GE Wind Turbines Deliver over 1 Gigawatt of Additional U.S. Capacity in 2006

By Business Wire


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Reaffirming its position as the leading supplier of technology and services for the U.S. wind industry, GE Energy provided wind turbines representing over 45% of the countryÂ’s new wind capacity in 2006.

The American Wind Energy Association (AWEA) reported today that U.S. wind power generating capacity increased by 27% in 2006 and is expected to increase an additional 26% in 2007. The U.S. wind industry installed more than 2.4 gigawatts of new wind capacity during the year, with GE wind turbines accounting for nearly half of that total. GE supplied 764 of its 1.5-megawatt wind turbines for U.S. projects in 2006.

“This achievement reflects the tremendous strides wind power is making, as power producers are increasingly turning to renewable energy solutions to diversify and expand their generation portfolios,” said Victor Abate, Vice President-Renewables for GE Energy. "Our continued investment in wind energy technology has positioned us well to compete in this growing industry. We are confident that wind power – an abundant, domestic and zero-carbon emissions resource – will be an integral part of the U.S. energy mix throughout the 21st century.”

“With some of the world’s best wind resources, the U.S. has the potential to greatly increase its wind energy output in the years ahead,” Abate added.

Since entering the wind business in 2002, GE Energy has continued to expand its wind energy operations, increasing its wind engineering team threefold and applying experience and expertise from other GE business units to advance its wind turbine technology.

Today the company is the largest U.S. supplier of wind turbines by a wide margin and among the largest in the world, with wind turbine manufacturing facilities in the United States, Canada, Germany, Spain and China.

Randall Swisher, AWEA executive director, noted that “the demand for clean, cost-effective wind power is growing fast, and the U.S. wind energy industry has turned in a record-breaking performance in 2006 to meet that demand. Our association expects an even larger increase in new installations in 2007. Wind power is now one of the largest sources of new power generation in the U.S., and an essential element of the climate change solution.”

At the end of 2006, the U.S. wind industry received a major boost with the extension of the federal production tax credit.

Related News

City officials take clean energy message to Georgia Power, PSC

Georgia Cities Clean Energy IRP Coalition unites Savannah, Atlanta, Decatur, and Athens-Clarke to shape Georgia Power's Integrated Resource Plan, accelerating renewables, energy efficiency, community solar, and coal retirements through Georgia Public Service Commission hearings.

 

Key Points

Georgia cities working to steer Georgia Power's IRP toward renewables, energy efficiency, and community solar.

✅ Targets coal retirements and doubling renewables by 2035

✅ Advocates data access, transparency, and energy efficiency

✅ Seeks affordable community solar options for low-income customers

 

Savannah is among several Georgia cities that have led the charge forward in recent years to push for clean energy. Now, several of the state's largest municipalities are banding together to demand action from Georgia's largest energy provider.

Hearings regarding Georgia Power's Integrated Resource Plan (IRP) happen every three years, but this year for the first time the cities of Savannah, Decatur, Atlanta and Athens-Clarke and DeKalb counties were at the table.

"It's pretty unprecedented. It's such an important opportunity to get to represent ourselves and our citizens," said City of Savannah Energy Analyst Alicia Brown, the Savannah representative for the Georgia Coalition for Local Governments.

The IRP, which essentially maps out how the company will use its various forms of energy over the next 20 years was filed with the Georgia Public Service Commission (GPSC) in January, the 200-page IRP outlines Georgia Power's plans to shutter nearly all Georgia Power-controlled coal units, similar to Tucson Electric Power's coal exit timelines elsewhere, which could begin later this year.

The company is also planning to double its renewable energy generation by 2035. The IRP also outlines plans for several programs, including an Income-Qualified Community Solar Pilot, reflecting momentum for community energy programs in other states as well.

During the hearings the coalition, alongside the other groups, had the ability to question Georgia Power officials about the plan to include the proposed increase per kilowatt for the company's Simple Solar program, Behind-the-Meter Solar program study and various other components, amid debates over solar strategy in the South that could impact lower income customers.

"The established and open IRP process is central to effective, long-term energy planning in Georgia and is part of our commitment to 2.7 million customers to deliver clean, safe, reliable and affordable energy. In continuing our longstanding relationship with the City of Savannah, we welcome their interest and participation in the IRP process," John Kraft, Georgia Power spokesman said in an email.

Brown said the coalition's areas of interest fall into three categories: energy efficiency and demand response, data access and transparency and renewable energy for citizens as well as the governments in the coalition.

"We have these renewable goals and just the way the current regulations are set, the way the current laws are on the books, and developments like consumer choice in California show how policy shifts can reshape utility markets, it's very challenging for us to meet those renewable energy goals without Georgia Power setting up programs that are workable for us," she said.

The city of Savannah is already taking action locally to reduce carbon emissions and move toward clean and renewable energy through the 100% Savannah Clean Energy Plan, which was adopted by Savannah City Council in December.

The plan aims to achieve 100% renewable electricity community-wide by 2035 and 100% renewable energy for all energy needs by 2050.

Council previously approved the 100% Clean Energy Resolution needed to develop the plan in March 2020, making Savannah the fifth city in the state to pledge to pursue a lower carbon future to fight climate change.

The final plan includes 45 strategies that fall into five categories: energy efficiency; renewable energy; transportation and mobility; community and economic development; and education and engagement.

Brown said the education and engagement component is central to the plan, but the pandemic has hindered community education and awareness efforts, and utilities have warned customers about pandemic-related scams that complicate outreach, something the city hopes to catapult in the coming weeks.

"With the 100% Savannah resolution passing right before the pandemic, we haven't had as many opportunities to raise awareness about the initiative and to educate the public about clean energy as we would like. This transition will present a lot of opportunities for our communities, but only if people know that they are there to be taken," she said.

"... We also want to engage the community so that they feel like they are developing this vision for a healthy, prosperous, clean community alongside us. It's not just us telling them, 'we're going to have a clean energy future and it's going to look like this,' but really helping them to develop and realize a collective vision for what 100% Savannah should be."

The final round of IRP hearings are scheduled for next month. Those hearings will allow the coalition and other groups to put witnesses on the stand who will make the case for why Georgia Power's IRP should be different, Brown said.

In June, Georgia Power, following a June bill reduction for customers, will have a chance to offer rebuttal testimony and will again be subject to cross examination. Shortly after those hearings, the parties will join together for the settlement process, a sort of compromise on the plan that the commission will vote on toward the beginning of July.

 

Related News

View more

WY Utility's First Wind Farm Faces Replacement

Foote Creek I Wind Farm Repowering upgrades Wyoming turbines with new nacelles, towers, and blades, cutting 68 units to 12 while sustaining 41.6 MW, under PacifiCorp and Rocky Mountain Power's Energy Vision 2020 plan.

 

Key Points

Replacement at Foote Creek Rim I, cutting to 12 turbines while sustaining about 41.6 MW using modern 2-4.2 MW units.

✅ 12 turbines replace 68, output steady near 41.6 MW

✅ New nacelles, towers, blades; taller 500 ft turbines

✅ Part of PacifiCorp Energy Vision 2020 and Gateway West

 

A Wyoming utility company has filed a permit to replace its first wind farm—originally commissioned in 1998, composed of over 65 turbines—amid new gas capacity competing with nuclear in Ohio, located at Foote Creek Rim I. The replacement would downsize the number of turbines to 12, which would still generate roughly the same energy output.

According to the Star Tribune, PacifiCorp’s new installation would involve new nacelles, new towers and new blades. The permit was filed with Carbon County.

 

New WY Wind Farm

The replacement wind turbines will stand more than twice as tall as the old: Those currently installed stand 200 feet tall, whereas their replacements will tower closer to 500 feet. Though this move is part of the company’s overall plan to expand its state wind fleet as some utilities respond to declining coal returns in the Midwest, the work going into the Foote Creek site is somewhat special, noted David Eskelsen, spokesperson for Rocky Mountain Power, the western arm of PacifiCorp.

“Foote Creek I repowering is somewhat different from the repowering projects announced in the (Energy Vision) 2020 initiative,” he said. “Foote Creek is a complete replacement of the existing 68 foundations, towers, turbine nacelles and rotors (blades).”

Currently, the turbines at Foote Creek have 600 kilowatts capacity each; the replacements’ maximum production ranges from 2 megawatts to 4.2 megawatts each, with the total output remaining steady at 41.4 megawatts, a scale similar to a 30-megawatt wind expansion in Eastern Kings, though there will be a slight capacity increase to 41.6 megawatts, according to the Star Tribune.

As part of the wind farm repowering initiative, PacifiCorp is to become full owner and operator of the Foote Creek site. When the farm was originally built, an Oregon-based water and electric board was 21 percent owner; 37 percent of the project’s output was tied into a contract with the Bonneville Power Administration.

Otherwise, PacifiCorp is moving to further expand its state wind fleet in line with initiatives like doubling renewable electricity by 2030 in Saskatchewan, with the addition of three new wind farms—to be located in Carbon, Albany and Converse counties—which may add up to 1,150 megawatts of power.

According to PacifiCorp, the company has more than 1,000 megawatts of owned wind generation capability, along with long-term purchase agreements for more than 600 megawatts from other wind farms owned by other entities. Energy Vision 2020 refers to a $3.5 billion investment and company move that is looking to upgrade the company's existing wind fleet with newer technology, adding 1,150 megawatts of new wind resources by 2020 and a a new 140-mile Gateway West transmission segment in Wyoming, comparable to a transmission project in Missouri just energized.

 

 

Related News

View more

Sub-Saharan Africa has a huge electricity problem - but with challenge comes opportunity

Sub-Saharan Africa Energy Access faces critical deficits; SDG7, clean energy finance, off-grid solar, and microgrids drive electrification for health, education, and economy amid World Bank and IEA efforts to expand reliable, affordable power.

 

Key Points

Reliable, affordable power in sub-Saharan Africa via renewables, off-grid solar, and SDG7-led electrification.

✅ SDG7 targets universal, modern energy access by 2030

✅ Off-grid solar and microgrids boost rural electrification

✅ Health, education, and business depend on reliable power

 

Sub-Saharan Africa has an electricity problem. While the world as a whole has made great strides when it comes to providing access to electricity and moving toward universal electricity access worldwide (the world average is now 90 per cent with access, up from 83 per cent in 2010), southern and western African states still lag far behind.

According to Tracking SDG7: The Energy Progress Report, produced by a consortium of organisations including the World Bank, the International Energy Agency and the World Health Organization, 759 million people were without electricity in 2019 and threequarters of them were based in sub-Saharan Africa. At just seven per cent, South Sudan had the lowest access figures; Chad, Burundi and Malawi were only marginally higher. What’s more, due to a combination of factors, the situation is getting worse. In total, the region’s access deficit increased from 556 million people in 2010 to 570 million people in 2019.

These days, being without electricity has an impact on every sphere of life. The Covid-19 pandemic only served to put this into sharper relief. Intermittent electricity meant vaccination doses that rely on cold storage were impossible to deliver and, as more than 70 per cent of the health facilities in sub-Saharan Africa have no access to reliable electricity, the problem was vast. But even without a global pandemic, having no power stymies opportunity in every field, from education to economics.

French photojournalist Pascal Maitre, who has spent much of his career writing about sub-Saharan Africa, wanted to document the problems faced by people in areas with no electricity. He thought particularly carefully about the location for his project. ‘First, I was thinking I could take images in the Democratic Republic of the Congo,’ he says. ‘But then I thought that if you chose a place that has war, it’s logical that electricity won’t really work. So, instead, I wanted to find a place that is quite stable. I decided to go to Benin, where they have a democracy. It is a good example of a country that’s not in really bad shape but where they still have this problem. Also, I didn’t want to go to a place that is very remote, where it is normal not to have good service. So I decided to go to a place around 50 kilometres from the capital that you can get to by road.’

Maitre visited several villages in the region, as well as making trips to Chad and Senegal, and encountered the full range of limitations engendered by the power shortage. From teachers struggling to conduct lessons in the dark to midwives forced to work with only the weak light from a phone, the situation was clearly unacceptable. ‘People were very, very, very upset,’ he says. ‘I conducted a lot of interviews in different villages and lack of electricity touches education, economy, business, security and also emigration, because people have to move to big cities or maybe to Europe to get jobs.’

Where once the situation might have been accepted as the norm, people today are fully aware of the ways in which they are held back by the lack of power. As Maitre remembers: ‘A guy said to me one day, “Do you think it is normal that last time my wife delivered a baby, the midwife had to hold her phone between her teeth in order to see what she was doing?” You feel very frustrated.’ He adds that the fact that most people now have mobile phones only highlights the hardship. ‘Before, maybe it was not so frustrating. But now, most of these people have cellphones. The cellphone company puts antennae everywhere so the phones work, but people cannot recharge their phones. They have to go to the market, where someone will come with a generator to recharge.’

Governments and global organisations are very aware of the problem across the world as a whole. Sustainable Development Goal 7 (SDG7) – one of the 17 goals set out in 2015 by the United Nations General Assembly – was designed to ensure universal access to affordable, reliable, sustainable and modern energy by 2030, underscoring the push for clean, affordable and sustainable electricity for all by 2030. As part of this goal, international financial flows to developing countries in support of clean energy reached US$17 billion in 2018. As a result, some areas have seen huge improvement. According to the Energy Progress Report, in Latin America and the Caribbean, and in Eastern and South-Eastern Asia, the advance of electrification has been enough to approach universal access. By 2019, in Western Asia and North Africa, and Central and South Asia, 94 and 95 per cent of the population respectively had access to electricity.

But these statistics only serve to emphasise just how bad the situation is in sub-Saharan Africa, where electricity systems are unlikely to go green this decade according to several analyses. As the report states: ‘While renewable energy has demonstrated remarkable resilience during the pandemic, the unfortunate fact is that gains in energy access throughout Africa are being reversed: the number of people lacking access to electricity is set to increase in 2020, making basic electricity services unaffordable for up to 30 million people who had previously enjoyed access.’

The small silver lining is that if the situation is dealt with properly, the region could build a renewable-energy system from the ground up, rather than having to undergo the costly and complex transitions underway in developed countries. In rural areas, small-scale or off-grid renewable systems (mostly solar) are expected to play an important role, as highlighted by a recent IRENA report on decarbonisation, in increasing access. In fact, solar panels are already used in many areas. In 2019, 105 million people had access to off-grid solar solutions, up from 85 million in 2016, and almost half lived in sub-Saharan Africa, with 17 million in Kenya and eight million in Ethiopia.

Rachel Kyte is currently serving as the 14th dean of the Fletcher School at Tufts University in the USA, but her CV is long. She was previously CEO of the UN-affiliated Sustainable Energy for All (SeforALL), as well as the World Bank Group vice president and special envoy for climate change, leading the run-up to the Paris Agreement. According to her, a focus on renewables is absolutely essential, both for wider efforts to tackle climate change, with some advocating a fossil fuel lockdown to drive a climate revolution, but also for the people of sub-Saharan Africa. ‘The fossil fuel industry has said it will just extend the centralised fossil-fuel power systems that we have today to reach these people,’ she says.

 

Related News

View more

An NDP government would make hydro public again, end off-peak pricing, Horwath says in Sudbury

Ontario NDP Hydro Plan proposes ending time-of-use pricing, buying back Hydro One, lowering electricity rates, curbing rural delivery fees, and restoring public ownership to ease household bills amid debates with PCs and Liberals over costs.

 

Key Points

A plan to end time-of-use pricing, buy back Hydro One, and cut bills via public ownership and fair delivery fees.

✅ End time-of-use pricing; normal schedules without penalties

✅ Repurchase Hydro One; restore public ownership

✅ Cap rural delivery fees; address oversupply to cut rates

 

Ontario NDP leader Andrea Horwath says her party’s hydro plan will reduce families’ electricity bills, a theme also seen in Manitoba Hydro debates and the NDP is the only choice to get Hydro One back in public hands.

Howarth outlined the plan Saturday morning outside the home of a young family who say they struggle with their electricity bills — in particular over the extra laundry they now have after the birth of their twin boys.

An NDP government would end time-of-use pricing, which charges higher rates during peak times and lower rates after hours, “so that people aren’t punished for cooking dinner at dinner time,” Horwath said at a later campaign stop in Orillia, “so people can live normal lives and still afford their hydro bill.”

#google#

An NDP government would end time-of-use pricing, which gives lower rates for off-peak usage, Howarth said, separate from a recent subsidized hydro plan during COVID-19. The change would mean families wouldn't be "forced to wait until night when the pricing is lower to do laundry," and wouldn't have to rearrange their lives around chores.

The pricing scheme was supposed to lower prices and help smooth out demand for electricity, especially during peak times, but has failed, she said.

In order to lower hydro bills, Horwath said an NDP government would buy back shares of Hydro One sold off under the Wynne government, which she said has led to high prices and exorbitant executive pay among executives. The NDP plan would also make sure rural families do not pay more in delivery fees than city dwellers, and curb the oversupply of energy to bring prices down.

Critics have said the NDP plan is too costly and will take a long time to implement, and investors see too many unknowns about Hydro One.

"The NDP's plan to buy back Hydro One and continue moving forward with a carbon tax will cost taxpayers billions," said Melissa Lantsman, a spokesperson for PC Leader Doug Ford.

"Only Doug Ford has a plan to reduce hydro rates and put money back in people's pockets. We'll reduce your hydro bill by 12 per cent."

Ford has said he will fire Hydro One CEO Mayo Schmidt, and has dubbed him the $6-million-dollar man.

Horwath has said both Ford and Liberal Leader Kathleen Wynne will end up costing Ontarians more in electricity if one of them is elected come June 7. Their "hydro scheme is the wrong plan," she said.

 

Related News

View more

N.S. abandons Atlantic Loop, will increase wind and solar energy projects

Nova Scotia Clean Power Plan 2030 pivots from the Atlantic Loop, scaling wind and solar, leveraging Muskrat Falls via the Maritime Link, adding battery storage and transmission upgrades to decarbonize grid and retire coal.

 

Key Points

Nova Scotia's 2030 roadmap to replace coal with wind, solar, hydro imports, storage, and grid upgrades.

✅ 1,000 MW onshore wind to supply 50% by 2030

✅ Battery storage sites and New Brunswick transmission upgrades

✅ Continued Muskrat Falls imports via Maritime Link

 

Nova Scotia is abandoning the proposed Atlantic Loop in its plan to decarbonize its electrical grid by 2030 amid broader discussions about independent grid planning nationwide, Natural Resources and Renewables Minister Tory Rushton has announced.

The province unveiled its clean power plan calling for 30 per cent more wind power and five per cent more solar energy in the Nova Scotia power grid over the coming years. Nova Scotia's plan relies on continued imports of hydroelectricity from the Muskrat Falls project in Labrador via the Emera-owned Maritime Link.

Right now Nova Scotia generates 60 per cent of its electricity by burning fossil fuels, mostly coal, and some increased use of biomass has also factored into the mix. Nova Scotia Power must close its coal plants by 2030 when 80 per cent of electricity must come from renewable sources in order reduce greenhouse gas emissions causing climate changes.

Critics have urged reducing biomass use in electricity generation across the province.

The clean power plan calls for an additional 1,000 megawatts of onshore wind by 2030 which would then generate 50 per cent of the the province's electricity, while also advancing tidal energy in the Bay of Fundy as a complementary source.    

"We're taking the things already know and can capitalize on while we build them here in Nova Scotia," said Rushton, "More importantly, we're doing it at a lower rate so the ratepayers of Nova Scotia aren't going to bear the brunt of a piece of equipment that's designed and built and staying in Quebec."

The province says it can meet its green energy targets without importing Quebec hydro through the Atlantic loop. It would have brought hydroelectric power from Quebec into New Brunswick and Nova Scotia via upgraded transmission links. But the government said the cost is prohibitive, jumping to $9 billion from nearly $3 billion three years ago with no guarantee of a secure supply of power from Quebec.

"The loop is not viable for 2030. It is not necessary to achieve our goal," said David Miller, the provincial clean energy director. 

Miller said the cost of $250 to $300 per megawatt hour was five times higher than domestic wind supply.

Some of the provincial plan includes three new battery storage sites and expanding the transmission link with New Brunswick. Both were Nova Scotia Power projects paused by the company after the Houston government imposed a cap on the utility's rate increased in the fall of 2022.

The province said building the 345-kilovolt transmission line between Truro, N.S., and Salisbury, N.B., and an extension to the Point Lepreau Nuclear Generating Station, as well as aligning with NB Power deals for Quebec electricity underway, would enable greater access to energy markets.

Miller says Nova Scotia Power has revived both.

Nova Scotia Power did not comment on the new plan, but Rushton spoke for the company.

"All indications I've had is Nova Scotia Power is on board for what is taking place here today," he said.

 

Related News

View more

SaskPower to buy more electricity from Manitoba Hydro

SaskPower-Manitoba Hydro Power Sale outlines up to 215 MW of clean hydroelectric baseload for Saskatchewan, supporting renewable energy targets, lower greenhouse gas emissions, and interprovincial transmission line capacity starting 2022 under a 30-year agreement.

 

Key Points

A long-term deal supplying up to 215 MW of hydroelectric baseload from Manitoba to Saskatchewan to cut emissions.

✅ Up to 215 MW delivered starting 2022 via new intertie

✅ Supports 40% GHG reduction target by 2030

✅ 30-year term; complements wind and solar integration

 

Saskatchewan's Crown-owned electric utility has made an agreement to buy more hydroelectricty from Manitoba.

A term sheet providing for a new long--term power sale has been signed between Manitoba Hydro and SaskPower which will see up to 215 megawatts flow from Manitoba to Saskatchewan, as new turbine investments advance in Manitoba, beginning in 2022.

SaskPower has two existing power purchase agreements with Manitoba Hydro that were made in 2015 and 2016, but the newest one announced Monday is the largest, as financial pressures at Manitoba Hydro continue.

SaskPower President and CEO Mike Marsh says in a news release that the clean, hydroelectric power represents a significant step forward when it comes to reaching the utility's goal of reducing greenhouse gas emissions by 40 per cent by 2030, aligning with progress on renewable electricity by 2030 initiatives.

Marsh says it's also reliable baseload electricity, which SaskPower will need as it adds more intermittent generation options like wind and solar.

SaskPower says a final legal contract for the sale is expected to be concluded by mid-2019 and be in effect by 2022, and the purchase agreement would last up to 30 years.

"Manitoba Hydro has been a valued neighbour and business partner over the years and this is a demonstration of that relationship," Marsh said in the news release.

The financial terms of the agreement are not being released, though SaskPower's latest annual report offers context on its finances.

Both parties say the sale will partially rely on the capacity provided by a new transmission line planned for construction between Tantallon, Sask. and Birtle, Man. that was previously announced in 2015 and is expected to be in service by 2021.

"Revenues from this sale will assist in keeping electricity rates affordable for our Manitoba customers, while helping SaskPower expand and diversify its renewable energy supply," Manitoba Hydro president and CEO Kelvin Shepherd said in the utility's own news release.

In 2015, SaskPower signed a 25 megawatt agreement with Manitoba Hydro that lasts until 2022. A 20-year agreement for 100 megawatts was signed in 2016 and comes into effect in 2020, and SaskPower is also exploring a purchase from Flying Dust First Nation to further diversify supply.

The deals are part of a memorandum of understanding signed in 2013 involving up to 500 megawatts.
 

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified