BC's Kootenay Region makes electric cars a priority


Kootenay electric cars

NFPA 70e Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today

Accelerate Kootenays EV charging stations expand along Highway 3, adding DC fast charging and Level 2 plugs to cut range anxiety for electric vehicles in B.C., linking communities like Castlegar, Greenwood, and the Alberta border.

 

Key Points

A regional network of DC fast and Level 2 chargers along B.C.'s Highway 3 to reduce range anxiety and boost EV adoption.

✅ 13 DC fast chargers plus 40 Level 2 stations across key hubs

✅ 20-minute charging stops reduce range anxiety on Highway 3

✅ Backed by BC Hydro, FortisBC, and regional districts

 

The Kootenays are B.C.'s electric powerhouse, and as part of B.C.'s EV push the region is making significant advances to put electric cars on the road.

The region's dams generate more than half of the province's electricity needs, but some say residents in the region have not taken to electric cars, for instance.

Trish Dehnel is a spokesperson for Accelerate Kootenays, a multi-million dollar coalition involving the regional districts of East Kootenay, Central Kootenay and Kootenay Boundary, along with a number of corporate partners including Fortis B.C. and BC Hydro.

She says one of the major problems in the region — in addition to the mountainous terrain and winter driving conditions — is "range anxiety."

That's when you're not sure your electric vehicle will be able to make it to your destination without running out of power, she explained.

Now, Accelerate Kootenays is hoping a set of new electric charging stations, part of the B.C. Electric Highway project expanding along Highway 3, will make a difference.

 

No more 'range anxiety'

The expansion includes 40 Level 2 stations and 13 DC Quick Charging stations, mirroring BC Hydro's expansion across southern B.C. strategically located within the region to give people more opportunities to charge up along their travel routes, Dehnel said.

"We will have DC fast-charging stations in all of the major communities along Highway 3 from Greenwood to the Alberta border. You will be able to stop at a fast-charging station and, thanks to faster EV charging technology, charge your vehicle within 20 minutes," she said.

Castlegar car salesman Terry Klapper — who sells the 2017 Chevy Bolt electric vehicle — says it's a great step for the region as sites like Nelson's new fast-charging station come online.

"I guarantee that you'll be seeing electric cars around the Kootenays," he said.

"The interest the public has shown … [I mean] as soon as people found out we had these Bolts on the lot, we've had people coming in every single day to take a look at them and say when can I finally purchase it."

The charging stations are set to open by the end of next year.

 

Related News

Related News

AZ goes EV: Rate of electric car ownership relatively high in Arizona

Arizona Electric Vehicle Ownership is surging, led by EV adoption, charging stations growth, state incentives, and local manufacturers; yet rural infrastructure gaps and limited fast-charging plugs remain key barriers to convenient, statewide electrification.

 

Key Points

Arizona Electric Vehicle Ownership shows rising EV adoption and incentives, but rural fast-charging access still lags.

✅ 28,770 EVs registered; sixth per 1,000 residents statewide

✅ 385 fast chargers; 1,448 Level 2 plugs; many not 24/7

✅ Incentives: lower registration, HOV access, utility rebates

 

For a mostly red state, Arizona has a lot of blue-state company when it comes to states ranked by electric vehicle ownership, according to recent government data.

Arizona had 28,770 registered electric vehicles as of June, according to the U.S. Department of Energy's Alternative Fuels Data Center, the seventh-highest number among states. When ownership is measured per 1,000 residents, Arizona inches up a notch to sixth place, with just over four electric vehicles per 1,000 people.

That rate put Arizona just behind Oregon and Colorado and just ahead of Nevada and Vermont. California was in the lead by far, with California's EV and charging lead reflected in 425,300 registered electric vehicles, or one for every 10.7 residents.

Arizona EV enthusiasts welcomed the ranking, which they said they have seen reflected in steady increases in group membership, but said the state can do better, even amid soaring U.S. EV sales this year.

"Arizona is growing by leaps and bounds in major areas, but still struggling out there in the hinterlands," said Jerry Asher, vice president of the Tucson Electric Vehicle Association.

He and others said the biggest challenge in Arizona, as in much of the country, is the lack of readily available charging stations for electric vehicles.

Currently, there are 385 public fast-charging plugs and 1,448 non-fast-charging plugs in the state, where charging networks compete to expand access, said Diane Brown, executive director with the Arizona Public Interest Research Group Education Fund. And many of those "are not available 24 hours a day, often making EV charging less convenient to the public," she said.

And in order for the state to hit 10% EV ownership by 2030, one scenario outlined by Arizona PIRG, the number of charging stations would need to grow significantly.

"According to the Arizona PIRG Education Fund, to support a future in which 10% of Arizona's vehicles are EVs – a conservative target for 2030 – Arizona will need more than 1,098 fast-charging plugs and 14,888 Level 2 plugs," Brown said.

This will require local, state and federal policies, as EVs challenge state power grids, to make "EV charging accessible, affordable, and easy," she said.

But advocates said there are several things working in their favor, even as an EV boom tests charging capacity across the country today. Jim Stack, president of the Phoenix Electric Auto Association, said many of the current plug-ins charging stations are at stores and libraries, places "where you would stop anyway."

"We have a good charging infrastructure and it keeps getting better," Stack said.

One way Asher said Arizona could be more EV-friendly would be to add charging stations at hotels, RV parks and shopping centers. In Tucson, he said, the Culinary Dropout and Jersey Mike's restaurants have already begun offering free electric vehicle charging to customers, Asher said.

While they push for more charging infrastructure, advocates said improving technology and lower vehicle expenses are on their side, as post-2021 electricity trends reshape costs, helping to sway more Arizonans to purchase an electric vehicle in recent years.

"The batteries are getting better and lower in cost as well as longer-lasting," Stack said. He said an EV uses about 50 cents of electricity to cover the same number of miles a gas-burning car gets from a gallon of gas – currently selling for $3.12 a gallon in Arizona, according to AAA.

In addition, the state is offering incentives to electric vehicle buyers.

"In AZ we get reduced registration on electric vehicles," Stack said. "It's about $15 a year compared to $300-700 a year for gas and diesel cars."

Electric vehicle owners also "get 24/7 access to HOV lanes, even with one person," he said. And utilities like Tucson Electric Power offer rebates and incentives for home charging stations, according to a report by the National Conference of State Legislatures, and neighboring New Mexico's EV benefits underscore potential economic gains for the region.

Stack also noted that Arizona is now home to three eclectic vehicle manufacturers: Lucid, which makes cars in Casa Grande, Nikola, which makes trucks in Phoenix and Coolidge, and Electra Meccanica, which plans to build the three-wheeled SOLO commuter in Mesa.

"We get clear skies. No oil changes, no muffler work, no transmission, faster acceleration. No smog or smog tests," Stack said. "It's priceless."

 

Related News

View more

Should California accelerate its 100% carbon-free electricity mandate?

California 100% Clean Energy by 2030 proposes accelerating SB 100 with solar, wind, offshore wind, and battery storage to decarbonize the grid, enhance reliability, and reduce blackouts, leveraging transmission upgrades and long-duration storage solutions.

 

Key Points

Proposal to accelerate SB 100 to 2030, delivering a carbon-free grid via renewables, storage, and new transmission.

✅ Accelerates SB 100 to a 2030 carbon-free electricity target

✅ Scales solar, wind, offshore wind, and battery storage capacity

✅ Requires transmission build-out and demand response for reliability

 

Amid a spate of wildfires that have covered large portions of California with unhealthy air, an environmental group that frequently lobbies the Legislature in Sacramento is calling on the state to accelerate by 15 years California's commitment to derive 100 percent of its electricity from carbon-free sources.

But skeptics point to last month's pair of rolling blackouts and say moving up the mandate would be too risky.

"Once again, California is experiencing some of the worst that climate change has to offer, whether it's horrendous air quality, whether it's wildfires, whether it's scorching heat," said Dan Jacobson, state director of Environment California. "This should not be the new normal and we shouldn't allow this to become normal."

Signed by then-Gov. Jerry Brown in 2018, Senate Bill 100 commits California by 2045 to use only sources of energy that produce no greenhouse gas emissions to power the electric grid, a target that echoes Minnesota's 2050 carbon-free plan now under consideration.

Implemented through the state's Renewable Portfolio Standard, SB 100 mandates 60 percent of the state's power will come from renewable sources such as solar and wind within the next 10 years. By 2045, the remaining 40 percent can come from other zero-carbon sources, such as large hydroelectric dams, a strategy aligned with Canada's electricity decarbonization efforts toward climate pledges.

SB 100 also requires three state agencies _ the California Energy Commission, the California Public Utilities Commission and the California Air Resources Board _ to send a report to the Legislature reviewing various aspects of the legislation.

The topics include scenarios in which SB 100's requirements can be accelerated. Following an Energy Commission workshop earlier this month, Environment California sent a six-page note to all three agencies urging a 100 percent clean energy standard by 2030.

The group pointed to comments by Gov. Gavin Newsom after he toured the devastation in Butte County caused by the North Complex fire.

"Across the entire spectrum, our (state) goals are inadequate to the reality we are experiencing," Newsom said Sept. 11 at the Oroville State Recreation Area.

Newsom "wants to look at his climate policies and see what he can accelerate," Jacobson said. "And we want to encourage him to take a look at going to 100 percent by 2030."

Jacobson said Newsom cam change the policy by issuing an executive order but "it would probably take some legislative action" to codify it.

However, Assemblyman Jim Cooper, a Democrat from the Sacramento suburb of Elk Grove, is not on board.

"I think someday we're going to be there but we can't move to all renewable sources right now," Cooper said. "It doesn't work. We've got all these burned-out areas that depend upon electricity. How is that working out? They don't have it."

In mid-August, California experienced statewide rolling blackouts for the first time since 2001.

The California Independent System Operator _ which manages the electric grid for about 80 percent of the state _ ordered utilities to ratchet back power, fearing the grid did not have enough supply to match a surge in demand as people cranked up their air conditioners during a stubborn heat wave that lingered over the West.

The outages affected about 400,000 California homes and businesses for more than an hour on Aug. 14 and 200,000 customers for about 20 minutes on Aug. 15.

The grid operator, known as the CAISO for short, avoided two additional days of blackouts in August and two more in September thanks to household utility customers and large energy users scaling back demand.

CAISO Chief Executive Officer Steve Berberich said the outages were not due to renewable energy sources in California's power mix. "This was a matter of running out of capacity to serve load" across all hours, Berberich told the Los Angeles Times.

California has plenty of renewable resources _ especially solar power _ during the day. The challenge comes when solar production rapidly declines as the sun goes down, especially between 7 p.m. and 8 p.m. in what grid operators call the "net load peak."

The loss of those megawatts of generation has to be replaced by other sources. And in an electric grid, system operators have to balance supply and demand instantaneously, generating every kilowatt that is demanded by customers who expect their lighting/heating/air conditioning to come on the moment they flip a switch.

Two weeks after the rotating outages, the State Water Resources Control Board voted to extend the lives of four natural gas plants in the Los Angeles area. Natural gas accounts for the largest single source of California's power mix _ 34.23 percent. But natural gas is a fossil fuel, not a carbon-free resource.

Jacobson said moving the mandate to 2030 can be achieved by more rapid deployment of renewable sources across the state.

The Public Utilities Commission has already directed power companies to ramp up capacity for energy storage, such as lithium-ion batteries that can be used when solar production falls off.

Long-term storage is another option. That includes pumped hydro projects in which hydroelectric facilities pump water from one reservoir up to another and then release it. The ensuing rush of water generates electricity when the grid needs it.

Environment California also pointed to offshore wind projects along the coast of Central and Northern California that it estimates could generate as much as 3 gigawatts of power by 2030 and 10 gigawatts by 2040. Offshore wind supporters say its potential is much greater than land-based wind farms because ocean breezes are stronger and steadier.

Gary Ackerman, a utilities and energy consultant with more than four decades of experience in power issues affecting states in the West, said the 2045 mandate was "an unwise policy to begin with" and to accommodate a "swift transition (to 2030), you're going to put the entire grid and everybody in it at risk."

But Ackerman's larger concern is whether enough transmission lines can be constructed in California to bring the electricity where it needs to go.

"I believe Californians consider transmission lines in their backyard about the same way they think about low-income housing _ it's great to have, but not in my backyard," Ackerman said. "The state is not prepared to build the infrastructure that will allow this grandiose build-out."

Cooper said he worries about how much it will cost the average utility customer, especially low and middle-income households. The average retail price for electricity in California is 16.58 cents per kilowatt-hour, compared to 10.53 nationally, according to the U.S. Energy Information Administration.

"What's sad is, we've had 110-degree days and there are people up here in the Central Valley that never turned their air conditioners on because they can't afford that bill," Cooper said.

Jacobson said the utilities commission can intervene if costs get too high. He also pointed to a recent study from the Goldman School of Public Policy at UC Berkeley that predicted the U.S. can deliver 90 percent clean, carbon-free electric grid by 2035 that is reliable and at no extra cost in consumers' bills.

"Every time we wait and say, 'Oh, what about the cost? Is it going to be too expensive?' we're just making the cost unbearable for our kids and grandkids," Jacobson said. "They're the ones who are going to pay the billions of dollars for all the remediation that has to happen ... What's it going to cost if we do nothing, or don't go fast enough?"

The joint agency report on SB 100 from the Energy Commission, the Public Utilities Commission and the Air Resources Board is due at the beginning of next year.

 

Related News

View more

Ontario to Reintroduce Renewable Energy Projects 5 Years After Cancellations

Ontario Renewable Energy Procurement 2024 will see the IESO secure wind, solar, and hydro power to meet rising electricity demand, support transit electrification, bolster grid reliability, and serve manufacturing growth across the province.

 

Key Points

A provincial IESO initiative to add 2,000 MW of clean power and plan 3,000 MW more to meet rising demand.

✅ IESO to procure 2,000 MW from wind, solar, hydro

✅ Exploring 3,000 MW via upgrades and expansions

✅ Demand growth ~2% yearly; electrification and industry

 

After the Ford government terminated renewable energy contracts five years ago, despite warnings about wind project cancellation costs that year, Ontario's electricity operator, the Independent Electricity System Operator (IESO), is now planning to once again incorporate wind and solar initiatives to address the province's increasing power demands.

The IESO, responsible for managing the provincial power supply, is set to secure 2,000 megawatts of electricity from clean sources, which include wind, solar, and hydro power, as wind power competitiveness increases across Canada. Additionally, the IESO is exploring the possibilities of reacquiring, upgrading, or expanding existing facilities to generate an additional 3,000 MW of electricity in the future.

These new power procurement efforts in Ontario aim to meet the rising energy demand driven by transit electrification and large-scale manufacturing projects, even as national renewable growth projections were scaled back after Ontario scrapped its clean energy program, which are expected to exert greater pressure on the provincial grid.

The IESO projects a consistent growth in demand of approximately two percent per year over the next two decades. This growth has prompted the Ford government, amid debate over Ontario's electricity future in the province, to take proactive measures to prevent potential blackouts or disruptions for both residential and commercial consumers.

This renewed commitment to renewable energy represents a significant policy shift for Premier Doug Ford, reflecting his new stance on wind power over time, who had previously voiced strong opposition to wind turbines and pledged to dismantle all windmills in the province. In 2018, shortly after taking office, the government terminated 750 renewable energy contracts that had been signed by the previous Liberal government, incurring fees of $230 million for taxpayers.

At the time, the government cited reasons such as surplus electricity supply and increased costs for ratepayers as grounds for contract cancellations. Premier Ford expressed pride in the decision, echoing a proud of cancelling contracts stance, claiming that it saved taxpayers $790 million and eliminated what he viewed as detrimental wind turbines that had negatively impacted the province's energy landscape for 15 years.

The Ontario government's new wind and solar energy procurement initiatives are scheduled to commence in 2024, following a court ruling on a Cornwall wind farm that spotlighted cancellation decisions.

 

Related News

View more

Within A Decade, We Will All Be Driving Electric Cars

Electric Vehicle Price Parity 2027 signals cheaper EV manufacturing as battery costs plunge, widening model lineups, and tighter EU emissions rules; UBS and BloombergNEF foresee parity, with TCO advantages over ICE amid growing fast-charging networks.

 

Key Points

EV cost parity in 2027 when manufacturing undercuts ICE, led by cheaper batteries, wider lineups, and emissions policy.

✅ Battery costs drop 58% next decade, after 88% fall

✅ Manufacturing parity across segments from 2027

✅ TCO favors EVs; charging networks expand globally

 

A Bloomberg/NEF report commissioned by Transport & Environment forecasts 2027 as the year when electric vehicles will start to become cheaper to manufacture than their internal combustion equivalents across all segments, aligning with analyses that the EV age is arriving ahead of schedule for consumers and manufacturers alike, mainly due to a sharp drop in battery prices and the appearance of new models by more manufacturers.

Batteries, which have fallen in price by 88% over the past decade and are expected to plunge by a further 58% over the next 10 years, make up between one-quarter and two-fifths of the total price of a vehicle. The average pre-tax price of a mid-range electric vehicle is around €33,300, and higher upfront prices concern many UK buyers compared to €18,600 for its diesel or gasoline equivalent. In 2026, both are expected to cost around €19,000, while in 2030, the same electric car will cost €16,300 before tax, while its internal combustion equivalent will cost €19,900, and that’s without factoring in government incentives.

Other reports, such as a recent one by UBS, put the date of parity a few years earlier, by 2024, after which they say there will be little reason left to buy a non-electric vehicle, as the market has expanded from near zero to 2 million in just five years.

In Europe, carmakers will become a particular stakeholder in this transition due to heavy fines for exceeding emissions limits calculated on the basis of the total number of vehicles sold. Increasing the percentage of electric vehicles in the annual sales portfolio is seen by the industry as the only way to avoid these fines. In addition to brands such as Bentley or Jaguar Land Rover, which have announced the total abandonment of internal combustion engine technology by 2025, or Volvo, which has set 2030 as the target date, other companies such as Ford, which is postponing this date in its home market, also set 2030 for the European market, which clearly demonstrates the suitability of this type of policy.

Nevertheless internal combustion vehicles will continue to travel on the roads or will be resold in developing countries. In addition to the price factor, which is even more accentuated when estimates are carried out in terms of total cost of ownership calculations due to the lower cost of electric recharging versus fuel and lower maintenance requirements, other factors such as the availability of fast charging networks must be taken into account.

While price parity is approaching, it is worth thinking about the factors that are causing car sales, which are still behind gasoline models in share, to suffer: the chip crisis, which is strongly affecting the automotive industry and will most likely extend until 2022, is creating production problems and the elimination of numerous advanced electronic options in many models, which reduces the incentive to purchase a vehicle at the present time. These types of reasons could lead some consumers to postpone purchasing a vehicle precisely when we may be talking about the final years for internal combustion technology, which would increase the likelihood that, later on and as the price gap closes, they would opt for an electric vehicle.

Finally, in the United States, the ambitious infrastructure plan put in place by the Biden administration also promises to accelerate the transition to electric vehicles by addressing key barriers to mainstream adoption such as charging access, which in turn is fueling the interest of automotive companies to have more electric vehicles in their range. In Europe, meanwhile, more Chinese brands offering electric vehicles are beginning to enter the most advanced markets, such as Norway and the Netherlands, with plans to expand to the rest of the continent with very competitive offers in terms of price.

One way or another, the future of the automotive industry is electric, and the transition will take place during the remainder of this decade. You might want to think about it if you are weighing whether it’s time to buy an electric car this year.

 

Related News

View more

How to retrofit a condo with chargers for a world of electric cars

Condo EV charging retrofits face strata approval thresholds, installation costs, and limited electrical capacity, but government rebates, subsidies, and smart billing systems can improve ROI, property value, and feasibility amid electrician shortages and infrastructure constraints.

 

Key Points

Condo EV charging retrofits equip multiunit parking with EV chargers, balancing costs, bylaws, capacity, and rebates.

✅ Requires owner approval (e.g., 75% in B.C.) and clear bylaws

✅ Leverage rebates, subsidies, and load management to cut costs

✅ Plan billing, capacity, and phased installation to increase ROI

 

Retrofitting an existing multiunit residential building with electric vehicle charging stations is a complex and costly exercise, as high-rise EV charging challenges in MURBs demonstrate, even after subsidies, but the biggest hurdle to adoption may be getting enough condo owners on board.

British Columbia, for example, offers a range of provincial government subsidies to help condo corporations (referred to in B.C. as stratas) with everything from the initial research to installing the chargers. But according to provincial strata law, three-quarters of owners must support the plan before it is implemented, though new strata EV legislation could make approvals easier in some jurisdictions.

“The largest challenge is getting that 75-per-cent majority approval to go ahead,” says EV charging specialist Patrick Breuer with ChargeFwd Ltd., a Vancouver-based sustainable transport consultancy.

Chris Brunner, a strata president in Vancouver, recently upgraded all the building’s parking stalls for EV charging. His biggest challenge was getting the strata’s investment owners, who don’t live in the building and were not interested in spending money, to support the project.

“We had to sell it in two ways,” Mr. Brunner says. “First, that there’s going to be a return on investment, including vehicle-to-building benefits that support savings and grid stability, and second, that there will come a time when this will be required. And if we do it now, taking advantage of the generous rebates and avoiding price increases for expertise and materials, we’ll be ahead of the curve.”

Once the owners have voted in favour, the condo board can begin the planning process and start looking for rebates. The B.C. government will provide a rebate of up to 75 per cent for the consulting phase, with additional provincial rebates available through current programs. It’s referred to as an “EV Ready” plan, which is a professionally prepared document that describes how to implement EV charging fairly, and estimates its cost.

Once a condo has completed the EV Ready plan, it becomes eligible for other rebates, such as the EV Ready Infrastructure subsidy, which will bring power to each individual parking stall through an energized outlet. This is rebated at 50 per cent of expenses, up to $600 a stall.

There are further rebates of up to 75 per cent for installing the charging stations themselves, and B.C. charging rebates extend to home and workplace programs, too. The program is administered by BC Hydro, a Crown corporation that receives funding in annual increments. “Right now, it’s funded until March 31, 2023,” Mr. Breuer says.

“Realtors are valuing [individual charging stations] from $2,000 to $10,000,” he said. The demand for installing EV chargers in buildings has grown to such an extent that it’s hard to find qualified electricians, Mr. Breuer says.

However, even with subsidies, there are some buildings where it doesn’t make financial sense to retrofit them. “If you have to core through thin floors or there’s a big parkade with a large voltage drop, it isn’t financially viable,” Mr. Breuer says. “We do a lot of EV Ready plans, but not all the projects can go ahead.”

For many people, it’s resistance to the unknown that is preventing them from voting for the retrofit, according to Carter Li of Toronto-based Swtch Energy Inc., which provides charging in high-density urban settings. It has done retrofits on 200 multiunit residential buildings in the Toronto area, and Calgary condo charging efforts show similar momentum in other cities, too. “They’re worried about paying for someone else’s electricity,” he says. Selling owners on the idea requires educating them about how the billing will work, maximizing electrical capacity to keep costs down, using government subsidies and the anticipated boost in property value.

Ontario currently does not provide any subsidies for retrofitting condos for EV charging. However, there is a stipulation under the Condominium Act that if owners request EV charging be installed and provide a condo board with sufficient documentation, an assessment will be conducted.

When Jeremy Benning was on the board of his Toronto condo in 2018, a few residents inquired about installing EV charging. A committee of owners did the legwork, and found a company that could do the infrastructure installation as well as set up accounts for individual billing purposes. Residents were surveyed a number of times before going ahead with the installation.

Mr. Benning estimates it cost about $40,000 to install two electrical subpanels to accommodate EV chargers in 20 parking spaces. Although the condo corporation paid the money up front out of its operating budget, everyone who ordered a charger will pay back their share over time. Many who do not even own an EV have opted to add a valuable frill to their unit.

The board considered applying for a subsidy from Natural Resources Canada, but it would require a public charger in the visitor parking lot. “The rebate wasn’t enough to pay for the cost of putting in that charging station,” Mr. Benning says. “Also, you have to maintain it, and what if it gets vandalized? It wasn’t worth it.”

Quebec’s Roulez Vert (Ride Green) program offers extensive provincial rebates and incentives for retrofitting condo buildings. If a single condo owner wants to install an EV charger, the government will refund up to 50 per cent of the installation cost or up to $5,000, whichever is less.

Otherwise, a property manager can qualify for a maximum of $25,000 a year to retrofit a building and can sometimes complete the work in stages. “They may do the first installation in one year, and then continue the next year,” says Léo Viger-Bernard of Recharge Véhicule Électrique (RVE). Recently, the Quebec government confirmed this program will run until 2027.

RVE consults with condo corporations, operates an online platform (murby.com) with resources for building owners, and sells a demand charge controller (DCC), which is an electric vehicle energy management system. The DCC allows an electrician to plug the EV charger directly into the electrical infrastructure of a single condo or apartment unit. Not only does this reduce extra wiring, but it also monitors the electrical consumption in each unit, only powering the charging station when there’s available electricity. Billing is assigned to the actual unit’s electricity bill.

Currently there are about 12,000 DCC units installed in retrofitted buildings across Canada, some that are 40 or 50 years old. “It’s not a question of age; it’s more the location of the electric meters,” Mr. Viger-Bernard says. The DCC can be installed either on the roof or on different floors.

According to Michael Wilk, president of Montreal-based Wilkar Property Management Inc., the biggest barrier is getting condo owners to understand the necessity of doing a retrofit now, as opposed to waiting. He uses price increases to try to convince them.

“Right now, the cost of doing a retrofit is 35 per cent more than it was two years ago,” he says. “If you wait another two years, we can only anticipate it’s going to be 35 per cent higher because of the rising cost of labour, parts and equipment.”

In Nova Scotia, Marc MacDonald of Spark Power Corp. installed an EV charger with a DCC unit at a condo near Halifax about a year ago. “They only had space in their electrical room to add a device for up to 10 EV chargers,” he says. The condo board was hesitant, demanding a great deal of information. “They were concerned about everyone wanting an EV charger.”

Now that Nova Scotia has introduced a program for rebates and incentives to install EV chargers in condos, on-street sites and more, Mr. MacDonald anticipates demand will increase, though Atlantic EV adoption still lags the national average. “But they’ll have to settle with reality. Not everyone can have an EV charger if the building can’t accommodate it.”

 

Related News

View more

Unprecedented Growth in Solar and Storage Anticipated with Record Installations and Investments

U.S. Clean Energy Transition accelerates with IRA and BIL, boosting renewable energy, solar PV, battery storage, EV adoption, manufacturing, grid resilience, and jobs while targeting carbon-free electricity by 2035 and net-zero emissions by 2050.

 

Key Points

U.S. shift to renewables under IRA and BIL scales solar, storage, and EVs toward carbon-free power by 2035.

✅ Renewables reached ~22% of U.S. electricity generation in 2022.

✅ Nearly $13b in PV manufacturing; 94 plants; 25k jobs announced.

✅ Battery storage grew from 3% in 2017 to 36% by H1 2023.

 

In recent years, the United States has made remarkable strides in embracing renewable energy, with notable solar and wind growth helping to position itself for a more sustainable future. This transition has been driven by a combination of factors, including environmental concerns, economic opportunities, and technological advancements.

With the introduction of the Inflation Reduction Act (IRA) and the Bipartisan Infrastructure Law (BIL), the United States is rapidly advancing its journey towards clean energy solutions.

To underscore the extent of this progress, consider the following vital statistics: In 2022, renewable energy sources (including hydroelectric power) accounted for approximately 22% of the nation's electricity generation, and renewables surpassed coal in the mix that year, while the share of renewables in total electricity generation capacity had risen to around 30% and the nation is moving toward 30% electricity from wind and solar as well.

Notably, in the transportation sector, consumers are increasingly embracing zero-emission fuels, such as electric vehicles. In 2022, battery electric vehicles (BEVs) represented 5.6% of new vehicle registrations, surging to 7.1% by the first half of 2023, according to estimates from EUPD Research.

The United States has set ambitious targets, including achieving 100% carbon pollution-free electricity by 2035 and aiming for economy-wide net-zero greenhouse gas emissions by no later than 2050, and policy proposals such as Biden's solar plan reinforce these goals for the power sector. These targets are poised to provide a significant boost to the clean energy sector in the country, reaffirming its commitment to a sustainable and environmentally responsible future.

 

IRA and BIL: Catalysts for Growth

The IRA and BIL represent a transformative shift in the landscape of clean energy policy, heralding a new era for the solar and energy storage sectors in the United States. The IRA allocates substantial resources to address the climate crisis, fortify domestic clean energy production, and solidify the U.S. as a global leader in clean energy manufacturing.

According to the U.S. Department of Energy (DOE), an impressive investment exceeding $120 billion has been announced for the U.S. battery manufacturing and supply chain sector since the introduction of IRA and BIL. Additionally, plans have been unveiled for over 200 new or expanded facilities dedicated to minerals, materials processing, and manufacturing. This move is expected to create more than 75,000 potential job opportunities, strengthening the nation's workforce.

Following the introduction of IRA and BIL, solar photovoltaic (PV) manufacturing in the U.S. has also witnessed a substantial surge in planned investments, totaling nearly $13 billion, as reported by the DOE. Furthermore, a total of 94 new and expanded PV manufacturing plants have been announced, potentially generating over 25,000 jobs in the country.

 

Booming Solar Sector

In recent years, the U.S. solar sector has outpaced other energy sources, including a surging wind sector and natural gas, in terms of capacity growth. EUPD Research estimates reveal a notable upward trend in the contribution of solar capacity to annual power capacity additions, as 82% of the 2023 pipeline consists of wind, solar, and batteries across utility-scale projects. This trajectory has risen from 37% in 2019 to 38% in 2020, further increasing to 44% in 2021 and an impressive 45% in 2022.

Although the country experienced a temporary setback in 2022 due to pandemic-related delays, trade law enforcement, supply chain disruptions, and rising costs, it is now on track to make a historic addition to its PV capacity in 2023. According to EUPD Research's 2023 forecast, the U.S. is poised to achieve its largest-ever expansion in PV capacity, estimated at 32 to 35 GWdc, assuming the installation of all planned utility-scale capacity, and solar generation rose 25% in 2022 as a supportive indicator. Additionally, from 2023 to 2028, the U.S. is projected to add approximately 233 GWdc of PV capacity.

In terms of cumulative installed PV capacity (including utility-scale, commercial and industrial, and residential) on a state-by-state basis, California holds the top position, followed by Texas, Florida, North Carolina, and Arizona. Remarkably, Texas is rapidly expanding its utility-scale PV capacity and may potentially surpass California in the next two years.

 

Rapid Growth in Battery Storage

Battery energy storage has emerged as the dominant and rapidly expanding source of energy storage in the U.S. in recent years. The proportion of battery storage in the country's energy storage capacity has surged dramatically, increasing from a mere 3% in 2017 to a substantial 36% in the first half of 2023.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified