Arizona warming up to solar energy

By East Valley Tribune


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
A while back, a prominent American told two close friends: “I’d put my money on the sun and solar energy. What a source of power! I hope we don’t have to wait until oil and coal run out before we tackle that.”

No, it wasnÂ’t Al Gore. It was Thomas Edison, in a conversation with Henry Ford and Harvey Firestone, in 1931.

The sun has always played a part in ArizonaÂ’s economy. It helps to nurture our crops. Our sunny skies brought Cactus League baseball and winter visitors to the Valley. But as far as an energy source, up to now, Arizona has turned its back on the sun. ItÂ’s a strange irony that rainy Oregon, foggy San Francisco, gloomy Japan and Germany all utilize the sun more than we do.

But weÂ’re catching up. And we should. Arizona can be the Saudi Arabia of solar energy. By any map, Arizona is the focus of a fantastic concentration of solar radiation, particularly in western Maricopa County, where even the Gila monsters would vacation in San Diego if they could:

• In that part of the county, six utilityscale solar energy projects are in various stages of planning and development. You haven’t heard of these projects yet. But you might have driven past the home communities on your way to the coast — Gila Bend, Harquahala, Tonopah and Arlington.

• Some of the impetus comes from the foresight of the Arizona Corporation Commission which has established renewable energy standards that will require regulated utilities get 15 percent of their power from solar or renewable sources by 2025.

• Arizona has attracted solar manufacturers, bringing green collar jobs, good pay and new money. Suntech from China is building a plant in Goodyear. And we have a number of formidable solar energy companies now serving a local, national and worldwide market. Clearly, solar energy is not only a power source. It is a source of economic power, fueling new jobs that Arizona desperately needs.

Arizonans seem to be warming to the idea of solar panels on their roofs to heat their water and supply electricity. Solar panels are popping up on the roofs of Arizona State UniversityÂ’s Tempe campus, the Phoenix Convention Center and US Airways Center. Just recently, the Maricopa County Board of Supervisors signed a publicprivate partnership to produce 1,500 kilowatts of power a year from solar arrays built on top of three county buildings in downtown Phoenix. WeÂ’re going to save almost $1 million in energy costs and soften our carbon footprint by 14.8 million pounds.

As I drive across the Valley, I envision a sea of solar roofs on the tops of hundreds of commercial buildings and residences, all producing energy, conserving power and reducing our dependence on foreign oil from hostile nations.

Yeah, IÂ’ve heard the naysayers. Sadly, the recent West Virginia mining accident reminds us of the health hazards of coal. ItÂ’s not cheap, at any price. And the comparative costs of solar energy will fall with more volume, production and investment.

If we make solar part of our energy future, the sun will shine even brighter on Arizona.

Related News

Hydro One extends ban on electricity disconnections until further notice

Hydro One Disconnection Ban Extension keeps Ontario electricity customers connected during COVID-19, extending the moratorium on power shutoffs and expanding financial relief programs amid ongoing pandemic restrictions and persistent hot weather across the province.

 

Key Points

An open-ended Ontario utility moratorium preventing residential power shutoffs and offering bill relief during COVID-19.

✅ No residential disconnections until further notice

✅ Extended bill assistance and flexible payment options

✅ Response to COVID-19 restrictions and extreme heat

 

Ontario's primary electricity provider says it's extending a ban on disconnecting homes from the power grid until further notice.

Hydro One first issued the ban towards the beginning of the province's COVID-19 outbreak, saying self-isolating customers needed to be able to rely on electricity while they were kept at home during the pandemic.

A spokesman for the utility says the ban was initially set to expire at the end of July, but has now been extended in a manner similar to winter disconnection bans without a fixed end-date.

Hydro One says the move is necessary given the ongoing restrictions posed by the pandemic, and notes it has supported provincial COVID-19 efforts in recent months, as well as persistent hot weather across much of the province.

It says it's also planning to extend a financial relief program to help customers struggling to pay their hydro bills, reflecting demand for more choice and flexibility among ratepayers.

The province also extended off-peak electricity rates to provide relief for families, small businesses and farms during this period.

 

Related News

View more

After Quakes, Puerto Rico's Electricity Is Back On For Most, But Uncertainty Remains

Puerto Rico Earthquakes continue as a seismic swarm with aftershocks, landslides near Pef1uelas, damage in Ponce and Guayanilla, grid outages from Costa Sur Plant, PREPA recovery, vulnerable buildings post-Hurricane Maria raising safety concerns.

 

Key Points

Recurring seismic events impacting Puerto Rico, causing damage, aftershocks, outages, and displacement.

✅ Seismic swarm with 6.4 and 5.9 magnitude quakes and ongoing aftershocks

✅ Costa Sur Plant offline; PREPA urges conservation amid grid repairs

✅ Older, code-deficient buildings and landslides raise safety risks

 

Some in Puerto Rico are beginning to fear the ground will never stop shaking. The island has been pummeled by hundreds of earthquakes in recent weeks, including the recent 5.9 magnitude temblor, where there were reports of landslides in the town of Peñuelas along the southern coast, rattling residents already on edge from the massive 6.4 magnitude quake, and raising wider concerns about climate risks to the grid in disaster-prone regions.

That was the largest to strike the island in more than a century causing hundreds of structures to crumble, forcing thousands from their homes and leaving millions without power, a scenario echoed by Texas power outages during winter storms too. One person was killed and several others injured.

Utility says 99% of customers have electricity

Puerto Rico's public utility, PREPA, tweeted some welcome news Monday: that nearly all of the homes and businesses it serves have had electric power restored. Still it is urging customers to conserve energy amid utility supply-chain shortages that can slow critical repairs.

Reporting from the port city of Ponce, NPR's Adrian Florido said the Costa Sur Plant, which produces more than 40% of Puerto Rico's electricity, was badly damaged in last week's quake. It remains offline indefinitely, even as grid operators elsewhere have faced California blackout warnings during extreme heat.

He also reports many residents are still reeling from the devastation caused by Hurricane Maria, a deadly Category 4 storm that battered the island in September 2017. The storm exposed the fact that buildings across the island were not up to code, similar to how aging systems have contributed to PG&E power line fires in California. The series of earthquakes are only amplifying fears that structures have been further weakened.

"People aren't coping terribly well," Florido said on NPR's Morning Edition Monday, noting that households elsewhere have endured pandemic power shutoffs and burdensome bills.

Many earthquake victims sleeping outdoors

Florido spoke to one displaced resident, Leticia Espada, who said more than 50 homes in her town of Guayanilla, about an hour drive east of the port city of Ponce, had collapsed.

After sleeping outside for days on her patio following Tuesday's quake, she eventually came to her town's baseball stadium where she's been sleeping on one of hundreds of government-issued cots.

She's like so many others sleeping in open-air shelters, many unwilling to go back to their homes until they've been deemed safe, while even far from disaster zones, brief events like a Northeast D.C. outage show how fragile service can be.

"Thousands of people across several towns sleeping in tents or under tarps, or out in the open, protected by nothing but the shade of a tree with no sense of when these quakes are going to stop," Florido reports.

 

Related News

View more

New Electricity Auctions Will Drive Down Costs for Ontario's Consumers

IESO Capacity Auctions will competitively procure resources for Ontario electricity needs, boosting reliability and resource adequacy through market-based bidding, enabling demand response, energy storage, and flexible supply to meet changing load and regional grid conditions.

 

Key Points

A competitive, technology-neutral auction buys capacity at lowest cost to keep Ontario's grid reliable and flexible.

✅ Market-based procurement reduces system costs.

✅ Enables demand response, storage, and hybrid resources.

✅ Increases flexibility and regional reliability in Ontario.

 

The Independent Electricity System Operator (IESO) is introducing changes to Ontario's electricity system that will help save Ontarians about $3.4 billion over a 10-year period. The changes include holding annual capacity auctions to acquire electricity resources at lowest cost that can be called upon when and where they are needed to meet Ontario electricity needs. 

Today's announcement marks the release of a high level design for future auctions, with changes for electricity consumers expected as the first is set to be held in late 2022.

"These auctions will specify how much electricity we need, and introduce a competitive process to determine who can meet that need. It's a competition among all eligible resources, and it's the Ontario consumer, including industrial electricity ratepayers, who benefits through lower costs and a more flexible system better able to respond to changing demand and supply conditions," says IESO President and CEO Peter Gregg.

In the past decade, electricity supply was typically acquired through very prescriptive means with defined targets for specific types of resources such as wind and solar, and secured through 20-year contracts.  While these long-term commitments helped Ontario transform its generation fleet over the last decade, electricity cost allocation also played a role, but longer term contracts provide limited flexibility in dealing with unexpected changes in the power system. 

"Imagine signing a 20-year contract for your cable TV service. In five years' time, electricity rates could be lower, new competitors may have entered the market, or entirely new and innovative platforms and services like Netflix may have emerged. You miss out on opportunities for improvement by being locked-in," says Gregg.

Provincial electricity demand has traditionally fluctuated over time due to factors like economic growth, conservation and the introduction of generating resources on local distribution systems, with occasional issues such as phantom demand affecting customers' costs as well. Technological changes are adding another layer of uncertainty to future demand as electric vehicles, energy storage and low-cost solar panels become more common.

"Our planners do their best to forecast electricity demand, but the truth is there's no such thing as certainty in electricity planning. That's why flexibility is so important. We don't want Ontarians to have to pay more on the typical Ontario electricity bill for electricity resources than are needed to ensure a reliable power system that can continue to meet Ontario's needs," says IESO Vice President and COO Leonard Kula.

 

Related News

View more

Climate change: Electrical industry's 'dirty secret' boosts warming

Sulphur Hexafluoride (SF6) Emissions drive rising greenhouse gas impacts in electrical switchgear, power grids, and renewables, with extreme global warming potential, long atmospheric lifetime, and leakage risks challenging climate targets and grid decarbonization.

 

Key Points

SF6 emissions are leaks from electrical switchgear and grids, a high-GWP gas with ~1,000-year lifetime.

✅ 23,500x CO2 global warming potential (GWP)

✅ Leaks from switchgear, breakers, gas-insulated substations

✅ Clean air and vacuum alternatives emerging for MV/HV

 

Sulphur hexafluoride, or SF6, is widely used in the electrical industry to prevent short circuits and accidents.

But leaks of the little-known gas in the UK and the rest of the EU in 2017 were the equivalent of putting an extra 1.3 million cars on the road.

Levels are rising as an unintended consequence of the green energy boom and the broader global energy transition worldwide.

Cheap and non-flammable, SF6 is a colourless, odourless, synthetic gas. It makes a hugely effective insulating material for medium and high-voltage electrical installations.

It is widely used across the industry, from large power stations to wind turbines to electrical sub-stations in towns and cities.

It prevents electrical accidents and fires.

However, the significant downside to using the gas is that it has the highest global warming potential of any known substance. It is 23,500 times more warming than carbon dioxide (CO2).

Just one kilogram of SF6 warms the Earth to the same extent as 24 people flying London to New York return.

It also persists in the atmosphere for a long time, warming the Earth for at least 1,000 years.

 

So why are we using more of this powerful warming gas?

The way we make electricity around the world is changing rapidly, with New Zealand's push to electrify in its energy system.

Where once large coal-fired power stations brought energy to millions, the drive to combat climate change and to move away from coal means they are now being replaced by mixed sources of power including wind, solar and gas.

This has resulted in many more connections to the electricity grid, and with EU electricity use could double by 2050, a rise in the number of electrical switches and circuit breakers that are needed to prevent serious accidents.

Collectively, these safety devices are called switchgear. The vast majority use SF6 gas to quench arcs and stop short circuits.

"As renewable projects are getting bigger and bigger, we have had to use it within wind turbines specifically," said Costa Pirgousis, an engineer with Scottish Power Renewables on its new East Anglia wind farm, which doesn't use SF6 in turbines.

"As we are putting in more and more turbines, we need more and more switchgear and, as a result, more SF6 is being introduced into big turbines off shore.

"It's been proven for years and we know how it works, and as a result it is very reliable and very low maintenance for us offshore."

 

How do we know that SF6 is increasing?

Across the entire UK network of power lines and substations, there are around one million kilograms of SF6 installed.

A study from the University of Cardiff found that across all transmission and distribution networks, the amount used was increasing by 30-40 tonnes per year.

This rise was also reflected across Europe with total emissions from the 28 member states in 2017 equivalent to 6.73 million tonnes of CO2. That's the same as the emissions from 1.3 million extra cars on the road for a year.

Researchers at the University of Bristol who monitor concentrations of warming gases in the atmosphere say they have seen significant rises in the last 20 years.

"We make measurements of SF6 in the background atmosphere," said Dr Matt Rigby, reader in atmospheric chemistry at Bristol.

"What we've seen is that the levels have increased substantially, and we've seen almost a doubling of the atmospheric concentration in the last two decades."

 

How does SF6 get into the atmosphere?

The most important means by which SF6 gets into the atmosphere is from leaks in the electricity industry.

Electrical company Eaton, which manufactures switchgear without SF6, says its research indicates that for the full life-cycle of the product, leaks could be as high as 15% - much higher than many other estimates.

Louis Schaeffer, electrical business manager at Eaton, said: "The newer gear has very low leak rates but the key question is do you have newer gear?

"We looked at all equipment and looked at the average of all those leak rates, and we didn't see people taking into account the filling of the gas. Plus, we looked at how you recycle it and return it and also included the catastrophic leaks."

 

How damaging to the climate is this gas?

Concentrations in the atmosphere are very small right now, just a fraction of the amount of CO2 in the air.

However, the global installed base of SF6 is expected to grow by 75% by 2030, as data-driven electricity demand surges worldwide.

Another concern is that SF6 is a synthetic gas and isn't absorbed or destroyed naturally. It will all have to be replaced and destroyed to limit the impact on the climate.

Developed countries are expected to report every year to the UN on how much SF6 they use, but developing countries do not face any restrictions on use.

Right now, scientists are detecting concentrations in the atmosphere that are 10 times the amount declared by countries in their reports. Scientists say this is not all coming from countries like India, China and South Korea.

One study found that the methods used to calculate emissions in richer countries "severely under-reported" emissions over the past two decades.

 

Why hasn't this been banned?

SF6 comes under a group of human-produced substances known as F-gases. The European Commission tried to prohibit a number of these environmentally harmful substances, including gases in refrigeration and air conditioning, back in 2014.

 

But they faced strong opposition from industries across Europe.

"In the end, the electrical industry lobby was too strong and we had to give in to them," said Dutch Green MEP Bas Eickhout, who was responsible for the attempt to regulate F-gases.

"The electric sector was very strong in arguing that if you want an energy transition, and you have to shift more to electricity, you will need more electric devices. And then you also will need more SF6.

"They used the argument that otherwise the energy transition would be slowed down."

 

What do regulator and electrical companies say about the gas?

Everyone is trying to reduce their dependence on the gas, and US control efforts suggest targeted policies can drive declines, as it is universally recognised as harmful to the climate.

In the UK, energy regulator Ofgem says it is working with utilities to try to limit leaks of the gas.

"We are using a range of tools to make sure that companies limit their use of SF6, a potent greenhouse gas, where this is in the interest of energy consumers," an Ofgem spokesperson told BBC News.

"This includes funding innovation trials and rewarding companies to research and find alternatives, setting emissions targets, rewarding companies that beat those targets, and penalising those that miss them."

 

Are there alternatives - and are they very expensive?

The question of alternatives to SF6 has been contentious over recent years.

For high-voltage applications, experts say there are very few solutions that have been rigorously tested.

"There is no real alternative that is proven," said Prof Manu Haddad from the school of engineering at Cardiff University.

"There are some that are being proposed now but to prove their operation over a long period of time is a risk that many companies don't want to take."

Medium voltage operations there are several tried-and-tested materials. Some in the industry say that the conservative nature of the electrical industry is the key reason that few want to change to a less harmful alternative.

 

"I will tell you, everyone in this industry knows you can do this; there is not a technical reason not to do it," said Louis Schaffer from Eaton.

"It's not really economic; it's more a question that change takes effort and if you don't have to, you won't do it."

 

Some companies are feeling the winds of change

Sitting in the North Sea some 43km from the Suffolk coast, Scottish Power Renewables has installed one of world's biggest wind farms, in line with a sustainable electric planet vision, where the turbines will be free of SF6 gas.

East Anglia One will see 102 of these towering generators erected, with the capacity to produce up to 714MW (megawatts) of power by 2020, enough to supply half a million homes.

Previously, an installation like this would have used switchgear supplied with SF6, to prevent the electrical accidents that can lead to fires.

Each turbine would normally have contained around 5kg of SF6, which, if it leaked into the atmosphere, would add the equivalent of around 117 tonnes of carbon dioxide. This is roughly the same as the annual emissions from 25 cars.

"In this case we are using a combination of clean air and vacuum technology within the turbine. It allows us to still have a very efficient, reliable, high-voltage network but to also be environmentally friendly," said Costa Pirgousis from Scottish Power Renewables.

"Once there are viable alternatives on the market, there is no reason not to use them. In this case, we've got a viable alternative and that's why we are using it."

But even for companies that are trying to limit the use of SF6, there are still limitations. At the heart of East Anglia One sits a giant offshore substation to which all 102 turbines will connect. It still uses significant quantities of the highly warming gas.

 

What happens next ?

The EU will review the use of SF6 next year and will examine whether alternatives are available. However, even the most optimistic experts don't think that any ban is likely to be put in place before 2025.

 

Related News

View more

WY Utility's First Wind Farm Faces Replacement

Foote Creek I Wind Farm Repowering upgrades Wyoming turbines with new nacelles, towers, and blades, cutting 68 units to 12 while sustaining 41.6 MW, under PacifiCorp and Rocky Mountain Power's Energy Vision 2020 plan.

 

Key Points

Replacement at Foote Creek Rim I, cutting to 12 turbines while sustaining about 41.6 MW using modern 2-4.2 MW units.

✅ 12 turbines replace 68, output steady near 41.6 MW

✅ New nacelles, towers, blades; taller 500 ft turbines

✅ Part of PacifiCorp Energy Vision 2020 and Gateway West

 

A Wyoming utility company has filed a permit to replace its first wind farm—originally commissioned in 1998, composed of over 65 turbines—amid new gas capacity competing with nuclear in Ohio, located at Foote Creek Rim I. The replacement would downsize the number of turbines to 12, which would still generate roughly the same energy output.

According to the Star Tribune, PacifiCorp’s new installation would involve new nacelles, new towers and new blades. The permit was filed with Carbon County.

 

New WY Wind Farm

The replacement wind turbines will stand more than twice as tall as the old: Those currently installed stand 200 feet tall, whereas their replacements will tower closer to 500 feet. Though this move is part of the company’s overall plan to expand its state wind fleet as some utilities respond to declining coal returns in the Midwest, the work going into the Foote Creek site is somewhat special, noted David Eskelsen, spokesperson for Rocky Mountain Power, the western arm of PacifiCorp.

“Foote Creek I repowering is somewhat different from the repowering projects announced in the (Energy Vision) 2020 initiative,” he said. “Foote Creek is a complete replacement of the existing 68 foundations, towers, turbine nacelles and rotors (blades).”

Currently, the turbines at Foote Creek have 600 kilowatts capacity each; the replacements’ maximum production ranges from 2 megawatts to 4.2 megawatts each, with the total output remaining steady at 41.4 megawatts, a scale similar to a 30-megawatt wind expansion in Eastern Kings, though there will be a slight capacity increase to 41.6 megawatts, according to the Star Tribune.

As part of the wind farm repowering initiative, PacifiCorp is to become full owner and operator of the Foote Creek site. When the farm was originally built, an Oregon-based water and electric board was 21 percent owner; 37 percent of the project’s output was tied into a contract with the Bonneville Power Administration.

Otherwise, PacifiCorp is moving to further expand its state wind fleet in line with initiatives like doubling renewable electricity by 2030 in Saskatchewan, with the addition of three new wind farms—to be located in Carbon, Albany and Converse counties—which may add up to 1,150 megawatts of power.

According to PacifiCorp, the company has more than 1,000 megawatts of owned wind generation capability, along with long-term purchase agreements for more than 600 megawatts from other wind farms owned by other entities. Energy Vision 2020 refers to a $3.5 billion investment and company move that is looking to upgrade the company's existing wind fleet with newer technology, adding 1,150 megawatts of new wind resources by 2020 and a a new 140-mile Gateway West transmission segment in Wyoming, comparable to a transmission project in Missouri just energized.

 

 

Related News

View more

Trump's Vision of U.S. Energy Dominance Faces Real-World Constraints

U.S. Energy Dominance envisions deregulation, oil and gas growth, LNG exports, pipelines, and geopolitical leverage, while facing OPEC pricing power, infrastructure bottlenecks, climate policy pressures, and accelerating renewables in global markets.

 

Key Points

U.S. policy to grow fossil fuel output and exports via deregulation, bolstering energy security, geopolitical influence.

✅ Deregulation to expand drilling, pipelines, and export capacity

✅ Exposed to OPEC pricing, global shocks, and cost competitiveness

✅ Faces infrastructure, ESG finance, and renewables transition risks

 

Former President Donald Trump has consistently advocated for “energy dominance” as a cornerstone of his energy policy. In his vision, the United States would leverage its abundant natural resources to achieve energy self-sufficiency, flood global markets with cheap energy, and undercut competitors like Russia and OPEC nations. However, while the rhetoric resonates with many Americans, particularly those in energy-producing states, the pursuit of energy dominance faces significant real-world challenges that could limit its feasibility and impact.

The Energy Dominance Vision

Trump’s energy dominance strategy revolves around deregulation, increased domestic production of oil and gas, and the rollback of climate-oriented restrictions. During his presidency, he emphasized opening federal lands to drilling, accelerating the approval of pipelines, and, through an executive order, boosting uranium and nuclear energy initiatives, as well as withdrawing from international agreements like the Paris Climate Accord. The goal was not only to meet domestic energy demands but also to establish the U.S. as a major exporter of fossil fuels, thereby reducing reliance on foreign energy sources.

This approach gained traction during Trump’s first term, with the U.S. achieving record levels of oil and natural gas production. Energy exports surged, making the U.S. a net energy exporter for the first time in decades. Yet, critics argue that this policy prioritizes short-term economic gains over long-term sustainability, while supporters believe it provides a roadmap for energy security and geopolitical leverage.

Market Realities

The energy market is complex, influenced by factors beyond the control of any single administration, with energy crisis impacts often cascading across sectors. While the U.S. has significant reserves of oil and gas, the global market sets prices. Even if the U.S. ramps up production, it cannot insulate itself entirely from price shocks caused by geopolitical instability, OPEC production cuts, or natural disasters.

For instance, despite record production in the late 2010s, American consumers faced volatile gasoline prices during an energy crisis driven by $5 gas and external factors like tensions in the Middle East and fluctuating global demand. Additionally, the cost of production in the U.S. is often higher than in countries with more easily accessible reserves, such as Saudi Arabia. This limits the competitive advantage of U.S. energy producers in global markets.

Infrastructure and Environmental Concerns

A major obstacle to achieving energy dominance is infrastructure. Expanding oil and gas production requires investments in pipelines, export terminals, and refineries. However, these projects often face delays due to regulatory hurdles, legal challenges, and public opposition. High-profile pipeline projects like Keystone XL and Dakota Access have become battlegrounds between industry proponents and environmental activists, and cross-border dynamics such as support for Canadian energy projects amid tariff threats further complicate permitting, highlighting the difficulty of reconciling energy expansion with environmental and community concerns.

Moreover, the transition to cleaner energy sources is accelerating globally, with many countries committing to net-zero emissions targets. This trend could reduce the demand for fossil fuels in the long run, potentially leaving U.S. producers with stranded assets if global markets shift more quickly than anticipated.

Geopolitical Implications

Trump’s energy dominance strategy also hinges on the belief that U.S. energy exports can weaken adversaries like Russia and Iran. While increased American exports of liquefied natural gas (LNG) to Europe have reduced the continent’s reliance on Russian gas, achieving total energy independence for allies is a monumental task. Europe’s energy infrastructure, designed for pipeline imports from Russia, cannot be overhauled overnight to accommodate LNG shipments.

Additionally, the influence of major producers like Saudi Arabia and the OPEC+ alliance remains significant, even as shifts in U.S. policy affect neighbors; in Canada, some viewed Biden as better for the energy sector than alternatives. These countries can adjust production levels to influence prices, sometimes undercutting U.S. efforts to expand its market share.

The Renewable Energy Challenge

The growing focus on renewable energy adds another layer of complexity. Solar, wind, and battery storage technologies are becoming increasingly cost-competitive with fossil fuels. Many U.S. states and private companies are investing heavily in clean energy to align with consumer preferences and global trends, amid arguments that stepping away from fossil fuels can bolster national security. This shift could dampen the domestic demand for oil and gas, challenging the long-term viability of Trump’s energy dominance agenda.

Moreover, international pressure to address climate change could limit the expansion of fossil fuel infrastructure. Financial institutions and investors are increasingly reluctant to fund projects perceived as environmentally harmful, further constraining growth in the sector.

While Trump’s call for U.S. energy dominance taps into a desire for economic growth and energy security, it faces numerous challenges. Global market dynamics, infrastructure bottlenecks, environmental concerns, and the transition to renewable energy all pose significant barriers to achieving the ambitious vision.

For the U.S. to navigate these challenges effectively, a balanced approach that incorporates both traditional energy sources and investments in clean energy is likely needed. Striking this balance will require careful policymaking that considers not just immediate economic gains but also long-term sustainability and global competitiveness.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified