Requirements tightened for Energy Star program

By Associated Press


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
The Obama administration is taking steps to strengthen the federal Energy Star program after a report found the government energy efficiency program vulnerable to fraud and abuse.

The Environmental Protection Agency says that to qualify their products for the energyefficient label, new applicants will be required to submit complete lab reports and results for review. The agency is also ditching an automated approval process.

A report by last month by the General Accountability Office faulted the program for not verifying claims made by manufacturers. The GAO was able to get a bunch of phony products certified, including a gasolinepowered alarm clock.

The EPA and Energy Department will also require all manufacturers by the end of the year to submit test results from an approved, accredited lab.

Related News

'Unlayering' peak demand could accelerate energy storage adoption

Duration Portfolio Energy Storage aligns layered peak demand with right-sized batteries, enabling peak shaving, gas peaker replacement, and solar-plus-storage synergy while improving grid flexibility, reliability, and T&D deferral through two- to four-hour battery durations.

 

Key Points

An approach that layers battery durations to match peaks, cut costs, replace peakers, and boost grid reliability.

✅ Layers 2- to 4-hour batteries by peak duration

✅ Enables solar-plus-storage and peak shaving

✅ Cuts T&D upgrades, emissions, and fuel costs

 

The debate over energy storage replacing gas-fired peakers has raged for years, but a new approach that shifts the terms of the argument could lead to an acceleration of storage deployments.

Rather than looking at peak demand as a single mountainous peak, some analysts now advocate a layered approach that allows energy storage to better match peak needs and complement ongoing efforts to improve solar and wind power across the grid.

"You don’t have to have batteries that run to infinity."

Some developers of solar-plus-storage projects, bolstered by cheap batteries, say they can already compete head-to-head with gas-fired peakers. "I can beat a gas peaker anywhere in the country today with a solar-plus-storage power plant," Tom Buttgenbach, president and CEO of developer 8minutenergy Renewables, recently told S&P Global.

Customers are very busy these days and rebate programs need to fit the speed of their life. Participation should be quick, easy, and accessible anywhere.

Others disagree. Storage is not disruptive for generation, but will be disruptive for transmission and distribution, Kris Zadlo, executive vice president and chief development officer at Invenergy, told the audience at a Bloomberg New Energy Finance conference last spring. Invenergy, like many renewable power developers, develops generation, energy storage and transmission projects.

But there is another path that avoids the pitfalls of positions on either end of the all-or-none approach. "Do the analysis of the need itself," Ray Hohenstein, market applications director at Fluence, told Utility Dive. If the need is only two hours in duration, it may be best served by a two-hour battery. "You don’t have to have batteries that run to infinity."

 

Storage vs. fossil fuel peakers

Energy storage has several benefits over traditional fossil fuel peaking plants, Hohenstein said. It is instantaneous, it has no emissions and requires no fuel, and has limited infrastructure needs. It can also help the grid absorb higher levels of renewable generation by soaking up excess output, such as solar power at noon, and many planned storage additions will be paired with solar in the next few years. But the one thing energy storage cannot do, he said, is provide limitless energy.

So, instead of looking at replacing an individual peaker, Hohenstein advocated a "duration portfolio" approach that uses energy storage to shave peak load.

If the need is for 150 MW of resources that will never need to run for more than two hours at a time, then a battery is "quite cheap," significantly less than a four or eight-hour battery, said Hohenstein. "If you fill up your peak by duration layer, it could be more cost effective."

 

NREL research driver

Fluence’s approach is informed by research by Paul Denholm and Robert Margolis at the National Renewable Energy Laboratory (NREL), released last spring.

The NREL researchers looked at the California market where they said 11 GW of fossil fuel capacity is expected to be retired by 2029 because of new once-through-cooling requirements that are taking effect. A lot of that capacity is peaking capacity and, according to NREL’s analysis, a large fraction could be replaced with four-hour energy storage, assuming continued storage cost reductions and growth in solar installations.

The key in NREL’s research was the level of solar power penetration. There is a "synergistic" relationship between solar penetration and storage deployment, the researchers wrote, and other studies suggest wind and solar could meet 80% of U.S. demand as these trends continue.

 

Related News

View more

USAID Delivers Mobile Gas Turbine Power Plant to Ukraine

USAID GE Mobile Power Plant Ukraine supplies 28MW of emergency power and distributed generation to bolster energy security, grid resilience, and critical infrastructure reliability across cities and regions amid ongoing attacks.

 

Key Points

A 28MW GE gas turbine from USAID providing mobile, distributed power to strengthen Ukraine's grid resilience.

✅ 28MW GE gas turbine; power for 100,000 homes

✅ Mobile deployment to cities and regions as needed

✅ Supports hospitals, schools, and critical infrastructure

 

Deputy U.S. Administrator Isobel Coleman announced during her visit to Kyiv that the U.S. Agency for International Development (USAID) has provided the Government of Ukraine with a mobile gas turbine power plant purchased from General Electric (GE), as discussions of a possible agreement on power plant attacks continue among stakeholders.

The mobile power plant was manufactured in the United States by GE’s Gas Power business and has a total output capacity of approximately 28MW, which is enough to provide the equivalent electricity to at least 100,000 homes. This will help Ukraine increase the supply of electricity to homes, hospitals, schools, critical infrastructure providers, and other institutions, as the country has even resumed electricity exports in recent months. The mobile power plant can be operated in different cities or regions depending on need, strengthening Ukraine’s energy security amid the Russian Federation’s continuing strikes against critical infrastructure.   

Since the February 2022 full-scale invasion of Ukraine, and particularly since October 2022, the Russian Federation has deliberately targeted critical civilian heating, power, and gas infrastructure in an effort to weaponize the winter, raising nuclear risks to grid stability noted by international monitors. Ukraine has demonstrated tremendous resilience in the wake of these attacks, with utility workers routinely risking their lives to repair the damage, often within hours of air strikes, even as Russia builds power lines to reactivate the Zaporizhzhia plant to influence the energy situation.

The collaboration between USAID and GE reflects the U.S. government’s emphasis on engaging American private sector expertise and procuring proven and reliable equipment to meet Ukraine’s needs. Since the start of Putin’s full-scale war against Ukraine, USAID has both directly procured equipment for Ukraine from American companies and engaged the private sector in partnerships to meet Ukraine’s urgent wartime needs, with U.S. policy debates such as a proposal on Ukraine’s nuclear plants drawing scrutiny.

This mobile power plant is the latest example of USAID assistance to Ukraine’s energy sector since the start of the Russian Federation’s full-scale invasion, during which Ukraine has resumed electricity exports as conditions improved. USAID has already delivered more than 1,700 generators to 22 oblasts across Ukraine, with many more on the way. These generators ensure electricity and heating for schools, hospitals, accommodation centers for internally-displaced persons, district heating companies, and water systems if and when power is knocked out by the Russian Federation’s relentless, systematic and cruel attacks against critical civil infrastructure. USAID has invested $55 million in Ukraine’s heating infrastructure to help the Ukrainian people get through winter. This support will benefit up to seven million Ukrainians by supporting repairs and maintenance of pipes and other equipment necessary to deliver heating to homes, hospitals, schools, and businesses across Ukraine. USAID’s assistance builds on over two decades of support to Ukraine to strengthen the country’s energy security, complementing growth in wind power that is harder to destroy.

 

Related News

View more

Adani Electricity's Power Supply Cuts in Mumbai

Adani Electricity Mumbai Power Cuts follow non-payment rules, reflecting billing disputes, regulatory compliance, consumer impact, and affordability concerns, while prompting mitigation measures like flexible payment plans, assistance programs, and clearer communication for residents.

 

Key Points

AEML cutoffs for unpaid bills per rules, raising affordability worries, billing issues, and calls for flexible aid.

✅ Triggered by unpaid bills under regulatory guidelines

✅ Affordability and billing transparency concerns raised

✅ Mitigation: flexible plans, aid for low-income users

 

Adani Electricity Mumbai Limited (AEML) recently made headlines by cutting power supply to around 100 homes in Mumbai, sparking discussions about the reasons behind this action and its implications for consumers, especially as reports like the Northeast D.C. outage continue to surface.

Background of the Incident

The power supply disconnections by AEML were reportedly due to non-payment of electricity bills by the affected households. This action, although necessary under AEML's policies and in accordance with regulatory guidelines, has raised concerns about the impact on residents, particularly during challenging economic times when pandemic electricity shut-offs highlighted energy insecurity.

Reasons for Non-Payment

Non-payment of electricity bills can stem from various reasons, including financial hardships, disputes over billing accuracy, or unforeseen circumstances affecting household finances. In Mumbai, where the cost of living is high, utility bills constitute a significant portion of monthly expenses for many households, mirroring trends of rising electricity bills seen elsewhere.

Regulatory and Legal Framework

AEML's decision to disconnect power supply aligns with regulatory provisions governing utility services, which may include emergency disconnection moratoriums in other jurisdictions. Utility companies are mandated to enforce bill payments to maintain operational sustainability and ensure fair distribution of resources among consumers.

Consumer Impact and Response

The power disconnections have prompted reactions from affected residents and consumer advocacy groups, highlighting issues related to affordability, transparency in billing practices, and the need for supportive measures during times of economic distress amid heat-related electricity struggles that pressure vulnerable households.

Mitigation Measures

In response to such incidents, utility companies and regulatory authorities often implement mitigation measures. These may include flexible payment options, financial assistance programs for low-income households, and enhanced communication about billing procedures and payment deadlines, along with policy scrutiny such as utility spending oversight to curb unnecessary costs.

Future Considerations

As cities like Mumbai continue to grow and face challenges related to urbanization and infrastructure development, ensuring reliable and affordable access to essential services like electricity, including efforts to prevent summer power outages, remains a priority. Balancing the operational needs of utility providers with consumer welfare concerns requires ongoing dialogue and proactive measures from all stakeholders.

Conclusion

The power supply cuts by Adani Electricity in Mumbai underscore the complexities of managing utility services in urban centers. While necessary for financial viability and regulatory compliance, such actions also highlight broader issues of affordability and consumer protection. Moving forward, collaborative efforts between utility companies, regulatory authorities, and community stakeholders are essential in addressing these challenges and ensuring equitable access to essential services for all residents.

 

Related News

View more

The Cool Way Scientists Turned Falling Raindrops Into Electricity

Raindrop Triboelectric Energy Harvesting converts falling water into electricity using Teflon (PTFE) on indium tin oxide and an aluminum electrode, forming a transient water bridge; a low frequency nanogenerator for renewable, static electricity harvesting.

 

Key Points

A method using PTFE, ITO, and an aluminum electrode to turn raindrop impacts into low frequency electrical power.

✅ PTFE on ITO boosts charge transfer efficiency.

✅ Water bridge links electrodes for rapid discharge.

✅ Low frequency output suits continuous energy harvesting.

 

Scientists at the City University of Hong Kong have used a Teflon-coated surface and a phenomenon called triboelectricity to generate a charge from raindrops. “Here we develop a device to harvest energy from impinging water droplets by using an architecture that comprises a polytetrafluoroethylene [Teflon] film on an indium tin oxide substrate plus an aluminium electrode,” they explain in their new paper in Nature as a step toward cheap, abundant electricity in the long term.

Triboelectricity itself is an old concept. The word means “friction electricity”—from the Greek tribo, to rub or wear down, which is why a diatribe tires you out—and dates back a long, long time. Static electricity is the most famous kind of triboelectric, and related work has shown electricity from the night sky can be harvested as well in niche setups. In most naturally occurring kinds, scientists have studied triboelectric in order to avoid its effects, like explosions inside of grain silos or hospital workers touching off pure oxygen. (Blowing sand causes an electric field, and NASA even worries about static when astronauts eventually land on Mars.)

One of the most studied forms of intentional and useful triboelectric is in systems such as ocean wave generators where the natural friction of waves meets nanogenerators of triboelectric energy. These even already use Teflon, which has natural conductivity that makes it ideal for this job. But triboelectricity is chaotic, and harnessing it generally involves a bunch of complicated, intersecting variables that can vary with the hourly weather. Promises of static electricity charging devices have often been, well, so much hot, sandy wind.

The scientists at City University of Hong Kong used triboelectric ideas to turn falling raindrops into energy. They say previous versions of the same idea were not very efficient, with materials that didn’t allow for high-fidelity transfer of electrical charge. (Many sources of renewable energy aren’t yet as efficient to turn into power, both because of developing technology and because their renewability means even less efficient use could be better than, for example, fossil fuels, and advances in renewable energy storage could help.)

“[A]chieving a high density of electrical power generation is challenging,” the team explains in its paper. “Traditional hydraulic power generation mainly uses electromagnetic generators that are heavy, bulky, and become inefficient with low water supply.” Diversifying how power is generated by water sources such as oceans and rivers is good for the existing infrastructure as well as new installations.

The research team found that as simulated raindrops fell on their device, the way the water accumulated and spread created a link between their two electrodes, one Teflon-coated and the other aluminum. This watery de facto wire link closes the loop and allows accumulated energy to move through the system. Because it’s a mechanical setup, it’s not limited to salty seawater, and because the medium is already water, its potential isn’t affected by ambient humidity either.

Raindrop energy is very low frequency, which means this tech joins many other existing pushes to harvest continuously available, low frequency natural energy, including underwater 'kites' that exploit steady currents. To make an interface that increases “instantaneous power density by several orders of magnitude over equivalent devices,” as the researchers say they’ve done here, could represent a major step toward feasibility in triboelectric generation.

 

Related News

View more

Swiss Earthquake Service and ETH Zurich aim to make geothermal energy safer

Advanced Traffic Light System for Geothermal Safety models fracture growth and friction with rock physics, geophones, and supercomputers to predict induced seismicity during hydraulic stimulation, enabling real-time risk control for ETH Zurich and SED.

 

Key Points

ATLS uses rock physics, geophones, and HPC to forecast induced seismicity in real time during geothermal stimulation.

✅ Real-time seismic risk forecasts during hydraulic stimulation

✅ Uses rock physics, friction, and fracture modeling on HPC

✅ Supports ETH Zurich and SED field tests in Iceland and Bedretto

 

The Swiss Earthquake Service and ETH Zurich want to make geothermal energy safer, so news piece from Switzerland earlier this month. This is to be made possible by new software, including machine learning, and the computing power of supercomputers. The first geothermal tests have already been carried out in Iceland, and more will follow in the Bedretto laboratory.

In areas with volcanic activity, the conditions for operating geothermal plants are ideal. In Iceland, the Hellisheidi power plant makes an important contribution to sustainable energy use, alongside innovations like electricity from snow in cold regions.

Deep geothermal energy still has potential. This is the basis of the 2050 energy strategy. While the inexhaustible source of energy in volcanically active areas along fault zones of the earth’s crust can be tapped with comparatively little effort and, where viable, HVDC transmission used to move power to demand centers, access on the continents is often much more difficult and risky. Because the geology of Switzerland creates conditions that are more difficult for sustainable energy production.

Improve the water permeability of the rock

On one hand, you have to drill four to five kilometers deep to reach the correspondingly heated layers of earth in Switzerland. It is only at this depth that temperatures between 160 and 180 degrees Celsius can be reached, which is necessary for an economically usable water cycle. On the other hand, the problem of low permeability arises with rock at these depths. “We need a permeability of at least 10 millidarcy, but you can typically only find a thousandth of this value at a depth of four to five kilometers,” says Thomas Driesner, professor at the Institute of Geochemistry and Petrology at ETH Zurich.

In order to improve the permeability, water is pumped into the subsurface using the so-called “fracture”. The water acts against friction, any fracture surfaces shift against each other and tensions are released. This hydraulic stimulation expands fractures in the rock so that the water can circulate in the hot crust. The fractures in the earth’s crust originate from tectonic tensions, caused in Switzerland by the Adriatic plate, which moves northwards and presses against the Eurasian plate.

In addition to geothermal energy, the “Advanced Traffic Light System” could also be used in underground construction or in construction projects for the storage of carbon dioxide.

Quake due to water injection

The disadvantage of such hydraulic stimulations are vibrations, which are often so weak or cannot be perceived without measuring instruments. But that was not the case with the geothermal projects in St. Gallen 2013 and Basel 2016. A total of around 11,000 cubic meters of water were pumped into the borehole in Basel, causing the pressure to rise. Using statistical surveys, the magnitudes 2.4 and 2.9 defined two limit values ??for the maximum permitted magnitude of the earthquakes generated. If these are reached, the water supply is stopped.

In Basel, however, there was a series of vibrations after a loud bang, with a time delay there were stronger earthquakes, which startled the residents. In both cities, earthquakes with a magnitude greater than 3 have been recorded. Since then it has been clear that reaching threshold values ??determines the stop of the water discharge, but this does not guarantee safety during the actual drilling process.

Simulation during stimulation

The Swiss Seismological Service SED and the ETH Zurich are now pursuing a new approach that can be used to predict in real time, building on advances by electricity prediction specialists in Europe, during a hydraulic stimulation whether noticeable earthquakes are expected in the further course. This is to be made possible by the so-called “Advanced Traffic Light System” based on rock physics, a software developed by the SED, which carries out the analysis on a high-performance computer.

Geophones measure the ground vibrations around the borehole, which serve as indicators for the probability of noticeable earthquakes. The supercomputer then runs through millions of possible scenarios, similar to algorithms to prevent power blackouts during ransomware attacks, based on the number and type of fractures to be expected, the friction and tensions in the rock. Finally, you can filter out the scenario that best reflects the underground.

Further tests in the mountain

However, research is currently still lacking any real test facility for the system, because incorrect measurements must be eliminated and a certain data format adhered to before the calculations on the supercomputer. The first tests were carried out in Iceland last year, with more to follow in the Bedretto geothermal laboratory in late summer, where reliable backup power from fuel cell solutions can keep instrumentation running. An optimum can now be found between increasing the permeability of rock layers and an adequate water supply.

The new approach could make geothermal energy safer and ultimately help this energy source to become more accepted, while grid upgrades like superconducting cables improve efficiency. Research also sees areas of application wherever artificially caused earthquakes can occur, such as in underground mining or in the storage of carbon dioxide underground.

 

Related News

View more

Worker injured after GE turbine collapse

GE Wind Turbine Collapse Brazil raises safety concerns at Omega Energia's Delta VI wind farm in Maranhe3o, with GE Renewable Energy probing root-cause of turbine failure after a worker injury and similar incidents in 2024.

 

Key Points

An SEO focus on the Brazil GE turbine collapse, its causes, safety investigation, and related 2024 incidents.

✅ Incident at Omega Energia's Delta VI, Maranhao; one worker injured

✅ GE Renewable Energy conducts root-cause investigation and containment

✅ Fifth GE turbine collapse in 2024 across Brazil and the United States

 

A GE Renewable Energy turbine collapsed at a wind farm in north-east Brazil, injuring a worker and sparking a probe into the fifth such incident this year, the manufacturer confirmed.

One of the manufacturer’s GE 2.72-116 turbines collapsed at Omega Energia’s Delta VI project in Maranhão, which was commissioned in 2018.

Three GE employees were on site at the time of the collapse on Tuesday (3 September), the US manufacturer confirmed, even as U.S. offshore wind developers signal growing competitiveness with gas. 

One worker was injured and is currently receiving medical treatment, GE added.

"We are working to determine the root cause of this incident and to provide proper support as needed," it said

The turbine collapse in Brazil is the fifth such incident involving GE turbines this year, even as the UK's biggest offshore windfarm begins power supply this week, underscoring broader sector momentum.

On 16 February, a turbine collapsed at NextEra Energy Resources’ Casa Mesa wind farm in New Mexico, US, while giant wind components were being transported to a project in Saskatchewan, Canada. The site uses GE’s 2.3-116 and 2.5-127 models.

The New Mexico incident was followed by another collapse in the US — as a Scottish North Sea wind farm resumed construction after Covid-19 — this time a GE 2.4-107 unit at Tradewind Energy’s Chisholm View 2 project in Oklahoma on 21 May.

Two GE turbines then collapsed at projects in July: a 2.5-116 unit at Invenergy’s Upstreamwind farm in Nebraska on 5 July, followed by a 1.7-103 model at the Actis Group-owned Ventos de São Clemente complex in Pernambuco, north-eastern Brazil, even as tidal power in Scotland generated enough electricity to power nearly 4,000 homes.

No employees were injured in the first four turbine collapses of the year, in contrast with concerns at a Hawaii geothermal plant over potential meltdown risk.

In response to the latest incident, GE Renewable Energy added: "It is too early to speculate about the root cause of this week’s turbine collapse.

"Based on our learnings from the previous turbine collapses, we have teams in place focused on containing and resolving these issues quickly, to ensure the safe and reliable operation of our turbines."

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified