along B.C.'s Highway 3 to reduce range anxiety and boost EV adoption.

✅ 13 DC fast chargers plus 40 Level 2 stations across key hubs

✅ 20-minute charging stops reduce range anxiety on Highway 3

✅ Backed by BC Hydro, FortisBC, and regional districts

 

The Kootenays are B.C.'s electric powerhouse, and as part of B.C.'s EV push the region is making significant advances to put electric cars on the road.

The region's dams generate more than half of the province's electricity needs, but some say residents in the region have not taken to electric cars, for instance.

Trish Dehnel is a spokesperson for Accelerate Kootenays, a multi-million dollar coalition involving the regional districts of East Kootenay, Central Kootenay and Kootenay Boundary, along with a number of corporate partners including Fortis B.C. and BC Hydro.

She says one of the major problems in the region — in addition to the mountainous terrain and winter driving conditions — is "range anxiety."

That's when you're not sure your electric vehicle will be able to make it to your destination without running out of power, she explained.

Now, Accelerate Kootenays is hoping a set of new electric charging stations, part of the B.C. Electric Highway project expanding along Highway 3, will make a difference.

 

No more 'range anxiety'

The expansion includes 40 Level 2 stations and 13 DC Quick Charging stations, mirroring BC Hydro's expansion across southern B.C. strategically located within the region to give people more opportunities to charge up along their travel routes, Dehnel said.

"We will have DC fast-charging stations in all of the major communities along Highway 3 from Greenwood to the Alberta border. You will be able to stop at a fast-charging station and, thanks to faster EV charging technology, charge your vehicle within 20 minutes," she said.

Castlegar car salesman Terry Klapper — who sells the 2017 Chevy Bolt electric vehicle — says it's a great step for the region as sites like Nelson's new fast-charging station come online.

"I guarantee that you'll be seeing electric cars around the Kootenays," he said.

"The interest the public has shown … [I mean] as soon as people found out we had these Bolts on the lot, we've had people coming in every single day to take a look at them and say when can I finally purchase it."

The charging stations are set to open by the end of next year.

 

Related News

Related News

YVR welcomes government funding for new Electric Vehicle Chargers

YVR EV Charging Infrastructure Funding backs new charging stations at Vancouver International Airport via ZEVIP and CleanBC Go Electric, supporting Net Zero 2030 with Level 2 and DC fast charging across Sea Island.

 

Key Points

A federal and provincial effort to expand EV charging at YVR, accelerating airport electrification toward Net Zero 2030.

✅ Up to 74 new EV charging outlets across Sea Island by 2025

✅ Funded through ZEVIP and CleanBC Go Electric programs

✅ Supports passengers, partners, and YVR fleet electrification

 

Vancouver International Airport (YVR) welcomes today’s announcement from the Government of Canada, which confirms new federal funding under Natural Resource Canada’s Zero Emission Vehicle Infrastructure Program (ZEVIP) and broader zero-emission vehicle incentives for essential infrastructure at the airport that will further enable YVR to achieve its climate targets.

This federal funding, combined with funding through the Government of British Columbia’s CleanBC Go Electric program, which includes EV charger rebates, will support the installation of up to 74 additional Electric Vehicle (EV) Charging outlets across Sea Island over the next three years. EV charging infrastructure is identified as a key priority in the airport’s Roadmap to Net Zero 2030. It is also an important part of its purpose in being a Gateway to the New Economy.

“We know that our passengers’ needs and expectations are changing as EV adaptation increases across our region and policies like the City’s EV-ready requirements take hold, we are always working hard to anticipate and exceed these expectations and provide world-class amenities at our airport,” said Tamara Vrooman, President & CEO, Vancouver Airport Authority.

This airport initiative is among 26 projects receiving $19 million under ZEVIP, which assists organizations as they adapt to the Government of Canada’s mandatory target for all new light-duty cars and passenger trucks to be zero-emission by 2035, and to provincial momentum such as B.C.'s EV charging expansion across the network.

“We are grateful to have found partners at all levels of government as we take bold action to become the world’s greenest airport. Not only will this critical funding support us as we work to the complete electrification of our airport operations, and as regional innovations like Harbour Air’s electric aircraft demonstrate what’s possible, but it will help us in our role supporting the mutual needs of our business partners related to climate action,” Vrooman continued.

These new EV Charging stations are planned to be installed by 2025, and will provide electricity to the YVR fleet, commercial and business partners’ vehicles, as well as passengers and the public, complementing BC Hydro’s expanding charging network in southern B.C. Currently, YVR provides 12 free electric vehicle charging stalls (Level Two) at its parking facilities, as well as one DC fast-charging stall.

This exciting announcement comes on the heels of the Province of BC’s Integrated Marketplace Initiative (IMI) pilot program in November 2022, a partnership between YVR and the Province of British Columbia to invest up to 11.5 million to develop made-in-BC clean-tech solutions for use at the airport, and related programs offering home and workplace charging rebates are accelerating adoption.

 

Related News

View more

Elon Musk says cheaper, more powerful electric vehicle batteries are 3 years off

Tesla Battery Day Innovations detail larger cylindrical EV cells with higher energy density, greater power, longer range, cobalt-free chemistry, automated manufacturing, battery recycling, and lower cost per kWh to enable an affordable electric car.

 

Key Points

Tesla Battery Day innovations are new EV cells and methods to cut costs, extend range, and scale production.

✅ Larger cylindrical cells: 5x energy, 6x power, 16% more range

✅ Automation and recycling to cut battery cost per kWh

✅ Near-zero cobalt chemistry, in-house cell factories worldwide

 

Elon Musk described a new generation of electric vehicle batteries that will be more powerful, longer lasting, and half as expensive as the company’s current cells at Tesla’s “Battery Day”.

Tesla’s new larger cylindrical cells will provide five times more energy, six times more power and 16% greater driving range, Musk said, adding that full production is about three years away.

“We do not have an affordable car. That’s something we will have in the future. But we’ve got to get the cost of batteries down,” Musk said.

To help reduce cost, Musk said Tesla planned to recycle battery cells at its Nevada “gigafactory,” while reducing cobalt – one of the most expensive battery materials – to virtually zero. It also plans to manufacture its own battery cells at several highly automated factories around the world.

The automaker plans to produce the new cells via a highly automated, continuous-motion assembly process, according to Drew Baglino, Tesla senior vice-president of powertrain and energy engineering, a contrast with GM and Ford battery strategies in the broader market today.

Speaking at the event, during which Musk outlined plans to cut costs and reiterated a huge future for Tesla's energy business during the presentation, the CEO acknowledged that Tesla does not have its new battery design and manufacturing process fully complete.

The automaker’s shares slipped as Musk forecast the change could take three years. Tesla has frequently missed production targets.

Tesla expects to eventually be able to build as many as 20m electric vehicles a year, aligning with within-a-decade EV adoption outlooks cited by analysts. This year, the entire auto industry expects to deliver 80m cars globally.

At the opening of the event, which drew over 270,000 online viewers, Musk walked on stage as about 240 shareholders – each sitting in a Tesla Model 3 in the company parking lot – honked their car horns in approval.

As automakers shift from horsepower to kilowatts to comply with stricter environmental regulations amid an age of electric cars that appears ahead of schedule, investors are looking for evidence that Tesla can increase its lead in electrification technology over legacy automakers who generate most of their sales and profits from combustion-engine vehicles.

While average electric vehicle prices have decreased in recent years thanks to changes in battery composition and evidence that they are better for the planet and household budgets, they are still more expensive than conventional cars, with the battery estimated to make up a quarter to a third of an electric vehicle’s cost.

Some researchers estimate that price parity, or the point at which electric vehicles are equal in value to internal combustion cars, is reached when battery packs cost $100 per kilowatt hour (kWh), a potential inflection point for mass adoption.

Tesla’s battery packs cost $156 per kWh in 2019, according to electric vehicle consulting firm Cairn Energy Research Advisors, with some studies noting that EVs save money over time for consumers, which would put the cost of a 90-kWh pack at around $14,000.

Tesla is also building its own cell manufacturing facility at its new factory in Germany in addition to the new plant in Fremont.

 

Related News

View more

Why the Texas grid causes the High Plains to turn off its wind turbines

Texas High Plains Wind Energy faces ERCOT transmission congestion, limiting turbines in the Panhandle from stabilizing the grid as gas prices surge, while battery storage and solar could enhance reliability and lower power bills statewide.

 

Key Points

A major Panhandle wind resource constrained by ERCOT transmission, impacting grid reliability and electricity rates.

✅ Over 11,000 turbines can power 9M homes in peak conditions

✅ Transmission congestion prevents flow to major load centers

✅ Storage and solar can bolster reliability and reduce bills

 

Texas’s High Plains region, which covers 41 counties in the Texas Panhandle and West Texas, is home to more than 11,000 wind turbines — the most in any area of the state.

The region could generate enough wind energy to power at least 9 million homes. Experts say the additional energy could help provide much-needed stability to the electric grid during high energy-demand summers like this one, and even lower the power bills of Texans in other parts of the state.

But a significant portion of the electricity produced in the High Plains stays there for a simple reason: It can’t be moved elsewhere. Despite the growing development of wind energy production in Texas, the state’s transmission network, reflecting broader grid integration challenges across the U.S., would need significant infrastructure upgrades to ship out the energy produced in the region.

“We’re at a moment when wind is at its peak production profile, but we see a lot of wind energy being curtailed or congested and not able to flow through to some of the higher-population areas,” said John Hensley, vice president for research and analytics at the American Clean Power Association. “Which is a loss for ratepayers and a loss for those energy consumers that now have to either face conserving energy or paying more for the energy they do use because they don’t have access to that lower-cost wind resource.”

And when the rest of the state is asked to conserve energy to help stabilize the grid, the High Plains has to turn off turbines to limit wind production it doesn’t need.

“Because there’s not enough transmission to move it where it’s needed, ERCOT has to throttle back the [wind] generators,” energy lawyer Michael Jewell said. “They actually tell the wind generators to stop generating electricity. It gets to the point where [wind farm operators] literally have to disengage the generators entirely and stop them from doing anything.”

Texans have already had a few energy scares this year amid scorching temperatures and high energy demand to keep homes cool. The Electric Reliability Council of Texas, which operates the state’s electrical grid, warned about drops in energy production twice last month and asked people across the state to lower their consumption to avoid an electricity emergency.

The energy supply issues have hit Texans’ wallets as well. Nearly half of Texas’ electricity is generated at power plants that run on the state’s most dominant energy source, natural gas, and its price has increased more than 200% since late February, causing elevated home utility bills.

Meanwhile, wind farms across the state account for nearly 21% of the state’s power generation. Combined with wind production near the Gulf of Mexico, Texas produced more than one-fourth of the nation’s wind-powered electric generation last year.

Wind energy is one of the lowest-priced energy sources because it is sold at fixed prices, turbines do not need fuel to run and the federal government provides subsidies. Texans who get their energy from wind farms in the High Plains region usually pay less for electricity than people in other areas of the state. But with the price of natural gas increasing from inflation, Jewell said areas where wind energy is not accessible have to depend on electricity that costs more.

“Other generation resources are more expensive than what [customers] would have gotten from the wind generators if they could move it,” Jewell said. “That is the definition of transmission congestion. Because you can’t move the cheaper electricity through the grid.”

A 2021 ERCOT report shows there have been increases in stability constraints for wind energy in recent years in both West and South Texas that have limited the long-distance transfer of power.

“The transmission constraints are such that energy can’t make it to the load centers. [High Plains wind power] might be able to make it to Lubbock, but it may not be able to make it to Dallas, Fort Worth, Houston or Austin,” Jewell said. “This is not an insignificant problem — it is costing Texans a lot of money.”

Some wind farms in the High Plains foresaw there would be a need for transmission. The Trent Wind Farm was one of the first in the region. Beginning operations in 2001, the wind farm is between Abilene and Sweetwater in West Texas and has about 100 wind turbines, which can supply power to 35,000 homes. Energy company American Electric Power built the site near a power transmission network and built a short transmission line, so the power generated there does go into the ERCOT system.

But Jewell said high energy demand and costs this summer show there’s a need to build additional transmission lines to move more wind energy produced in the High Plains to other areas of the state.

Jewell said the Public Utility Commission, which oversees the grid, is conducting tests to determine the economic benefits of adding transmission lines from the High Plains to the more than 52,000 miles of lines that already connect to the grid across the state. As of now, however, there is no official proposal to build new lines.

“It does take a lot of time to figure it out — you’re talking about a transmission line that’s going to be in service for 40 or 50 years, and it’s going to cost hundreds of millions of dollars,” Jewell said. “You want to be sure that the savings outweigh the costs, so it is a longer process. But we need more transmission in order to be able to move more energy. This state is growing by leaps and bounds.”

A report by the American Society of Civil Engineers released after the February 2021 winter storm stated that Texas has substantial and growing reliability and resilience problems with its electric system.

The report concluded that “the failures that caused overwhelming human and economic suffering during February will increase in frequency and duration due to legacy market design shortcomings, growing infrastructure interdependence, economic and population growth drivers, and aging equipment even if the frequency and severity of weather events remains unchanged.”

The report also stated that while transmission upgrades across the state have generally been made in a timely manner, it’s been challenging to add infrastructure where there has been rapid growth, like in the High Plains.

Despite some Texas lawmakers’ vocal opposition against wind and other forms of renewable energy, and policy shifts like a potential solar ITC extension can influence the wind market, the state has prime real estate for harnessing wind power because of its open plains, and farmers can put turbines on their land for financial relief.

This has led to a boom in wind farms, even with transmission issues, and nationwide renewable electricity surpassed coal in 2022 as deployment accelerated. Since 2010, wind energy generation in Texas has increased by 15%. This month, the Biden administration announced the Gulf of Mexico’s first offshore wind farms will be developed off the coasts of Texas and Louisiana and will produce enough energy to power around 3 million homes.

“Texas really does sort of stand head and shoulders above all other states when it comes to the actual amount of wind, solar and battery storage projects that are on the system,” Hensley said.

One of the issues often brought up with wind and solar farms is that they may not be able to produce as much energy as the state needs all of the time, though scientists are pursuing improvements to solar and wind to address variability. Earlier this month, when ERCOT asked consumers to conserve electricity, the agency listed low wind generation and cloud coverage in West Texas as factors contributing to a tight energy supply.

Hensley said this is where battery storage stations can help. According to the U.S. Energy Information Administration, utility-scale batteries tripled in capacity in 2021 and can now store up to 4.6 gigawatts of energy. Texas has been quickly developing storage projects, spurred by cheaper solar batteries, and in 2011, Texas had only 5 megawatts of battery storage capacity; by 2020, that had ballooned to 323.1 megawatts.

“Storage is the real game-changer because it can really help to mediate and control a lot of the intermittency issues that a lot of folks worry about when they think about wind and solar technology,” Hensley said. “So being able to capture a lot of that solar that comes right around noon to [1 p.m.] and move it to those evening periods when demand is at its highest, or even move strong wind resources from overnight to the early morning or afternoon hours.”

Storage technology can help, but Hensley said transmission is still the big factor to consider.

Solar is another resource that could help stabilize the grid. According to the Solar Energy Industries Association, Texas has about 13,947 megawatts of solar installed and more than 161,000 installations. That’s enough to power more than 1.6 million homes.

This month, the PUC formed a task force to develop a pilot program next year that would create a pathway for solar panels and batteries on small-scale systems, like homes and businesses, to add that energy to the grid, similar to a recent virtual power plant in Texas rollout. The program would make solar and batteries more accessible and affordable for customers, and it would pay customers to share their stored energy to the grid as well.

Hensley said Texas has the most clean-energy projects in the works that will likely continue to put the region above the rest when it comes to wind generation.

“So they’re already ahead, and it looks like they’re going to be even farther ahead six months or a year down the road,” he said.

 

Related News

View more

NREL’s Electric Vehicle Infrastructure Projection Tool Helps Utilities, Agencies, and Researchers Predict Hour-by-Hour Impact of Charging on the Grid

EVI-Pro Lite EV Load Forecasting helps utilities model EV charging infrastructure, grid load shapes, and resilient energy systems, factoring home, workplace, and public charging behavior to inform planning, capacity upgrades, and flexible demand strategies.

 

Key Points

A NREL tool projecting EV charging demand and load shapes to help utilities plan the grid and right-size infrastructure.

✅ Visualizes weekday/weekend EV load by charger type.

✅ Tests home, workplace, and public charging access scenarios.

✅ Supports utility planning, demand flexibility, and capacity upgrades.

 

As electric vehicles (EVs) continue to grow in popularity, utilities and community planners are increasingly focused on building resilient energy systems that can support the added electric load from EV charging, including a possible EV-driven demand increase across the grid.

But forecasting the best ways to adapt to increased EV charging can be a difficult task as EV adoption will challenge state power grids in diverse ways. Planners need to consider when consumers charge, how fast they charge, and where they charge, among other factors.

To support that effort, researchers at the National Renewable Energy Laboratory (NREL) have expanded the Electric Vehicle Infrastructure Projection (EVI-Pro) Lite tool with more analytic capabilities. EVI-Pro Lite is a simplified version of EVI-Pro, the more complex, original version of the tool developed by NREL and the California Energy Commission to inform detailed infrastructure requirements to support a growing EV fleet in California, where EVs bolster grid stability through coordinated planning.

EVI-Pro Lite’s estimated weekday electric load by charger type for El Paso, Texas, assuming a fleet of 10,000 plug-in electric vehicles, an average of 35 daily miles traveled, and 50% access to home charging, among other variables, as well as potential roles for vehicle-to-grid power in future scenarios. The order of the legend items matches the order of the series stacked in the chart.

Previously, the tool was limited to letting users estimate how many chargers and what kind of chargers a city, region, or state may need to support an influx of EVs. In the added online application, those same users can take it a step further to predict how that added EV charging will impact electricity demand, or load shapes, in their area at any given time and inform grid coordination for EV flexibility strategies.

“EV charging is going to look different across the country, depending on the prevalence of EVs, access to home charging, and the kind of chargers most used,” said Eric Wood, an NREL researcher who led model development. “Our expansion gives stakeholders—especially small- to medium-size electric utilities and co-ops—an easy way to analyze key factors for developing a flexible energy strategy that can respond to what’s happening on the ground.”

Tools to forecast EV loads have existed for some time, but Wood said that EVI-Pro Lite appeals to a wider audience, including planners tracking EVs' impact on utilities in many markets. The tool is a user-friendly, free online application that displays a clear graphic of daily projected electric loads from EV charging for regions across the country.

After selecting a U.S. metropolitan area and entering the number of EVs in the light-duty fleet, users can change a range of variables to see how they affect electricity demand on a typical weekday or weekend. Reducing access to home charging by half, for example, results in higher electric loads earlier in the day, although energy storage and mobile charging can help moderate peaks in some cases. That is because under such a scenario, EV owners might rely more on public or workplace charging instead of plugging in at home later in the evening or at night.

“Our goal with the lite version of EVI-Pro is to make estimating loads across thousands of scenarios fast and intuitive,” Wood said. “And if utilities or stakeholders want to take that analysis even deeper, our team at NREL can fill that gap through partnership agreements, too. The full version of EVI-Pro can be tailored to develop detailed studies for individual planners, agencies, or utilities.”

 

Related News

View more

Germany to Exempt Electric Cars from Vehicle Tax Until 2035

Germany is extending its vehicle tax exemption for electric cars until 2035, a federal move aimed at boosting EV sales, supporting the auto industry, and advancing the country’s transition to cleaner, more sustainable transportation.

 

Why is Germany Exempting EVs from Vehicle Tax Until 2035?

Germany is exempting electric vehicles from vehicle tax until 2035 to boost EV adoption, support its auto industry, and meet national climate targets.

✅ Encourages consumers to buy zero-emission cars

✅ Protects jobs in the automotive sector

✅ Advances Germany’s clean energy transition

Germany’s federal government has confirmed plans to extend the country’s vehicle tax exemption for electric cars until 2035, as part of a renewed push to accelerate the nation’s e-mobility transition and support its struggling automotive industry. The move, announced by Finance Minister Lars Klingbeil, comes just weeks before the existing exemption was set to expire.

“In order to get many more electric cars on the road in the coming years, we need to provide the right incentives now,” Klingbeil told the German Press Agency (DPA). “That is why we will continue to exempt electric cars from vehicle tax.”

Under the proposed law, the exemption will apply to new fully electric vehicles registered until December 31, 2030, with benefits lasting until the end of 2035. According to the Finance Ministry, the measure aims to “provide an incentive for the early purchase of a purely electric vehicle.” While popular among consumers and automakers, the plan is expected to cost the federal budget several hundred million euros in lost revenue.

Without the extension, the tax relief for new battery-electric vehicles (BEVs) would have ended on January 1, 2026, creating uncertainty for automakers and potential buyers. The urgency to pass the new legislation reflects the government’s goal to maintain Germany’s momentum toward electrification, even as the age of electric cars accelerates amid economic headwinds and fierce international competition.

The exemption’s renewal was originally included in the coalition agreement between the Christian Democratic Union (CDU), the Christian Social Union (CSU), and the Social Democratic Party (SPD). It follows two other measures from the government’s “investment booster” package—raising the maximum gross price for EV tax incentives to €100,000 and allowing special depreciation for electric vehicles. However, the vehicle tax measure was previously in jeopardy due to Germany’s tight fiscal situation. The Finance Ministry had cautioned that every proposal in the coalition deal was “subject to financing,” and a plan to end EV subsidies led to speculation that the EV tax break could be dropped altogether.

Klingbeil’s announcement coincides with an upcoming “automotive dialogue” summit at the Chancellery, hosted by Chancellor Friedrich Merz. The meeting will bring together representatives from federal ministries, regional governments, automakers advancing initiatives such as Daimler’s electrification plan across their portfolios, and trade unions to address both domestic and international challenges facing Germany’s car industry. Topics will include slowing EV sales growth in China, the ongoing tariff dispute with the United States, where EPA emissions rules are expected to boost EV sales, and strategies for strengthening Germany’s global competitiveness.

“We must now put together a strong package to lead the German automotive industry into the future and secure jobs,” Klingbeil said. “We want the best cars to continue to be built in Germany. Everyone knows that the future is electric.”

The government is also expected to revisit a proposed program to help low- and middle-income households access electric cars, addressing affordability concerns that persist across markets, modelled on France’s “social leasing” initiative. Though included in the coalition agreement, progress on that program has stalled, and few details have emerged since its announcement.

Germany’s latest tax policy move signals renewed confidence in its electric vehicle transition, despite budget constraints and a turbulent global market, as the 10-year EV outlook points to most cars being electric worldwide. Extending the exemption until 2035 sends a clear message to consumers and manufacturers alike: the country remains committed to building its clean transport future—one electric car at a time.

 

Related Articles

 

View more

IEA: Clean energy investment significantly outpaces fossil fuels

Clean Energy Investment is surging as renewables, electric vehicles, grids, storage, and nuclear outpace fossil fuels, driven by energy security, affordability, and policies like the Inflation Reduction Act, the IEA's World Energy Investment report shows.

 

Key Points

Investment in renewables, EVs, grids, and storage now surpasses fossil fuels amid cost and security pressures.

✅ $1.7T to clean tech vs just over $1T to fossil fuels this year.

✅ For every $1 in fossil, about $1.7 goes to clean energy.

✅ Solar investment poised to overtake oil production spending.

 

Investment in clean energy technologies is significantly outpacing spending on fossil fuels as affordability and security concerns, underpinned by analyses showing renewables cheapest new power in many markets, triggered by the global energy crisis strengthen the momentum behind more sustainable options, according to the International Energy Agency's (IEA) latest World Energy Investment report.

About $2.8 trillion (€2.6 trillion) is set to be invested globally in energy this year, of which over $1.7 trillion (€1.59 trillion) is expected to go to clean technologies - including renewables, electric vehicles, nuclear power, grids, storage, low-emissions fuels, efficiency improvements and heat pumps – according to report.

The remainder, slightly more than $1 trillion (€937.7 billion), is going to coal, gas and oil, despite growing calls for a fossil fuel lockdown to meet climate goals.

Annual clean energy investment is expected to rise by 24% between 2021 and 2023, driven by renewables and electric vehicles, with renewables breaking records worldwide over the same period.

But more than 90% of this increase comes from advanced economies and China, which the IEA said presents a serious risk of new dividing lines in global energy if clean energy transitions don’t pick up elsewhere.

“Clean energy is moving fast – faster than many people realise. This is clear in the investment trends, where clean technologies are pulling away from fossil fuels,” said IEA executive director Fatih Birol. “For every dollar invested in fossil fuels, about 1.7 dollars are now going into clean energy. Five years ago, this ratio was one-to-one. One shining example is investment in solar, which is set to overtake the amount of investment going into oil production for the first time.”

Led by solar, low-emissions electricity technologies are expected to account for almost 90% of investment in power generation, reflecting the global renewables share above 30% in electricity markets.

Consumers are also investing in more electrified end-uses. Global heat pump sales have seen double-digit annual growth since 2021. Electric vehicle sales are expected to leap by a third this year after already surging in 2022.

Clean energy investments have been boosted by a variety of factors in recent years, including periods of strong economic growth and volatile fossil fuel prices that raised concerns about energy security, and insights from the IRENA decarbonisation report that underscore broader benefits, especially following Russia’s invasion of Ukraine.

Furthermore, enhanced policy support through major actions like the US Inflation Reduction Act and initiatives in Europe's green surge, Japan, China and elsewhere have played a role.

In Ireland, more than a third of electricity is expected to be green within four years, illustrating national progress.

The biggest shortfalls in clean energy investment are in emerging and developing economies, the IEA added. It pointed to some bright spots, such as dynamic investments in solar in India and in renewables in Brazil and parts of the Middle East. However, investment in many countries is being held back by factors including higher interest rates, unclear policy frameworks and market designs, weak grid infrastructure, financially strained utilities and a high cost of capital.

"Much more needs to be done by the international community, especially to drive investment in lower-income economies, where the private sector has been reluctant to venture," according to the IEA.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified