The sun is rising on solar

By EnergyBiz Insider


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Solar panels on rooftops are one version. But commercial-scale solar facilities are another. To this point, most of the attention has been on progressive homeowners who make their homes solar friendly. Some key companies, though, are working hard to provide electricity to large blocks of people.

Growth in the sector won't be quick. But concerns over air quality along with government mandates are giving manufacturers the certainties they need to make expensive investments, and to ultimately prosper. That's behind the recent wave of innovation and the proposed build-out of new solar systems throughout the sunny southwest.

Consider San Francisco-based Pacific Gas and Electric Company (PG&E), which is mandated by California to provide 20 percent renewable power by 2010: It's backing so-called concentrated solar plants that channel the sun into a beam by using a series of mirrors. The resulting heat can then be used in a conventional power plant.

The utility recently made a presentation to investors at Jefferies Global Clean Technology Conference in which it said that it had the internal funds to build such a commercial-scale facility itself and that by doing so, it will be able to utilize the 30-percent federal tax credit given for such investments. Its first plant will be 250 megawatts.

"Solar thermal energy is an especially attractive renewable power source because it is available when needed most in California — during the peak midday summer period," says Fong Wan, vice president of energy procurement at PG&E. The utility, which is also procuring solar power from other sources, said it will continue to place capital in solar photovoltaic energy that is smaller and distributed as well as in larger, concentrated solar power, both of which will benefit from future technological price reductions.

It is too soon to determine whether smaller-scale or larger-scale projects will be the wave of the future, says Wan. While concentrated solar power is more efficient and can offer storage, it is still relatively expensive and untested. At the same time, such facilities require extremely large plots of land and, as is the case for all utility-scale projects, they are difficult to get permitted. Photovoltaic energy, by comparison, is proven, less controversial and can be easily connected to existing power lines.

The National Renewable Energy Laboratory in Golden, Colo., is working with private enterprise to install 1,000 megawatts of concentrated solar power system throughout the southwest by 2010.

The agency says that such a build-out in combination with continued research and development will drive down the price of such solar power to seven cents a kilowatt-hour, making it cost competitive with other fuel sources in the region.

Indeed, California's Mojave Desert is home to multiple efforts at commercial-scale solar power facilities. Solar One will have 500 megawatts of capacity with the option to expand to 850 megawatts. Solar Two in the Imperial Valley, meanwhile, will have 300 megawatts of capacity with the potential to go to as high 900 megawatts. Each site is fully contracted by Southern California Edison, which will begin buying power in 2010.

Right now, solar energy provides less than 1 percent of all energy needs in this country. If all goes according to plan, it could supply 2 percent of the nation's generation mix by 2025, the Bush administration once predicted. Others, though, say its potential is 10 percent of the nation's energy mix by that time.

Renewable energy developers are struggling now to raise cash. But with the assorted government incentives, they are expected to get back on track, particularly those in the solar realm. NextEra Energy Resources, for example, has filed a petition to build a 250 megawatt plant in the Mojave Desert that it says can be expanded to 850 megawatts by 2015.

Palo Alto-based Ausra also uses concentrated solar power to gather the sun's energy as heat. It recently launched such a plant in Bakersfield, Calif. It is furthermore developing storage systems, noting that its plants will gather energy during daylight hours to generate power as needed for up to 20 hours. By storing energy as heat during the day, a power plant can continue to produce electricity during dark or cloudy periods.

"This plant proves that our technology is real, it works, and it's ready to power businesses or provide process steam for industries — now," says Ausra Chief Executive Bob Fishman, adding that the Bakersfield facility will be able to generate five megawatts by 2011. The solar manufacturing is also working with PG&E to ensure the construction of a 177-megawatt solar power plant in central California by 2010.

Overseas, concentrated solar power is also getting attention. In Spain, the technology will eventually generate 11 megawatts. The goal is to expand that output to 300 megawatts in the coming years. Solucar, the company building the $1.5 billion facility, says that it will effectively avoid the release of 600,000 tons of carbon dioxide emissions.

Altogether, about 50 concentrated solar plants are on the drawing board in Spain. Germany, too, is going gangbusters. Both nations lead the European pack, mainly because of favorable tax breaks and continent-wide mandates to provide 20 percent of their electricity from renewable sources by 2020.

"Concentrated solar power is at the very beginning of a big boom," says Jose Luis Garcia, at Greenpeace in Spain, in a story that appeared in the UK's Guardian. "Spain is in a good position to develop and implement the technology. We have the sun so we are in the best position to lead in this field."

The technology is still unproven. But it's a risk that some major investors are making. If solar power can be dispatched from a central location to large urban areas, it would have the potential to change the energy paradigm both in this country and around the world.

Related News

Maritime Link sends first electricity between Newfoundland, Nova Scotia

Maritime Link HVDC Transmission connects Newfoundland and Nova Scotia to the North American grid, enabling renewable energy imports, subsea cable interconnection, Muskrat Falls hydro power delivery, and lower carbon emissions across Atlantic Canada.

 

Key Points

A 500 MW HVDC intertie linking Newfoundland and Nova Scotia to deliver Muskrat Falls hydro power.

✅ 500 MW capacity using twin 170 km subsea HVDC cables

✅ Interconnects Newfoundland and Nova Scotia to the North American grid

✅ Enables Muskrat Falls hydro imports, cutting CO2 and costs

 

For the first time, electricity has been sent between Newfoundland and Nova Scotia through the new Maritime Link.

The 500-megawatt transmission line — which connects Newfoundland to the North American energy grid for the first time and echoes projects like the New England Clean Power Link underway — was tested Friday.

"This changes not only the energy options for Newfoundland and Labrador but also for Nova Scotia and Atlantic Canada," said Rick Janega, the CEO of Emera Newfoundland and Labrador, which owns the link.

"It's an historic event in our eyes, one that transforms the electricity system in our region forever."

 

'On time and on budget'

It will eventually carry power from the Muskrat Falls hydro project in Labrador, where construction is running two years behind schedule and $4 billion over budget, a context in which the Manitoba Hydro line to Minnesota has also faced delay, to Nova Scotia consumers. It was supposed to start producing power later this year, but the new deadline is 2020 at the earliest.

The project includes two 170-kilometre subsea cables across the Cabot Strait between Cape Ray in southwestern Newfoundland and Point Aconi in Cape Breton.

The two cables, each the width of a two-litre pop bottle, can carry 250 megawatts of high voltage direct current, and rest on the ocean floor at depths up to 470 metres.

This reel of cable arrived in St. John's back in April aboard the Norwegian vessel Nexans Skagerrak, after the first power cable reached Nova Scotia earlier in the project. (Submitted by Emera NL)

The Maritime Link also includes almost 50 kilometres of overland transmission in Nova Scotia and more than 300 kilometres of overland transmission in Newfoundland, paralleling milestones on Site C transmission work in British Columbia.

The link won't go into commercial operation until January 1.

Janega said the $1.6-billion project is on time and on budget.

"We're very pleased to be in a position to be able to say that after seven years of working on this. It's quite an accomplishment," he said.

This Norwegian vessel was used to transport the 5,500 tonne subsea cable. (Submitted by Emera NL)

Once in service, the link will improve electrical interconnections between the Atlantic provinces, aligning with climate adaptation guidance for Canadian utilities.

"For Nova Scotia it will allow it to achieve its 40 per cent renewable energy target in 2020. For Newfoundland it will allow them to shut off the Holyrood generating station, in fact using the Maritime Link in advance of the balance of the project coming into service," Janega said.

Karen Hutt, president and CEO of Nova Scotia Power, which is owned by Emera Inc., calls it a great day for Nova Scotia.

"When it goes into operation in January, the Maritime Link will benefit Nova Scotia Power customers by creating a more stable and secure system, helping reduce carbon emissions, and enabling NSP to purchase power from new sources," Hutt said in a statement.

 

Related News

View more

Heatwave Sparks Unprecedented Electricity Demand Across Eastern U.S

Eastern U.S. Heatwave Electricity Demand surges to record peak load, straining the power grid, lifting wholesale prices, and prompting demand response, conservation measures, and load shedding to protect grid reliability during extreme temperatures.

 

Key Points

It is the record peak load from extreme heat, straining grids, lifting wholesale prices, and prompting demand response.

✅ Peak electricity use stresses regional power grid.

✅ Prices surge; conservation and demand response urged.

✅ Utilities monitor load, avoid outages via load shedding.

 

As temperatures soar to unprecedented highs across the Eastern United States, a blistering heatwave has triggered record-breaking electricity demand. This article delves into the causes behind the surge in energy consumption, its impact on the power grid, and measures taken to manage the strain during this extraordinary weather event.

Intensifying Heatwave Conditions

The Eastern U.S. is currently experiencing one of its hottest summers on record, with temperatures climbing well above seasonal norms. This prolonged heatwave has prompted millions of residents to rely heavily on air conditioning and cooling systems to escape the sweltering heat, with electricity struggles worsening in several communities, driving up electricity usage to peak levels.

Strain on Power Grid Infrastructure

The surge in electricity demand during the heatwave has placed significant strain on the region's power grid infrastructure, with supply-chain constraints complicating maintenance and equipment availability during peak periods.

Record-breaking Energy Consumption

The combination of high temperatures and increased cooling demands has led to record-breaking energy consumption levels across the Eastern U.S. States like New York, Pennsylvania, and Maryland have reported peak electricity demand exceeding previous summer highs, with blackout risks drawing heightened attention from operators, highlighting the extraordinary nature of this heatwave event.

Impact on Energy Costs and Supply

The spike in electricity demand during the heatwave has also affected energy costs and supply dynamics. Wholesale electricity prices have surged in response to heightened demand, contributing to sky-high energy bills for many households, reflecting the market's response to supply constraints and increased operational costs for power generators and distributors.

Management Strategies and Response

Utility companies and grid operators have implemented various strategies to manage electricity demand and maintain grid reliability during the heatwave. These include voluntary conservation requests, load-shedding measures, and real-time monitoring of grid conditions to prevent power outages while avoiding potential blackouts or disruptions.

Community Outreach and Public Awareness

Amidst the heatwave, community outreach efforts play a crucial role in raising public awareness about energy conservation and safety measures. Residents are encouraged to conserve energy during peak hours, adjust thermostat settings, and utilize energy-efficient appliances to alleviate strain on the power grid and reduce overall energy costs.

Climate Change and Resilience

The intensity and frequency of heatwaves are exacerbated by climate change, underscoring the importance of building resilience in energy infrastructure and adopting sustainable practices. Investing in renewable energy sources, improving energy efficiency and demand response programs that can reduce peak demand, and implementing climate adaptation strategies are essential steps towards mitigating the impacts of extreme weather events like heatwaves.

Looking Ahead

As the Eastern U.S. navigates through this heatwave, stakeholders are focused on implementing lessons learned from California's grid response to enhance preparedness and resilience for future climate-related challenges. Collaborative efforts between government agencies, utility providers, and communities will be crucial in developing comprehensive strategies to manage energy demand, promote sustainability, and safeguard public health and well-being during extreme weather events.

Conclusion

The current heatwave in the Eastern United States has underscored the critical importance of reliable and resilient energy infrastructure in meeting the challenges posed by extreme weather conditions. By prioritizing energy efficiency, adopting sustainable energy practices, and fostering community resilience, stakeholders can work together to mitigate the impacts of heatwaves and ensure a sustainable energy future for generations to come.

 

Related News

View more

Australia stuck in the middle of the US and China as tensions rise

Manus Island Naval Base strengthens US-Australia-PNG cooperation at Lombrum, near the South China Sea, bolstering sovereignty, maritime rights, and Pacific security amid APEC talks, infrastructure investment, and Belt and Road competition.

 

Key Points

A US-Australia-PNG facility at Lombrum to bolster Pacific security and protect maritime rights across the region.

✅ Shared by US, Australia, and PNG at Lombrum on Manus Island

✅ Near South China Sea, reinforcing maritime security and access

✅ Counters opaque lending, aligns with free trade and infrastructure

 

Scott Morrison has caught himself bang in the middle of escalating tensions between the United States and China.

The US and Australia will share a naval base in the north end of Papua New Guinea on Manus Island, creating another key staging point close to the contested South China Sea.

“The United States will partner with Papua New Guinea and Australia on their joint initiative at Lombrum Naval Base,” US Vice President Mike Pence said.

“We will work with these two nations to protect sovereignty and maritime rights in the Pacific Islands. ”

At an Asia Pacific Economic Cooperation meeting in Port Moresby on Saturday, Mr Morrison urged nations to embrace free trade and avoid “unsustainable debt”, as the Philippines' clean energy commitment also featured in discussions.

He confirmed the US and Australia will share an expanded naval base on Manus Island, as the US ramped up rhetoric against China.

Mr Pence quoted President Donald Trump in his speech following Chinese President Xi Jinping, even as a Biden energy agenda is seen by some as better for Canada.

“We have great respect for President Xi and respect for China. But in the president’s words, China’s taken advantage of the United States for many, many years,” he said.

“And those days are over.”

His speech was met with stony silence from the Chinese delegation, after President Xi had reassured leaders his Belt and Road Initiative was not a debt trap.

China has also been at loggerheads with the United States over its territorial ambitions in the Pacific, encapsulated by Xi’s Belt and Road Initiative.

Unveiled in 2013, the Belt and Road initiative aims to bolster a sprawling network of land and sea links with Southeast Asia, Central Asia, the Middle East, Europe and Africa.

China’s efforts to win friends in the resource-rich Pacific have been watched warily by the traditionally influential powers in the region — Australia and the United States.

“It is not designed to serve any hidden geopolitical agenda,” President Xi said on Saturday.

“Nor is it a trap, as some people have labelled it.”

But Mr Pence said loans to developing countries were too often opaque and encouraged nations to look to the US instead of China.

“Too often they come with strings attached and lead to staggering debt,” he said in his speech.

“Do not accept foreign debt that could compromise your sovereignty.

“Just like America, always put your country first.”

Mr Morrison committed Australia to look to the Pacific nations and on Sunday he will host an informal BBQ with Pacific leaders, amid domestic moves like Western Australia's electricity bill credit for households.

He also announced a joint partnership with Japan and the US to fund infrastructure around the region, while at home debates over an electricity market overhaul continue.

On the back of Mr Morrison’s defence of free trade at the summit, Australian Trade Minister Simon Birmingham said he was confident the US was interested in an open trading environment in the long run, with parallel discussions such as a U.S.-Canada energy partnership underscoring regional economic ties.

Australia is hoping the US will, in the end, take a similar approach to its trade dispute with China as it did with its tariff threats against Mexico and Canada, as cross-border negotiations like the Columbia River Treaty continue to shape U.S.-Canada ties.

“Ultimately, they laid down arms, they walked away from threats, and they struck a new trade deal that ensures trade continues in that North American bloc,” Mr Birmingham told ABC TV on Sunday.

“We hope the same will happen in relation to China.”

Four countries including the US have signed up to an effort to bring electricity to 70 per cent of Papua New Guinea’s people by 2030.

Australia, Japan, the US and New Zealand on Sunday signed an agreement to work with Papua New Guinea’s government on electrification.

It’s the latest sign of great power rivalry in the South Pacific, where China is vying with the US and its allies for influence.

 

 

Related News

View more

Russia Builds Power Lines to Reactivate Zaporizhzhia Plant

Zaporizhzhia Nuclear Plant Restart signals new high-voltage transmission lines to Mariupol, Rosatom grid integration, and IAEA-monitored safety amid occupied territory risks, cooling system shortfalls after the Kakhovka dam collapse, and disputed international law.

 

Key Points

A Russian plan to reconnect and possibly restart ZNPP via power lines, despite IAEA safety, cooling, and legal risks.

✅ 80 km high-voltage link toward Mariupol confirmed by imagery

✅ IAEA warns of safety risks and militarization at the site

✅ Cooling capacity limited after Kakhovka dam destruction

 

Russia is actively constructing new power lines to facilitate the restart of the Zaporizhzhia Nuclear Power Plant (ZNPP), Europe's largest nuclear facility, which it seized from Ukraine in 2022. Satellite imagery analyzed by Greenpeace indicates the construction of approximately 80 kilometers (50 miles) of high-voltage transmission lines and pylons connecting the plant to the Russian-controlled port city of Mariupol. This development marks the first tangible evidence of Russia's plan to reintegrate the plant into its energy infrastructure.

Strategic Importance of Zaporizhzhia Nuclear Power Plant

The ZNPP, located on the eastern bank of the Dnipro River in Enerhodar, was a significant asset in Ukraine's energy sector before its occupation. Prior to the war, the plant was connected to Ukraine's national grid, which later saw resumed electricity exports, via four 750-kilovolt lines, two of which passed through Ukrainian-controlled territory and two through areas under Russian control. The ongoing conflict has damaged these lines, complicating efforts to restore the plant's operations.

In March 2022, Russian forces captured the plant, and by 2023, all six of its reactors had been shut down. Despite this, Russian authorities have expressed intentions to restart the facility. Rosatom, Russia's state nuclear corporation, has identified replacing the power grid as one of the critical steps necessary for resuming operations, even as Ukraine pursues more resilient wind power to bolster its energy mix.

Environmental and Safety Concerns

The construction of new power lines and the potential restart of the ZNPP have raised significant environmental and safety concerns, as the IAEA has warned of nuclear risks from grid attacks in recent assessments. Greenpeace has reported that the plant's cooling system has been compromised due to the destruction of the Kakhovka Reservoir dam in 2023, which previously supplied cooling water to the plant. Currently, the plant relies on wells for cooling, which are insufficient for full-scale operations.

Additionally, the International Atomic Energy Agency (IAEA) has expressed concerns about the militarization of the plant. Reports indicate that Russian forces have established defensive positions and trenches around the facility, with mines found at ZNPP by UN inspectors, raising the risk of accidents and complicating efforts to ensure the plant's safety.

International Reactions and Legal Implications

Ukraine and the international community have condemned Russia's actions as violations of international law and Ukrainian sovereignty. Ukrainian officials have argued that the construction of power lines and the potential restart of the ZNPP constitute illegal activities in occupied territory. The IAEA has called for a ceasefire to allow for necessary safety improvements and to facilitate inspections of the plant, as a possible agreement on power plant attacks could underpin de-escalation efforts.

The United States has also expressed concerns, with President Donald Trump reportedly proposing the inclusion of the ZNPP in peace negotiations, which sparked controversy among Ukrainian and international observers, even suggesting the possibility of transferring control to American companies. However, Russia has rejected such proposals, reaffirming its intention to maintain control over the facility.

The construction of new power lines to the Zaporizhzhia Nuclear Power Plant signifies Russia's commitment to reintegrating the facility into its energy infrastructure. However, this move raises significant environmental, safety, and legal concerns, and a proposal to control Ukraine's nuclear plants remains controversial among stakeholders. The international community continues to monitor the situation closely, urging for adherence to international laws and standards to prevent potential nuclear risks.

 

 

Related News

View more

Germany is first major economy to phase out coal and nuclear

Germany Coal Phase-Out 2038 advances the energy transition, curbing lignite emissions while scaling renewable energy, carbon pricing, and hydrogen storage amid a nuclear phase-out and regional just-transition funding for miners and communities.

 

Key Points

Germany's plan to end coal by 2038, fund regional transition, and scale renewable energy while exiting nuclear.

✅ Closes last coal plant by 2038; reviews may accelerate.

✅ 40b euros aid for lignite regions and workforce.

✅ Emphasizes renewables, hydrogen, carbon pricing reforms.

 

German lawmakers have finalized the country's long-awaited phase-out of coal as an energy source, backing a plan that environmental groups say isn't ambitious enough and free marketeers criticize as a waste of taxpayers' money.

Bills approved by both houses of parliament Friday envision shutting down the last coal-fired power plant by 2038 and spending some 40 billion euros ($45 billion) to help affected regions cope with the transition, which has been complicated by grid expansion woes in recent years.

The plan is part of Germany's `energy transition' - an effort to wean Europe's biggest economy off planet-warming fossil fuels and generate all of the country's considerable energy needs from renewable sources. Achieving that goal is made harder than in comparable countries such as France and Britain because of Germany's existing commitment to also phase out nuclear power entirely by the end of 2022.

"The days of coal are numbered in Germany," Environment Minister Svenja Schulze said. "Germany is the first industrialized country that leaves behind both nuclear energy and coal."

Greenpeace and other environmental groups have staged vocal protests against the plan, including by dropping a banner down the front of the Reichstag building Friday. They argue that the government's road map won't reduce Germany's greenhouse gas emissions fast enough to meet the targets set out in the Paris climate accord.

"Germany, the country that burns the greatest amount of lignite coal worldwide, will burden the next generation with 18 more years of carbon dioxide," Greenpeace Germany's executive director Martin Kaiser told The Associated Press.

Kaiser, who was part of a government-appointed expert commission, accused Chancellor Angela Merkel of making a "historic mistake," saying an end date for coal of 2030 would have sent a strong signal for European and global climate policy. Merkel has said she wants Europe to be the first continent to end its greenhouse gas emissions, by 2050, even as some in Berlin debate a possible nuclear U-turn to reach that goal faster.

Germany closed its last black coal mine in 2018, but it continues to import the fuel and extract its own reserves of lignite, a brownish coal that is abundant in the west and east of the country, and generates about a third of its electricity from coal in recent years. Officials warn that the loss of mining jobs could hurt those economically fragile regions, though efforts are already under way to turn the vast lignite mines into nature reserves and lakeside resorts.

Schulze, the environment minister, said there would be regular government reviews to examine whether the end date for coal can be brought forward, even as Berlin temporarily extended nuclear operations during the energy crisis. She noted that by the end of 2022, eight of the country's most polluting coal-fired plants will have already been closed.

Environmentalists have also criticized the large sums being offered to coal companies to shut down their plants, a complaint shared by libertarians such as Germany's opposition Free Democratic Party.

Katja Suding, a leading FDP lawmaker, said the government should have opted to expand existing emissions trading systems that put a price on carbon, thereby encouraging operators to shut down unprofitable coal plants.

Katja Suding, a leading FDP lawmaker, said the government should have opted to expand existing emissions trading systems, rather than banking on a nuclear option, that put a price on carbon, thereby encouraging operators to shut down unprofitable coal plants.

"You just have to make it so expensive that it's not profitable anymore to turn coal into electricity," she said.

This week, utility companies in Spain shut down seven of the country's 15 coal-fired power plants, saying they couldn't be operated at profit without government subsidies.

But the head of Germany's main miners' union, Michael Vassiliadis, welcomed the decision, calling it a "historic milestone." He urged the government to focus next on an expansion of renewable energy generation and the use of hydrogen as a clean alternative for storing and transporting energy in the future, amid arguments that nuclear won't fix the gas crunch in the near term.

 

Related News

View more

Can Europe's atomic reactors bridge the gap to an emissions-free future?

EU Nuclear Reactor Life Extension focuses on energy security, carbon-free electricity, and safety as ageing reactors face gas shortages, high power prices, and regulatory approvals across the UK and EU amid winter supply risks.

 

Key Points

EU Nuclear Reactor Life Extension is the policy to keep ageing reactors safely generating affordable, low-carbon power.

✅ Extends reactor operation via inspections and component upgrades

✅ Addresses gas shortages, price volatility, and winter supply risks

✅ Requires national regulator approval and cost-benefit analysis

 

Shaken by the loss of Russian natural gas since the invasion of Ukraine, European countries are questioning whether they can extend the lives of their ageing nuclear reactors to maintain the supply of affordable, carbon-free electricity needed for net-zero across the bloc — but national regulators, companies and governments disagree on how long the atomic plants can be safely kept running.

Europe avoided large-scale blackouts last winter despite losing its largest supplier of natural gas, and as Germany temporarily extended nuclear operations to bolster stability, but industry is still grappling with high electricity prices and concerns about supply.

Given warnings from the International Energy Agency that the coming winters will be particularly at risk from a global gas shortage, governments have turned their attention to another major energy source — even as some officials argue nuclear would do little to solve the gas issue in the near term — that would exacerbate the problem if it too is disrupted: Europe’s ageing fleet of nuclear power plants.

Nuclear accounts for nearly 10% of energy consumed in the European Union, with transport, industry, heating and cooling traditionally relying on coal, oil and natural gas.

Historically nuclear has provided about a quarter of EU electricity and 15% of British power, even as Germany shut down its last three nuclear plants recently, underscoring diverging national paths.

Taken together, the UK and EU have 109 nuclear reactors running, even as Europe is losing nuclear power in several markets, most of which were built in the 1970s and 1980s and were commissioned to last about 30 years.

That means 95 of those reactors — nearly 90% of the fleet — have passed or are nearing the end of their original lifespan, igniting debates over how long they can safely continue to be granted operating extensions, with some arguing it remains a needed nuclear option for climate goals despite age-related concerns.

Regulations differ across borders, with some countries such as Germany turning its back on nuclear despite an ongoing energy crisis, but life extension discussions are usually a once-a-decade affair involving physical inspections, cost/benefit estimates for replacing major worn-out parts, legislative amendments, and approval from the national nuclear safety authority.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.