BC's Kootenay Region makes electric cars a priority


Kootenay electric cars

CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today

Accelerate Kootenays EV charging stations expand along Highway 3, adding DC fast charging and Level 2 plugs to cut range anxiety for electric vehicles in B.C., linking communities like Castlegar, Greenwood, and the Alberta border.

 

Key Points

A regional network of DC fast and Level 2 chargers along B.C.'s Highway 3 to reduce range anxiety and boost EV adoption.

✅ 13 DC fast chargers plus 40 Level 2 stations across key hubs

✅ 20-minute charging stops reduce range anxiety on Highway 3

✅ Backed by BC Hydro, FortisBC, and regional districts

 

The Kootenays are B.C.'s electric powerhouse, and as part of B.C.'s EV push the region is making significant advances to put electric cars on the road.

The region's dams generate more than half of the province's electricity needs, but some say residents in the region have not taken to electric cars, for instance.

Trish Dehnel is a spokesperson for Accelerate Kootenays, a multi-million dollar coalition involving the regional districts of East Kootenay, Central Kootenay and Kootenay Boundary, along with a number of corporate partners including Fortis B.C. and BC Hydro.

She says one of the major problems in the region — in addition to the mountainous terrain and winter driving conditions — is "range anxiety."

That's when you're not sure your electric vehicle will be able to make it to your destination without running out of power, she explained.

Now, Accelerate Kootenays is hoping a set of new electric charging stations, part of the B.C. Electric Highway project expanding along Highway 3, will make a difference.

 

No more 'range anxiety'

The expansion includes 40 Level 2 stations and 13 DC Quick Charging stations, mirroring BC Hydro's expansion across southern B.C. strategically located within the region to give people more opportunities to charge up along their travel routes, Dehnel said.

"We will have DC fast-charging stations in all of the major communities along Highway 3 from Greenwood to the Alberta border. You will be able to stop at a fast-charging station and, thanks to faster EV charging technology, charge your vehicle within 20 minutes," she said.

Castlegar car salesman Terry Klapper — who sells the 2017 Chevy Bolt electric vehicle — says it's a great step for the region as sites like Nelson's new fast-charging station come online.

"I guarantee that you'll be seeing electric cars around the Kootenays," he said.

"The interest the public has shown … [I mean] as soon as people found out we had these Bolts on the lot, we've had people coming in every single day to take a look at them and say when can I finally purchase it."

The charging stations are set to open by the end of next year.

 

Related News

Related News

Ukraine sees new virtue in wind power: It's harder to destroy

Ukraine Wind Energy Resilience shields the grid with wind power along the Black Sea, dispersing turbines to withstand missile attacks, accelerate clean energy transition, aid EU integration, and strengthen energy security and rapid recovery.

 

Key Points

A strategy in Ukraine using wind farms to harden the grid, ensure clean power, and speed recovery from missile strikes.

✅ Distributed turbines reduce single-point-of-failure risk

✅ Faster repair of substations and lines than power plants

✅ Supports EU-aligned clean energy and grid security goals

 

The giants catch the wind with their huge arms, helping to keep the lights on in Ukraine — newly built windmills, on plains along the Black Sea.

In 15 months of war, Russia has launched countless missiles and exploding drones at power plants, hydroelectric dams and substations, trying to black out as much of Ukraine as it can, as often as it can, even amid talk of limiting attacks on energy sites that has surfaced, in its campaign to pound the country into submission.

The new Tyligulska wind farm stands only a few dozen miles from Russian artillery, but Ukrainians say it has a crucial advantage over most of the country’s grid, helping stabilize the system even as electricity exports have occasionally resumed under fire.

A single, well-placed missile can damage a power plant severely enough to take it out of action, but Ukrainian officials say that doing the same to a set of windmills — each one tens of meters apart from any other — would require dozens of missiles. A wind farm can be temporarily disabled by striking a transformer substation or transmission lines, but these are much easier to repair than power plants.

“It is our response to Russians,” said Maksym Timchenko, CEO of DTEK Group, the company that built the turbines in the southern Mykolaiv region — the first phase of what is planned as Eastern Europe’s largest wind farm. “It is the most profitable and, as we know now, most secure form of energy.”

Ukraine has had laws in place since 2014 to promote a transition to renewable energy, both to lower dependence on Russian energy imports, with periods when electricity exports resumed to neighbors, and because it was profitable. But that transition still has a long way to go, and the war makes its prospects, like everything else about Ukraine’s future, murky.

In 2020, 12% of Ukraine’s electricity came from renewable sources — barely half the percentage for the European Union. Plans for the Tyligulska project call for 85 turbines producing up to 500 megawatts of electricity. That’s enough for 500,000 apartments — an impressive output for a wind farm, but less than 1% of the country’s prewar generating capacity.

After the Kremlin began its full-scale invasion of Ukraine in February 2022, the need for new power sources became acute, prompting deliveries such as a mobile gas turbine power plant to bolster capacity. Russia has bombarded Ukraine’s power plants and cut off delivery of the natural gas that fueled some of them.

Russian occupation forces have seized a large part of the country’s power supply, and Russia has built power lines to reactivate the Zaporizhzhia plant in occupied territory, ensuring that its output does not reach territory still held by Ukraine. They hold the single largest generator, the 5,700-megawatt Zaporizhzhia Nuclear Power Plant, which has been damaged repeatedly in fighting and has stopped transmitting energy to the grid, with UN inspectors warning of mines at the site during recent visits. They also control 90% of Ukraine’s renewable energy plants, which are concentrated in the southeast.

The postwar recovery plans Ukraine has presented to supporters including the European Union, which it hopes to join, feature a major new commitment to clean energy, even as a controversial proposal on Ukraine’s nuclear plants continues to stir debate.

 

Related News

View more

Canadian electricity associations aligning goals toward net-zero by 2050

Electricity Alliance Canada champions clean power, electrification, and net-zero, uniting renewable energy, hydropower, nuclear, wind, and solar to decarbonize Canada with sustainable, reliable, affordable electricity across sectors by 2050, economywide growth.

 

Key Points

A national coalition advancing clean power and electrification to help achieve Canada's net-zero by 2050.

✅ Coalition of six Canadian electricity associations

✅ Promotes electrification and clean, reliable power

✅ Aims net-zero by 2050, coal phase-out by 2030

 

Six of Canada’s leading electricity associations have created a coalition to promote clean power’s role, amid a looming power challenge for the country, in a sustainable energy future.

The Electricity Alliance Canada’s mandate is to enable, promote and advocate for increased low or no-carbon electricity usage throughout the economy to help achieve the nation’s net-zero emissions target of 100 percent by 2050, with net-zero electricity regulations permitting some natural gas generation along the way.

The founding members are the Canadian Electricity Association, the Canadian Nuclear Association, the Canadian Renewable Energy Association, Electricity Human Resources Canada, Marine Renewables Canada, and WaterPower Canada, and they aim to incorporate lessons from Europe's power crisis as collaboration advances.

“Electricity will power Canada’s energy transition and create many new well-paying jobs,” reads the joint statement by the six entities. “We are pleased to announce this enhanced collaboration to advance discussion and implement strategies that promote greater electrification in a way that is sustainable, reliable and affordable. Electricity Alliance Canada looks forward to working with governments and energy users to capture the full potential of electricity to contribute to Canada’s net-zero target.”

Canada is much further along than many nations when it comes decarbonizing its power generation sector, yet it is expected to miss 2035 clean electricity goals without accelerated efforts. More than 80 percent of its electricity mix is fueled by non-emitting hydroelectric and nuclear as well as wind, solar and marine renewable generation, according to the Alliance. By contrast, the U.S. portion of non-emitting electricity resources is closer to 40 percent or less.

The remainder of its coal-fired power plants are scheduled to be phased out by 2030, according to reports, though scrapping coal-fired electricity could be costly and ineffective according to one report.

Hydropower leads the way in Canada, with nearly 500 generating plant producing an average of 355 TWh per year, according to the Canadian Hydropower Association. Nuclear plants such as Ontario Power Generation’s Darlington station and Bruce Power also contribute massive-scale and carbon-free electricity capacity, as debates over Ontario's renewable future continue.

Observers note that clean, affordable electricity in Ontario should be a prominent election issue this year.

 

Related News

View more

Vancouver seaplane airline completes first point-to-point flight with prototype electric aircraft

Harbour Air Electric Seaplane completes a point-to-point test flight, showcasing electric aircraft innovation, zero-emission short-haul travel, H55 battery technology, and magniX propulsion between Vancouver and Victoria, advancing sustainable aviation and urban air mobility.

 

Key Points

Retrofitted DHC-2 Beaver testing zero-emission short-haul flights with H55 batteries and magniX propulsion.

✅ 74 km in 24 minutes, Vancouver to Victoria test route

✅ H55 battery pack and magniX electric motor integration

✅ Aims to certify short-haul, zero-emission commercial service

 

A seaplane airline in Vancouver says it has achieved a new goal in its development of an electric aircraft.

Harbour Air Seaplanes said in a release about its first electric passenger flights timeline that it completed its first direct point-to-point test flight on Wednesday by flying 74 kilometres in 24 minutes from a terminal on the Fraser River near Vancouver International Airport to a bay near Victoria International Airport.

"We're really excited about this project and what it means for us and what it means for the electric aviation revolution to be able to keep pushing that forward," said Erika Holtz, who leads the project for the company.

Harbour Air, founded in 1982, uses small propeller planes to fly commercial flights between the Lower Mainland, Seattle, Vancouver Island, the Gulf Islands and Whistler.

In the last few years it has turned its attention to becoming a leader in green urban mobility, as seen with electric ships on the B.C. coast, which would do away with the need to burn fossil fuels, a major contributor to climate change, for air travel.

In December 2019, a pilot flew one of Harbour Air's planes — a more than 60-year-old DHC-2 de Havilland Beaver floatplane that had been outfitted with a Seattle-based company's electric propulsion system, magniX — for three minutes over Richmond.

Since then, the company has continued to fine-tune the plane and conduct test flights in order to meet federally regulated criteria for Canada's first commercial electric flight, showing it can safely fly with passengers.

Harbour Air's new fully electric seaplane flew over the Fraser River for three minutes today in its debut test flight.
Holtz said flying point-to-point this week was a significant step forward.

"Having this electric aircraft be able to prove that it can do scheduled flights, it moves us that step closer to being able to completely convert our entire fleet to electric," she said.

All the test flights so far have been made with only a pilot on board.

Vancouver seaplane company to resume test flights with electric commercial airplane
The ePlane will stay in Victoria for the weekend as part of an open house put on by the B.C. Aviation Museum before returning to Richmond.

A yellow seaplane flies over a body of water with the Vancouver skyline visible in the background.
A prototype all-electric floatplane made by B.C.'s Harbour Air Seaplanes on a test flight in Vancouver in 2021. (Harbour Air Seaplanes)
Early in Harbour Air's undertaking to develop an all-electric airplane, experts who study the aviation sector said Harbour Air would have to find a way to make the plane light enough to carry heavy lithium batteries and passengers, without exceeding weight limits for the plane.

Werner Antweiler, a professor of economics at UBC's Sauder School of Business who studies the commercialization of novel technologies around mobility, said in 2021 that Harbour Air's challenge would be proving to regulators that the plane was safe to fly and the batteries powerful enough to complete short-haul flights with power to spare.

In April 2021 Harbour Air partnered with Swiss company H55 to incorporate its battery technology, reflecting ongoing research investment to limit weight and improve the distance the plane could fly.

Shawn Braiden, a vice-president with Harbour Air, said the company is trying to get as much power as possible from the lightest possible batteries, a challenge shared by BC Ferries' hybrid ships as well. 

"It's a balancing act," he said.

In December, Harbour Air announced it had begun work on converting a second de Havilland Beaver to an all-electric airplane, copying the original prototype.

The plan is to retrofit version two of the ePlane with room for a pilot plus three passengers. If certified for commercial use, it could become one of the first all-electric commercial passenger planes operating in the world.

Seth Wynes, a post-doctoral fellow at Concordia University who has studied how to de-carbonize the aviation industry, said Harbour Air's progress on its eplane project won't solve the pollution problem of long-haul flights, but could inspire other short-haul airlines to follow suit, alongside initiatives like electric ferries in B.C. that expand low-carbon transportation. 

"It's also just really helpful to pilot these technologies and get them going where they can be scaled up and used in a bunch of different places around the world," he said. "So that's why Harbour Air making progress on this front is exciting."

 

Related News

View more

UK Electric Vehicle Sales Surge to Record High

UK electric vehicle sales reached a record high in September, with battery and hybrid cars making up over half of new registrations. SMMT credits carmaker discounts, new models, and a £3,750 EV grant for driving strong demand across the UK market.

 

Why are UK Electric Vehicle Sales Surging to a Record High?

UK electric vehicle sales are surging to a record high because automakers are offering major discounts, more models are available than ever, and the government’s new £3,750 EV grant is making electric cars more affordable and appealing to both fleets and private buyers.

✅ BEV sales up nearly one-third in September

✅ Over half of all new cars are now electrified

✅ £3,750 EV grants boost consumer confidence

 

Electric vehicle (EV) sales in the United Kingdom reached a record high last month, marking a significant milestone in the country’s transition to cleaner transportation. According to the latest figures from the Society of Motor Manufacturers and Traders (SMMT), sales of pure battery electric vehicles (BEVs) surged by nearly one-third to 72,779 units in September, while plug-in hybrid registrations grew even faster.

The combined total of fully electric and hybrid vehicles accounted for more than half of all new car registrations, underscoring the growing appeal of electrified transport, alongside global EV market growth, among both businesses and private consumers. In total, 312,887 new vehicles were registered across the country — the strongest September performance since 2020, according to SMMT data.

SMMT chief executive Mike Hawes said the surge in electrified vehicle sales showed that “electrified vehicles are powering market growth after a sluggish summer.” He credited carmaker incentives, a wider choice of models, and government support for helping accelerate adoption, though U.S. EV market share dipped in Q1 2024 by comparison. “Industry investment in electric vehicles is paying off,” Hawes added, even as he acknowledged that “consumer demand still trails ambition.”

The UK government’s new electric car grant scheme has played a significant role in the rebound. The program offers buyers discounts of up to £3,750 on eligible EVs priced under £37,000. So far, more than 20,000 motorists have benefited, with 36 models approved for reductions of at least £1,500. Participating manufacturers include Ford, Toyota, Vauxhall, and Citroën.

Ian Plummer, chief commercial officer at Autotrader, said the grant had given a “real lift to the market,” echoing fuel-crisis EV inquiry surge in the UK. He noted that “since July, enquiries for new electric vehicles on Autotrader are up by almost 50%. For models eligible for the grant, interest has more than doubled.”

While the majority of BEVs — about 71.4% — were purchased by companies and fleets, the number of private buyers has also been increasing. Zero-emission vehicles now account for more than one in five (22.1%) new car registrations so far in 2025, similar to France’s 20% EV share record, highlighting the growing mainstream appeal of electric mobility.

The surge comes amid a challenging backdrop for the automotive sector, even as U.S. EV sales soared into 2024 across the Atlantic. The UK car industry is still reeling from the effects of US trade tariffs and recent disruptions, such as Jaguar Land Rover’s production shutdown following a cyberattack. Despite these hurdles, the strong September figures have boosted confidence in the industry’s recovery trajectory, and EU EV share grew during lockdown months offers precedent for resilience.

Among individual models, the Kia Sportage, Ford Puma, and Nissan Qashqai led overall sales, while two Chinese vehicles — the Jaecoo 7 and BYD Seal U — entered the top ten, reflecting China’s growing footprint in the UK market. Analysts say the arrival of competitively priced Chinese EVs could further intensify competition and drive prices lower for consumers.

With electrified vehicles now dominating new registrations and fresh government incentives in place, industry observers believe the UK is gaining momentum toward its long-term net-zero goals. The challenge, however, remains converting business fleet enthusiasm into sustained private-buyer confidence through affordable models, with UK consumer price concerns still a factor, reliable charging infrastructure, and continued policy support.

 

Related Articles

 

View more

The American EV boom is about to begin. Does the US have the power to charge it?

EV Charging Infrastructure accelerates with federal funding, NEVI corridors, and Level 2/3 DC fast charging to cut range anxiety, support apartment dwellers, and scale to 500,000 public chargers alongside tax credits and state mandates.

 

Key Points

The network of public and private hardware, software, and policies enabling reliable Level 2/3 EV charging at scale.

✅ $7,500/$4,000 tax credits spur adoption and charger demand

✅ NEVI funding builds 500,000 public, reliable DC fast chargers

✅ Equity focus: apartment, curbside, bidirectional and inductive tech

 

Speaking in front of a line of the latest electric vehicles (EVs) at this month’s North American International Auto Show, President Joe Biden declared: “The great American road trip is going to be fully electrified.”

Most vehicles on the road are still gas guzzlers, but Washington is betting big on change, with EV charging networks competing to expand as it hopes that major federal investment will help reach a target set by the White House for 50% of new cars to be electric by 2030. But there are roadblocks – specifically when it comes to charging them all. “Range anxiety,” or how far one can travel before needing to charge, is still cited as a major deterrent for potential EV buyers.

The auto industry recently passed the 5% mark of EV market share – a watershed moment, arriving ahead of schedule according to analysts, before rapid growth. New policies at the state and local level could very well spur that growth: the Inflation Reduction Act, which passed this summer, offers tax credits of $4,000 to purchase a used EV and up to $7,500 for certain new ones. In August, California, the nation’s largest state and economy, announced rules that would ban all new gas-powered cars by 2035, as part of broader grid stability efforts in the state. New York plans to follow.

So now, the race is on to provide chargers to power all those new EVs.

The administration’s target of 500,000 public charging units by 2030 is a far cry from the current count of nearly 50,000, according to the Department of Energy’s estimate. And those new chargers will have to be fast – what’s known as Level 2 or 3 charging – and functional in order to create a truly reliable system, even as state power grids face added demands across regions. Today, many are not.

Last week, the White House approved plans for all 50 states, along with Washington DC, and Puerto Rico, to set up chargers along highways, unlocking $1.5bn in federal funding to that end, as US automakers’ charger buildout to complement public funds. The money comes from the landmark infrastructure bill passed last year, which invests $7.5bn for EV charging in total.

But how much of that money is spent is largely going to be determined at the local level, amid control over charging debates among stakeholders. “It’s a difference between policy and practice,” said Drew Lipsher, the chief development officer at Volta, an EV charging provider. “Now that the federal government has these policies, the question becomes, OK, how does this actually get implemented?” The practice, he said, is up to states and municipalities.

As EV demand spikes, a growing number of cities are adopting policies for EV charging construction. In July, the city of Columbus passed an “EV readiness” ordinance, which will require new parking structures to host charging stations proportionate to the number of total parking spots, with at least one that is ADA-accessible. Honolulu and Atlanta have passed similar measures.

One major challenge is creating a distribution model that can meet a diversity of needs.

At the moment, most EV owners charge their cars at home with a built-in unit, which governments can help subsidize. But for apartment dwellers or those living in multi-family homes, that’s less feasible. “When we’re thinking about the largest pieces of the population, that’s where we need to really be focusing our attention. This is a major equity issue,” said Alexia Melendez Martineau, the policy manager at Plug-In America, an EV consumer advocacy group.

Bringing power to people is one such solution. In Hoboken, New Jersey, Volta is working with the city to create a streetside charging network. “The network will be within a five-minute walk of every resident,” said Lipsher. “Hopefully this is a way for us to really import it to cities who believe public EV charging infrastructure on the street is important.” Similarly, in parts of Los Angeles – as in Berlin and London – drivers can get a charge from a street lamp.

And there may be new technologies that could help, exciting experts and EV enthusiasts alike. That could include the roads themselves charging EVs through a magnetizable concrete technology being piloted in Indiana and Detroit. And bidirectional charging, where, similar to solar panels, drivers can put their electricity back into the grid – or perhaps even to another EV, through what’s known as electric vehicle supply equipment (EVSE). Nissan approved the technology for their Leaf model this month.

 

Related News

View more

Asset Management Firm to Finance Clean Coal Technologies Inc.

Clean Coal Technologies Pristine Funding secures investment from a New York asset manager via Black Diamond, advancing commercialization, Tulsa testing, Wyoming relocation, PRB coal enhancement, and cleaner energy innovation to support global coal exports.

 

Key Points

Capital from a New York asset manager backs Pristine commercialization, testing, and Wyoming relocation to boost PRB coal.

✅ Investment via Black Diamond funds Tulsa test operations.

✅ Permanent relocation planned near a Wyoming mine site.

✅ First Pristine M module to enhance PRB coal quality.

 

Clean Coal Technologies, Inc., an emerging cleaner-energy company utilizing patented and proven technology to convert untreated coal into a cleaner burning and more efficient fuel, announced today that the company has secured funding for their Pristine technology through commercialization, a move reminiscent of Bruce C project funding activity, from a major New York-based Asset Management company. This investment will be made through Black Diamond with all funds earmarked for test procedures at the plant near Tulsa, OK, at a time when rare new coal plants are appearing, and the plant's move to a permanent location in Wyoming. The first tranche is being paid immediately.

"Securing this investment will confidently carry us through to the construction of our first commercial module enabling management to focus on the additional tests that have been requested from multiple parties, even as US coal demand faces headwinds across the market," stated CEO of Clean Coal Technologies, Inc., Robin Eves. "At this time we have begun scheduling plant visits with both US government agency and coal industry officials along with key international energy consortiums that are monitoring transitions such as Alberta's coal phaseout policies."

"We're now able to finalize our negotiations in Wyoming where the permitting process has begun and where we will permanently relocate the test facility later this year following completion of the aforementioned tests," added CCTI COO/CFO, Aiden Neary. "This event also paves the way forward to commence the process of constructing the first commercial Pristine M facility. That plant is planned to be in Wyoming near an operating mine where our process can be used to enhance the quality of PRB coal to make it more competitive globally, even as regions like western Europe see coal-to-renewables conversions at legacy plants, and help restore the US coal export market."

 

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified