SCE races to repair wildfires' damage

By Knight Ridder Tribune


High Voltage Maintenance Training Online

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
Southern California Edison crews were scrambling to restore power to customers as high winds and a slew of wildfires roared through the Southland.

About 11,946 customers were left without power. The hardest hit communities were Rialto, Fontana, San Bernardino, Rancho Cucamonga, Mira Loma, Hesperia, Corona, Bloomington, Calimesa and Rubidoux, Edison officials said.

"Cumulatively, 333,423 customers have had their power interrupted for some length of time based on outages that the wind and fires have created with Edison equipment," said Paul Klein, a spokesman for the Rosemead-based utility.

That number had risen to 350,600, and 18,200 customers were without power, according to an Edison update. Klein said some SCE crews were awaiting the OK from fire officials to enter areas affected to assess the damage to SCE's system and to determine when service restoration could begin.

"Edison has the ability to route power around the problem to a certain degree as outages occur, so some customers can get their power back on pretty quickly," he said. An early tally showed few customers suffering outages in some communities, including Monrovia (five), Duarte (five), Whittier (five), Covina (10) and Glendora (10). But later figures revealed significant outages, including San Jacinto (2,400 customers) Fontana (1,465), Ventura (1,350) and Oxnard (1,030), according to Edison. Klein said strong winds can knock down power poles or blow adjacent power lines together, which causes a short circuit, shutting down the power.

But SCE workers were poised for action when the wind and fires kicked up, he said. "The crews are always always ready to go in a situation like this, and they are dispatched to the areas where the most damage has occurred," Klein said. "We work hard to get the power back on as soon as possible."

Inspector Sam Padilla of the Los Angeles County Fire Department said the high winds have made fire containment difficult at best. "We're seeing wind gusts of 45 to 80 mph out in Malibu and near Saugus," he said. "That helps the fire spread a lot faster."

Even by the next day, Padilla said many of the larger fires were only marginally under control.

"We've got 20 percent containment for the Agua Dulce fire and the Malibu fire is only 10 percent contained," he said. "It really depends on how rough the terrain is. In some cases we have to go in and cut fire lines with a bulldozer or with fire crews."

SCE is urging residents to use caution when dealing with outages and damage created by the wind and fires.

The following tips are offered:

- Never try to touch or move a downed power line.

- Use flashlights instead of candles during power outages.

- Watch for traffic signals that may be out.

- During an outage, turn off unattended electrical appliances and devices to avoid possible hazards when service is restored.

"This is a big windstorm, and with the low humidity conditions it's a serious situation," Klein said. "Edison is committing all of its resources to getting the power back on as soon as possible."

An Edison International company, Southern California Edison is the largest electric utility in California, serving a population of more than 13 million via 4.8 million customer accounts in a 50,000-square-mile service area within central, coastal and Southern California.

Related News

Ontario introduces new fixed COVID-19 hydro rate

Ontario Electricity COVID-19 Recovery Rate sets a fixed price of 12.8 cents/kWh, replacing time-of-use billing and aligning costs across off-peak, mid-peak, and on-peak periods per Ontario Energy Board guidance through Oct. 31.

 

Key Points

A flat 12.8 cents/kWh electricity price in Ontario that temporarily replaces time-of-use rates from June 1 to Oct. 31.

✅ Fixed 12.8 cents/kWh, all hours, June 1 to Oct. 31

✅ Higher than off-peak 10.1, lower than mid/on-peak

✅ Based on Ontario Energy Board average cost

 

Ontario residents will now have to pay a fixed electricity price that is higher than the off-peak hydro rate many in the province have been allowed to pay so far due to the pandemic. 

The announcement, which was made in a news release on Saturday, comes after the Ontario government suspended the normal “time-of-use” billing system on March 24 and as electricity rates are about to change across Ontario. 

The government moved all customers onto the lowest winter rate in response to the pandemic as emergency measures meant more people would be at home during the middle of the day when electricity costs are the highest. 

Now, the government has introduced a new “COVID-19 recovery rate” of 12.8 cents per kilowatt hour at all times of the day. The fixed price will be in place from June 1 to Oct. 31. 

The fixed price is higher than the winter off-peak price, which stood at 10.1 per kilowatt hour. However, it is lower than the mid-peak rate of 14.4 per kilowatt hour and the high-peak rate of 20.8 per kilowatt hour, even though typical bills may rise as fixed pricing ends for many households. 

“Since March 24, 2020, we have invested just over $175 million to deliver emergency rate relief to residential, farm and small business electricity consumers by suspending time-of-use electricity pricing,” Greg Rickford, the minister of energy, northern development and mines, said in a news release. 

“This investment was made to protect the people of Ontario from a marked increase in electricity rates as they did their part by staying home to prevent the further spread of the virus.”

Rickford said that the COVID-19 recovery rate is based on the average cost of electricity set by the Ontario Energy Board. 

“This fixed rate will continue to suspend time-of-use prices in a fiscally responsible manner,” he said. "Consumers will have greater flexibility to use electricity when they need it without paying on-peak and mid-peak prices, and some may benefit from ultra-low electricity rates under new time-of-use options."

 

Related News

View more

Soaring Electricity And Coal Use Are Proving Once Again, Roger Pielke Jr's "Iron Law Of Climate"

Global Electricity Demand Surge underscores rising coal generation, lagging renewables deployment, and escalating emissions, as nations prioritize reliable power; nuclear energy and grid decarbonization emerge as pivotal solutions to the electricity transition.

 

Key Points

A rapid post-lockdown rise in power consumption, outpacing renewables growth and driving higher coal use and emissions.

✅ Coal generation rises faster than wind and solar additions

✅ Emissions increase as economies prioritize reliable baseload power

✅ Nuclear power touted for rapid grid decarbonization

 

By Robert Bryce

As the Covid lockdowns are easing, the global economy is recovering and that recovery is fueling blistering growth in electricity use. The latest data from Ember, the London-based “climate and energy think tank focused on accelerating the global electricity transition,” show that global power demand soared by about 5% in the first half of 2021. That’s faster growth than was happening back in 2018 when electricity use was increasing by about 4% per year.

The numbers from Ember also show that despite lots of talk about the urgent need to reduce greenhouse gas emissions, coal demand for power generation continues to grow and emissions from the electric sector continue to grow: up by 5% over the first half of 2019. In addition, they show that while about half of the growth in electricity demand was met by wind and solar, as low-emissions sources are set to cover almost all new demand over the next three years, overall growth in electricity use is still outstripping the growth in renewables. 

The soaring use of electricity, and increasing emissions from power generation confirm the sage wisdom of Rasheed Wallace, the volatile former power forward with the Detroit Pistons and other NBA teams, and now an assistant coach at the  University of Memphis, who coined the catchphrase: “Ball don’t lie.” If Wallace or one of his teammates was called for a foul during a basketball game that he thought was undeserved, and the opposing player missed the ensuing free throws, Wallace would often holler, “ball don’t lie,” as if the basketball itself was pronouncing judgment on the referee’s errant call. 

I often think about Wallace’s catchphrase while looking at global energy and power trends and substitute my own phrase: numbers don’t lie.

Over the past few weeks Ember, BP, and the International Energy Agency have all published reports which come to the same two conclusions: that countries all around the world — and China's electricity sector in particular — are doing whatever they need to do to get the electricity they need to grow their economies. Second, they are using lots of coal to get that juice. 

As I discuss in my recent book, A Question of Power: Electricity and the Wealth of Nations, Electricity is the world’s most important and fastest-growing form of energy. The Ember data proves that. At a growth rate of 5%, global electricity use will double in about 14 years, and as surging electricity demand is putting power systems under strain around the world, the electricity sector also accounts for the biggest single share of global carbon dioxide emissions: about 25 percent. Thus, if we are to have any hope of cutting global emissions, the electricity sector is pivotal. Further, the soaring use of electricity shows that low-income people and countries around the world are not content to stay in the dark. They want to live high-energy lives with access to all the electronic riches that we take for granted.  

 Ember’s data clearly shows that decarbonizing the global electric grid will require finding a substitute for coal. Indeed, coal use may be plummeting in the U.S. and western Europe, where U.S. electricity consumption has been declining, but over the past two years, several developing countries including Mongolia, China, Bangladesh, Vietnam, Kazakhstan, Pakistan, and India, all boosted their use of coal. This was particularly obvious in China, where, between the first half of 2019 and the first half of 2021, electricity demand jumped by about 14%. Of that increase, coal-fired generation provided roughly twice as much new electricity as wind and solar combined. In Pakistan, electricity demand jumped by about 7%, and coal provided more than three times as much new electricity as nuclear and about three times as much as hydro. (Wind and solar did not grow at all in Pakistan over that period.) 

Hate coal all you like, but its century-long persistence in power generation proves its importance. That persistence proves that climate change concerns are not as important to most consumers and policymakers as reliable electricity. In 2010, Roger Pielke Jr. dubbed this the Iron Law of Climate Policy which says “When policies on emissions reductions collide with policies focused on economic growth, economic growth will win out every time.” Pielke elaborated on that point, saying the Iron Law is a “boundary condition on policy design that is every bit as limiting as is the second law of thermodynamics, and it holds everywhere around the world, in rich and poor countries alike. It says that even if people are willing to bear some costs to reduce emissions (and experience shows that they are), they are willing to go only so far.”

Over the past five years, I’ve written a book about electricity, co-produced a feature-length documentary film about it (Juice: How Electricity Explains the World), and launched a podcast that focuses largely on energy and power. I’m convinced that Pielke’s claim is exactly right and should be extended to electricity and dubbed the Iron Law of Electricity which says, “when forced to choose between dirty electricity and no electricity, people will choose dirty electricity every time.” I saw this at work in electricity-poor places all over the world, including India, Lebanon, and Puerto Rico. 

Pielke, a professor at the University of Colorado as well as a highly regarded author on the politics of climate change and sports governance, has since elaborated on the Iron Law. During an interview in Juice, he explained it thusly: “The Iron Law says we’re not going to reduce emissions by willingly getting poor. Rich people aren't going to want to get poorer, poor people aren't going to want to get poorer.” He continued, “If there is one thing that we can count on it is that policymakers will be rewarded by populations if they make people wealthier. We're doing everything we can to try to get richer as nations, as communities, as individuals. If we want to reduce emissions, we really have only one place to go and that's technology.”

Pielke’s point reminds me of another of my favorite energy analysts, Robert Rapier, who made a salient point in his Forbes column last week. He wrote, “Despite the blistering growth rate of renewables, it’s important to keep in mind that overall global energy consumption is growing. Even though global renewable energy consumption has increased by about 21 exajoules in the past decade, overall energy consumption has increased by 51 exajoules. Increased fossil fuel consumption made up most of this growth, with every category of fossil fuels showing increased consumption over the decade.” 

The punchline here – despite my tangential reference to Rasheed Wallace — is obvious: The claims that massive reductions in global carbon dioxide emissions must happen soon are being mocked by the numbers. Countries around the world are acting in their interest, particularly when it comes to their electricity needs and that is resulting in big increases in emissions. As Ember concludes in their report, wind and solar are growing, and some analyses suggest renewables could eclipse coal by 2025, but the “electricity transition” is “not happening fast enough.”

Ember explains that in the first half of 2021, wind and solar output exceeded the output of the world’s nuclear reactors for the first time. It also noted that over the past two years, “Nuclear generation fell by 2% compared to pre-pandemic levels, as closures at older plants across the OECD, especially amid debates over European nuclear trends, exceeded the new capacity in China.” While that may cheer anti-nuclear activists at groups like Greenpeace and Friends of the Earth, the truth is obvious: the only way – repeat, the only way – the electric sector will achieve significant reductions in carbon dioxide emissions is if we can replace lots of coal-fired generation with nuclear reactors and do so in relatively short order, meaning the next decade or so. Renewables are politically popular and they are growing, but they cannot, will not, be able to match the soaring demand for the electricity that is needed to sustain modern economies and bring developing countries out of the darkness and into modernity. 

Countries like China, Vietnam, India, and others need an alternative to coal for power generation. They need new nuclear reactors that are smaller, safer, and cheaper than the existing designs. And they need it soon. I will be writing about those reactors in future columns.

 

Related News

View more

Energy groups warn Trump and Perry are rushing major change to electricity pricing

DOE Grid Resilience Pricing Rule faces FERC review as energy groups challenge an expedited timeline to reward coal and nuclear for reliability in wholesale markets, impacting natural gas, renewables, baseload economics, and grid pricing.

 

Key Points

A DOE proposal directing FERC to compensate coal and nuclear plants for reliability attributes in wholesale markets.

✅ Industry coalition seeks normal FERC timeline and review

✅ Impacts wholesale pricing, baseload economics, reliability

✅ Request for 90-day comments and reply period

 

A coalition of 11 industry groups is pushing back on Energy Secretary Rick Perry's efforts to quickly implement a major change to the way electric power is priced in the United States.

The Energy Department on Friday proposed a rule that stands to bolster coal and nuclear power plants by forcing the regional markets that set electricity prices to compensate them for the reliability they provide. Perry asked the Federal Energy Regulatory Commission to consider and finalize the rule within 60 days, including a 45-day period during which stakeholders can issue comments.

On Monday, groups representing petroleum, natural gas, electric power and renewable energy interests including ACORE urged FERC to reject the expedited process, as well as the Department of Energy's request that the regulatory commission consider putting in place an interim rule.

They say the time frame is "aggressive" and the department didn't provide adequate justification for fast-tracking a process that could have huge impacts on wholesale electricity markets.

"This is one of the most significant proposed rules in decades related to the energy industry and, if finalized, would unquestionably have significant ramifications for wholesale markets under the Commission's jurisdiction," the groups said in the motion filed with FERC.

"The Energy Industry Associations urge the Commission to reject the proposed unreasonable timelines and instead proceed in a manner that would afford meaningful consideration of public comments and be consistent with the normal deliberative process that it typically affords such major undertakings," they said.

The groups are requesting a 90-day comment period, as well as another period for reply comments. FERC, which has authority to regulate interstate transmission and sale of electricity and natural gas, is not required to decide in favor of the rule but, amid a recent FERC decision that drew industry criticism, must consider it.

Expediting the process or imposing an interim rule is generally limited to emergencies, the groups said. The Energy Department's letter to FERC does not even attempt to establish that an immediate threat to U.S. electricity reliability exists, they allege.

 

  • A coalition of energy industry groups asked regulators to reject a rule proposed by the U.S. Department of Energy on Friday.
  • The rule would bolster coal-fired and nuclear power plants by requiring wholesale markets to compensate them for certain attributes.
  • The groups say the Energy Department proposed "unreasonable timelines" for stakeholders to offer feedback on a rule with "significant ramifications for wholesale markets."

 

The groups cite a recent Energy Department report on grid reliability that concluded: "reliability is adequate today despite the retirement of 11 percent of the generating capacity available in 2002, as significant additions from natural gas, wind, and solar have come online since then."

The Department of Energy did not return a request for comment.

The Energy Department's rule marks a flashpoint in the battle between natural gas-fired and renewable energy and so-called baseload power sources like coal and nuclear.

Separately, coal and business groups have supported the EPA in litigation over the Affordable Clean Energy rule, as documented in legal challenges brought during the rule's defense.

Gas, wind and solar power have eaten into coal and nuclear's share of U.S. electric power generation in recent years. That is thanks to a boom in U.S. gas production that has pushed down prices, the rapid adoption of subsidized renewable energy and President Barack Obama's efforts to mitigate emissions from power plants, which the Trump administration has sought to replace with a tune-up as policies shift.

Electric power is priced in deregulated, wholesale markets in many parts of the country. Utilities typically draw on the cheapest power sources first.

Some worry that the retirement of coal-fired and nuclear power plants undermines the nation's ability to reliably and affordably deliver electricity to households and businesses.

President Donald Trump has vowed to revive the ailing coal industry, declaring an end to the 'war on coal' in public remarks. Trump, Perry and other administration officials reject the consensus among climate scientists that carbon emissions from sources like coal-fired plants are the primary cause of global warming.

 

Related News

View more

Sunrun and Tesla Unveil Texas Power Plant

Sunrun-Tesla Virtual Power Plant Texas leverages residential solar, Tesla Powerwall battery storage, and ERCOT demand response to enhance grid resilience, cut emissions, and supply backup power via a coordinated distributed energy resources network.

 

Key Points

A Texas VPP using residential solar and Tesla Powerwall to aid ERCOT with grid services resilience, and less emissions.

✅ Aggregates Powerwall storage for ERCOT demand response.

✅ Enhances grid reliability with distributed energy resources.

✅ Cuts emissions by shifting solar to peak and outage periods.

 

In a significant development for renewable energy and grid resilience, Sunrun and Tesla have announced a groundbreaking partnership to establish a distributed power plant in Texas. This collaboration represents a major step forward in harnessing solar energy and battery storage, with advances in affordable solar batteries helping to create a more reliable and sustainable power system. The initiative aims to address the growing demand for clean energy solutions while enhancing grid stability and resilience in one of the largest and most energy-dependent states in the U.S.

The new distributed power plant, a joint venture between Sunrun, a leading residential solar provider, and Tesla, renowned for its advanced battery technology and electric vehicles, will leverage the strengths of both companies to transform how energy is generated and used. The project will deploy Tesla's Powerwall battery systems alongside Sunrun's solar panels to create a network of interconnected residential energy storage units. This network will function as a virtual power plant, aligned with emerging peer-to-peer energy sharing models that are capable of providing electricity back to the grid during periods of high demand or outages.

Texas, with its vast and growing population, has faced significant energy challenges in recent years. The state’s power grid, managed by the Electric Reliability Council of Texas (ERCOT), has experienced strain during extreme weather events and high demand periods, and instances of Texas wind curtailment during grid stress, leading to concerns about reliability and stability. The partnership between Sunrun and Tesla seeks to address these concerns by introducing a more flexible and resilient energy solution.

The distributed power plant will consist of thousands of residential solar installations, each equipped with Tesla Powerwall batteries, reflecting the broader trend of pairing storage with solar across the U.S. as it scales. These batteries store excess solar energy generated during the day and release it when needed, such as during peak demand times or power outages. By connecting these systems through advanced software, the project will create a coordinated network of distributed energy resources that can respond dynamically to fluctuations in energy supply and demand.

One of the key benefits of this distributed approach is its ability to enhance grid reliability. Traditional power plants are centralized and can be vulnerable to disruptions, whether from extreme weather, technical failures, or other issues. In contrast, a distributed power plant spreads the generation and storage capacity across numerous locations, a principle echoed by renewable power developers pursuing multi-resource projects today, reducing the risk of widespread outages and increasing the overall resilience of the power grid.

Additionally, the project will contribute to the reduction of greenhouse gas emissions. By increasing the use of solar energy and reducing reliance on fossil fuels, and amid ongoing work to improve solar and wind technologies, the distributed power plant supports Texas’s climate goals and contributes to broader efforts to combat climate change. The integration of renewable energy sources into the grid helps to decrease carbon emissions and promote a cleaner, more sustainable energy system.

The partnership between Sunrun and Tesla also underscores the growing role of technology in transforming the energy landscape. Tesla's Powerwall battery systems represent some of the most advanced energy storage technology available, and amid record solar and storage growth nationwide this decade they showcase the capability to store and manage energy efficiently. Sunrun’s expertise in residential solar installations complements this technology, creating a powerful combination that leverages the latest advancements in clean energy.

The project is expected to deliver several benefits to both individual homeowners and the broader community. Homeowners who participate in the program will have access to solar energy and battery storage at reduced costs, thanks to the economies of scale and innovative financing options provided by Sunrun and Tesla. Additionally, they will have the added security of backup power during outages, contributing to greater energy independence and resilience.

For the broader community, the distributed power plant offers a more reliable and sustainable energy system. The ability to generate and store energy at the residential level reduces the strain on traditional power plants and enhances the overall stability of the grid. Furthermore, the project will contribute to local job creation, as the installation and maintenance of solar panels and battery systems require skilled workers.

As the project moves forward, Sunrun and Tesla will work closely with local stakeholders, regulators, and utility providers to ensure the successful implementation and integration of the distributed power plant. Collaboration with these parties will be essential to addressing any regulatory, technical, or logistical challenges and ensuring that the project delivers its intended benefits.

In conclusion, the partnership between Sunrun and Tesla to create a distributed power plant in Texas represents a significant advancement in clean energy technology and grid resilience. By combining solar power with advanced battery storage, the project aims to enhance grid stability, reduce emissions, and provide reliable energy solutions for homeowners. As Texas continues to face energy challenges, this innovative initiative offers a promising model for the future of distributed energy and highlights the potential for technology-driven solutions to address pressing environmental and infrastructure issues.

 

Related News

View more

U.S. Renewable and Clean Energy Industries Set Sights on Market Majority

U.S. Majority Renewables by 2030 targets over half of electricity from wind, solar, hydropower, and energy storage, enabling a resilient, efficient grid, deep carbon reductions, fair market rules, and job growth across regions.

 

Key Points

A joint industry pledge for over 50% U.S. power from wind, solar, hydropower, and storage by 2030.

✅ Joint pledge by AWEA, SEIA, NHA, and ESA for a cleaner grid

✅ Focus on resilience, efficiency, affordability, and fair competition

✅ Storage enables flexibility to integrate variable renewables

 

Within a decade, more than half of the electricity generated in the U.S. will come from clean, renewable resources, with analyses indicating that wind and solar could meet 80% of U.S. electricity demand, supported by energy storage, according to a joint commitment today from the American wind, solar, hydropower, and energy storage industries. The American Wind Energy Association (AWEA), Solar Energy Industries Association (SEIA), National Hydropower Association (NHA), and Energy Storage Association (ESA) have agreed to actively collaborate across their industry segments to achieve this target. 

The four industries have released a set of joint advocacy principles that will enable them to realize this bold vision of a majority renewables grid. Along with increased collaboration, these shared principles include building a more resilient, efficient, sustainable, and affordable grid; achieving carbon reductions; and advancing greater competition through electricity market reforms and fair market rules. Each of these areas is critical to attaining the shared vision for 2030.  

The leaders of the four industry associations gathered to announce the shared vision, aligned with a broader 100% renewables pathway pursued nationwide, during the first CLEANPOWER annual conference for businesses across the renewable and clean energy spectrum. 

American Wind Energy Association 

"This collaborative promise sets the stage to deliver on the American electric grid of the future powered by wind, solar, hydropower, and storage," said Tom Kiernan, CEO of the American Wind Energy Association. "Market opportunities for projects that include a mix of technologies have opened up that didn't exist even a few years ago. And demand is growing for integrated renewable energy options. Individually and cooperatively, these sectors will continue growing to meet that demand and create hundreds of thousands of new jobs to strengthen economies from coast to coast, building a better, cleaner tomorrow. In the face of significant challenges the country is currently facing across pandemic response, economic, climate and social injustice problems, we are prepared to help lead toward a healthier and more equitable future."

Solar Energy Industries Association

"These principles are just another step toward realizing our vision for a Solar+ Decade," said Abigail Ross Hopper, president and CEO of the Solar Energy Industries Association. "In the face of this dreadful pandemic, our nation must chart a path forward that puts a premium on innovation, jobs recovery and a smarter approach to energy generation, reflecting expected solar and storage growth across the market. The right policies will make a growing American economy fueled by clean energy a reality for all Americans."

National Hydropower Association 

"The path towards an affordable, reliable, carbon-free electricity grid, supported by an ongoing grid overhaul for renewables, starts by harnessing the immense potential of hydropower, wind, solar and storage to work together," said Malcolm Woolf, President and CEO of the National Hydropower Association. "Today, hydropower and pumped storage are force multipliers that provide the grid with the flexibility needed to integrate other renewables onto the grid. By adding new generation onto existing non-powered dams and developing 15 GW of new pumped storage hydropower capacity, we can help accelerate the development of a clean energy electricity grid."

Energy Storage Association 

"We are pleased to join forces with our clean energy friends to substantially reduce carbon emissions by 2030, guided by practical decarbonization strategies, building a more resilient, efficient, sustainable, and affordable grid for generations to come," said ESA CEO Kelly Speakes-Backman. "A majority of generation supplied by renewable energy represents a significant change in the way we operate the grid, and the storage industry is a fundamental asset to provide the flexibility that a more modern, decarbonized grid will require. We look forward to actively collaborating with our colleagues to make this vision a reality by 2030."

 

Related News

View more

Bruce Power awards $914 million in manufacturing contracts

Bruce Power Major Component Replacement secures Ontario-made nuclear components via $914M contracts, supporting refurbishment, clean energy, low-cost electricity, and advanced manufacturing, extending reactor life to 2064 while boosting jobs, supply chain growth, and economy.

 

Key Points

A refurbishment program investing $914M in advanced manufacturing to extend reactors and deliver low-cost, clean power.

✅ $914M Ontario-made components for steam generators, tubes, fittings

✅ Extends reactor life to 2064; clean, low-cost electricity for Ontario

✅ Supports 22,000 jobs annually; boosts supply chain and economy

 

Today, Bruce Power signed $914 million in advanced manufacturing contracts for its Major Component Replacement, which gets underway in 2020, as the reactor refurbishment begins across the site and will allow the site to provide low-cost, carbon-free electricity to Ontario through 2064.

The Major Component Replacement (MCR) Project agreements include:

  • $642 million to BWXT Canada Inc. for the manufacturing of 32 steam generators to be produced at BWXT’s Cambridge facility.
  • $144 million to Laker Energy Products for end fittings, liners and flow elements, which will be manufactured at its Oakville location.
  • $62 million to Cameco Fuel Manufacturing, in Cobourg, for calandria tubes and annulus spacers for all six MCRs.
  • $66 million for Nu-Tech Precision Metals, in Arnprior, for the production of zirconium alloy pressure tubes for Units 6 and 3.

 

Bruce Power’s Life-Extension Program, which started in January 2016 with Asset Management Program investments and includes the MCRs on Units 3-8, remains on time and on budget.”

#google#

By signing these contracts today, we have secured ‘Made in Ontario‘ solutions for the components we will need to successfully complete our MCR Projects, extending the life of our site to 2064,” said Mike Rencheck, Bruce Power’s President and CEO.

“Today’s announcements represent a $914 million investment in Ontario’s highly skilled workforce, which will create untold economic opportunities for the communities in which they operate for many years to come.”We look forward to growing our already excellent relationships with these supplier partners and unions as we work toward our common goal, supported by an operating record, of continuing to keep Canada’s largest infrastructure project on time and on budget."

By extending the life of Bruce Power’s reactors to 2064, the company will create and sustain 22,000 jobs annually, both directly and indirectly, across Ontario, while investing $4 billion a year into the province’s economy, underscoring the economic benefits of nuclear development across Canada.

At the same time, Bruce Power will produce 30 per cent of Ontario’s electricity at 30 per cent less than the average cost to generate residential power, while also producing zero carbon emissions, aligning with Pickering NGS life extensions across the province.The Hon. Glenn Thibeault, Minister of Energy, said today’s announcement is good news for the people of Ontario.”

Bruce Power’s Life-Extension Program makes sense for Ontario, and the announcements made today will create good jobs and benefit our economy for decades to come,” Minister Thibeault said.

“Moving forward with the refurbishment project is part of our government’s plan to support care and opportunity, while producing affordable, reliable and clean energy for the people of Ontario.”Kim Rudd, Parliamentary Secretary to the Minister of Natural Resources and MP for Northumberland-Peterborough South, offered her support and congratulations.”

Related planning includes Bruce C project exploration funding that supports long-term nuclear options in Ontario.

Canada’s nuclear industry, including its advanced manufacturing capability, is respected internationally,” Rudd said. “Bruce Power’s announcement today related to the advanced manufacturing of key components throughout Ontario as part of its Life-Extension Program will allow these suppliers to have a secure base to not only meet Canada’s needs, but export internationally.”

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified