Florida Power & Light boasts about low customer electric bills

By Florida Power & Light Company


NFPA 70e Training - Arc Flash

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today
JUNO BEACH, Fla. – Florida Power & Light Company FPL recently announced that for the fifth year in row, its typical residential customer bill will continue to be the lowest in the state of Florida and about 25 percent lower than the national average.

“At FPL, we work hard every day to offer our customers an outstanding value: low rates, more than 99.98 percent reliability, a clean emissions profile and award-winning customer service,” said Eric Silagy, president of FPL. “We know that every dollar counts, and that’s why we’re investing in clean, highly efficient power plants that use less fuel. We pass 100 percent of those savings on to our customers, money that stays in our customers’ pockets and eventually ends up helping Florida’s economy.”

FPLÂ’s low rates add up to substantial savings. A typical residential FPL customer using 1,000 kilowatt-hours of electricity a month saved more than $320 last year alone compared to the average price paid by Floridians served by other electric utilities. In total, over the past five years, a typical FPL customer saved an estimated $1,800 versus the Florida average and $1,500 compared to the average American electric customer.

Moreover, while the prices of healthcare and other essentials have risen in recent years, FPL’s typical customer bill is actually lower than it was five years ago – recently, it’s down about seven percent compared with 2009.

FPL’s business customer rates are highly competitive as well – among the lowest in the state and below the national average. To encourage economic development, FPL offers special discounted electric rates to help new and expanding businesses create jobs for Floridians. To date, 29 companies have participated in this program, creating an estimated 4,700 new jobs in Florida.

“Florida has an attractive business climate, and FPL’s low electric rates certainly are an important factor,” said Bill Foley, president of Cheney Brothers Inc., one of the largest food service distributors in the southeastern U.S. The company recently broke ground on a new $100 million distribution center in Charlotte County that will create 300 jobs. “The discount we get from Florida Power & Light is essential,” Foley said.

A major contributor to low customer rates is FPL’s strategy of investing in highly efficient power plants that run on clean, American-produced natural gas. FPL has systematically reduced by 99 percent its use of foreign oil to generate electricity– from more than 40 million barrels a year in 2001 to about 200,000 last year. These investments have saved customers more than $6.5 billion in fuel costs with more savings expected.

FPLÂ’s Riviera Beach Next Generation Clean Energy Center in Palm Beach County, which officially entered commercial service recently, is the latest example of the companyÂ’s efforts to modernize its power plant fleet. FPL invested $1.3 billion to build the plant on the Port of Palm Beach site where a 1960s-era, oil-fired plant stood until it was dismantled in 2011. Construction was completed under budget and two months ahead of schedule.

“During the past four years, we’ve witnessed a remarkable rebound in Florida’s economy, particularly in the area of job growth,” said Silagy. “FPL remains committed to helping grow Florida’s economy and ensuring our state continues to be one of the most attractive and affordable places in the country to live and run a business.”

FPL offers multiple energy efficiency programs to help customers save even more, including the Online Home Energy Survey, where customers can get personalized recommendations on how to save. Customers also have access to the Energy Dashboard, where they can monitor their energy use by the hour, day or month to help them better manage their electric bills.

Related News

California avoids widespread rolling blackouts as heat strains power grid

California Heat Wave Grid Emergency sees CAISO issue Stage 3 alerts as record demand, extreme heat, and climate change strain renewable energy; conservation efforts avert rolling blackouts and protect grid reliability statewide.

 

Key Points

A grid emergency in California's heat wave, with CAISO Stage 3 alerts amid record demand and risk of rolling blackouts.

✅ CAISO triggered Stage 3 alerts, then downgraded by 8 pm PT

✅ Record 52,061 MW demand; conservation reduced grid stress

✅ Extreme heat and climate change heightened outage risks

 

California has avoided ordering rolling blackouts after electricity demand reached a record-high Tuesday night from excessive heat across the state, even as energy experts warn the U.S. grid faces mounting climate stresses. 

The California Independent System Operator, which oversees the state’s electrical grid, imposed its highest level energy emergency on Tuesday, a step that comes before ordering rolling blackouts and allows the state to access emergency power sources.

The Office of Emergency Services also sent a text alert to residents requesting them to conserve power. The operator downgraded the Stage 3 alert around 8:00 p.m. PT on Tuesday and said that “consumer conservation played a big part in protecting electric grid reliability,” and in bolstering grid resilience overall.

The state capital of Sacramento reached 116 degrees Fahrenheit on Tuesday, according to the National Weather Service, surpassing a record that was set almost 100 years ago. And nearly a half-dozen cities in the San Francisco Bay Area tied or set all-time highs, the agency said.

CAISO said peak power demand on Tuesday reached 52,061 megawatts, surpassing a previous high of 50,270 megawatts on July 24, 2006, while nearby B.C. electricity demand has also hit records during extreme weather.

While the operator did not order rolling blackouts, three Northern California cities saw brief power outages, and severe storms have caused similar disruptions statewide in recent months. As of 7:00 am PT on Wednesday, nearly 8,000 customers in California were without power, according to PowerOutage.us. 

Gov. Gavin Newsom, in a Twitter video on Tuesday, warned the temperatures across California were unprecedented and the state is headed into the worst part of the heat wave, which is on track to be the hottest and longest on record for September.

“The risk for outages is real and it’s immediate,” Newsom said. “These triple-digit temperatures throughout much of the state are leading, not surprisingly, to record demand on the energy grid.”

The governor urged residents to pre-cool their homes earlier in the day when more power is available and turn thermostats to 78 degrees or higher after 4:00 pm PT. “Everyone has to do their part to help step up for just a few more days,” Newsom said.

The possibility for widespread outages reflects how power grids in California and other states are becoming more vulnerable to climate-related disasters such as heat waves, storms and wildfires across California.

California, which has set a goal to transition to 100% carbon-free electricity by 2045, has shuttered a slew of gas power plants in the past few years, leaving the state increasingly dependent on solar energy.

At times, the state has produced a clean energy surplus during peak solar generation, underscoring the challenges of balancing supply and demand.

The megadrought in the American West has generated the driest two decades in the region in at least 1,200 years, and human-caused climate change has fueled the problem, scientists said earlier this year. Conditions will likely continue through 2022 and persist for years.

 

Related News

View more

Coronavirus could stall a third of new U.S. utility solar this year: report

U.S. Utility-Scale Solar Delays driven by the coronavirus pandemic threaten construction timelines, supply chains, and financing, with interconnection and commissioning setbacks, module sourcing risks in Southeast Asia, and tax credit deadline pressures impacting project delivery.

 

Key Points

Setbacks to large U.S. solar builds from COVID-19 impacting construction, supply, financing, and permitting.

✅ Construction, interconnection, commissioning site visits delayed

✅ Supply chain risks for modules from Southeast Asia

✅ Tax credit deadline extensions sought by developers

 

About 5 gigawatts (GW) of big U.S. solar energy projects, enough to power nearly 1 million homes, could suffer delays this year if construction is halted for months due to the coronavirus pandemic, as the Covid-19 crisis hits renewables across the sector, according to a report published on Wednesday.

The forecast, a worst-case scenario laid out in an analysis by energy research firm Wood Mackenzie, would amount to about a third of the utility-scale solar capacity expected to be installed in the United States this year, even as US solar and wind growth continues under favorable plans.

The report comes two weeks after the head of the top U.S. solar trade group called the coronavirus pandemic (as solar jobs decline nationwide) "a crisis here" for the industry. Solar and wind companies are pleading with Congress to extend deadlines for projects to qualify for sunsetting federal tax credits.

Even the firm’s best-case scenario would result in substantial delays, mirroring concerns that wind investments at risk across the industry. With up to four weeks of disruption, the outbreak will push out 2 GW of projects, or enough to power about 380,000 homes. Before factoring in the impact of the coronavirus, Wood Mackenzie had forecast 14.7 GW of utility-scale solar projects would be installed this year.

In its report, the firm said the projects are unlikely to be canceled outright. Rather, they will be pushed into the second half of 2020 or 2021. The analysis assumes that virus-related disruptions subside by the end of the third quarter.

Mid-stage projects that still have to secure financing and receive supplies are at the highest risk, Wood Mackenzie analyst Colin Smith said in an interview, adding that it was too soon to know whether the pandemic would end up altering long-term electricity demand and therefore utility procurement plans, where policy shifts such as an ITC extension could reshape priorities.

Currently, restricted travel is the most likely cause of project delays, the report said. Developers expect delays in physical site visits for interconnection and commissioning, and workers have had difficulty reaching remote construction sites.

For earlier-stage projects, municipal offices that process permits are closed and in-person meetings between developers and landowners or local officials have slowed down.

Most solar construction is proceeding despite stay at home orders in many states because it is considered critical infrastructure, and long-term proposals like a tenfold increase in solar could reshape the outlook, the report said, adding that “that could change with time.”

Risks to supplies of solar modules include potential manufacturing shutdowns in key producing nations in Southeast Asia such as Malaysia, Vietnam and Thailand. Thus far, solar module production has been identified as an essential business and has been allowed to continue.

 

Related News

View more

Zapping elderly brains with electricity improves short-term memory — for almost an hour

Transcranial electrical stimulation synchronizes brain waves to bolster working memory, aligning neural oscillations across the prefrontal and temporal cortex. This noninvasive brain stimulation may counter cognitive aging by restoring network coupling and improving short-term recall.

 

Key Points

Transcranial electrical stimulation applies scalp currents to synchronize brain waves, briefly enhancing working memory.

✅ Synchronizes prefrontal-temporal networks to restore coupling

✅ Noninvasive tES/tACS protocols show rapid, reversible gains

✅ Effects lasted under an hour; durability remains to be tested

 

To read this sentence, you hold the words in your mind for a few seconds until you reach the period. As you do, neurons in your brain fire in coordinated bursts, generating electrical waves that let you hold information for as long as it is needed, much as novel devices can generate electricity from falling snow under specific conditions. But as we age, these brain waves start to get out of sync, causing short-term memory to falter. A new study finds that jolting specific brain areas with a periodic burst of electricity might reverse the deficit—temporarily, at least.

The work makes “a strong case” for the idea that out-of-sync brain waves in specific regions can drive cognitive aging, says Vincent Clark, a neuroscientist at the University of New Mexico in Albuquerque, who was not involved in the research. He adds that the brain stimulation approach in the study may result in a new electrical therapy for age-related deficits in working memory.

Working memory is “the sketchpad of the mind,” allowing us to hold information in our minds over a period of seconds. This short-term memory is critical to accomplishing everyday tasks such as planning and counting, says Robert Reinhart, a neuroscientist at Boston University who led the study. Scientists think that when we use this type of memory, millions of neurons in different brain areas communicate through coupled bursts of activity, a form of electrical conduction that coordinates timing across networks. “Cells that fire together, wire together,” Reinhart says.

But despite its critical role, working memory is a fragile cognitive resource that declines with age, Reinhart says. Previous studies had suggested that reduced working-memory performance in the elderly is linked to uncoupled activity in different brain areas. So Reinhart and his team set out to test whether recoupling brain waves in older adults could boost the brain’s ability to temporarily store information, a systems-level coordination challenge akin to efforts to use AI for energy savings on modern power grids.

To do so, the researchers used jolts of weak electrical current to synchronize waves in the prefrontal and temporal cortex—two brain areas critical for cognition, a targeted approach not unlike how grids use batteries to stabilize power during strain—and applied the current to the scalps of 42 healthy people in their 60s and 70s who showed no signs of decline in mental ability. Before their brains were zapped, participants looked at a series of images: an everyday object, followed briefly by a blank screen, and then either an identical or a modified version of the same object. The goal was to spot whether the two images were different.

Then the participants took the test again, while their brains were stimulated with a current. After about 25 minutes of applying electricity, participants were on average more accurate at identifying changes in the images than they were before the stimulation. Following stimulation, their performance in the test was indistinguishable from that of a group of 42 people in their 20s. And the waves in the prefrontal and temporal cortex, which had previously been out of sync in most of the participants, started to fire in sync, the researchers report today in Nature Neuroscience, a synchronization imperative reminiscent of safeguards that prevent power blackouts on threatened grids. No such effects occurred in a second group of older people who received jolts of current that didn’t synchronize waves in the prefrontal and temporal cortex.

By using bursts of current to knock brain waves out of sync, the researchers also modulated the brain chatter in healthy people in their 20s, making them slower and less accurate at spotting differences in the image test.

“This is a very nice and clear demonstration of how functional connections underlie memory in younger adults and how alterations … can lead to memory reductions in older adults,” says Cheryl Grady, a cognitive neuroscientist at the Rotman Research Institute at Baycrest in Toronto, Canada. It’s also the first time that transcranial stimulation has been shown to restore working memory in older people, says Michael O’Sullivan, a neuroscientist at the University of Queensland in Brisbane, Australia, though electricity in medicine extends far beyond neurostimulation.

But whether brain zapping could turbocharge the cognitive abilities of seniors or help improve the memories of people with diseases like Alzheimer’s is still unclear: In the study, the positive effects on working memory lasted for just under an hour—though Reinhart says that’s as far as they recorded in the experiment. The team didn’t see the improvements decline toward the end, so he suspects that the cognitive boost may last for longer. Still, researchers say much more work has to be done to better understand how the stimulation works.

Clark is optimistic. “No pill yet developed can produce these sorts of effects safely and reliably,” he says. “Helping people is the ultimate goal of all of our research, and it’s encouraging to see that progress is being made.”

 

Related News

View more

Affordable, safe' nuclear power is key to reaching Canada's climate goals: federal minister

Canada Nuclear Power Expansion highlights SMRs, clean energy, net-zero targets, and robust regulation to deliver safe, reliable baseload electricity, spur investment, and economically decarbonize remote communities, mines, and grids across provinces securely.

 

Key Points

Canada Nuclear Power Expansion grows SMRs and reactors to meet climate targets with safe, reliable baseload power.

✅ Deploys SMRs for remote communities, mines, and industrial sites

✅ Streamlines regulation to ensure safety, trust, and timely approvals

✅ Provides clean, reliable baseload to hit net-zero electricity goals

 

Canada must expand its nuclear power capacity if it is to reach its climate targets, according to Canadian Minister of Natural Resources Seamus Oregan.

Speaking to the Canadian Nuclear Association’s annual conference, Seamus O’Regan said the industry has to grow.

“As the world tackles a changing climate, nuclear power is poised to provide the next wave of clean, affordable, safe and reliable power,” he told a packed room.

The Ottawa conference was the largest the industry has run with dozens of companies and more than 900 people in attendance. Provincial cabinet ministers from Saskatchewan and Ontario were also there. Those two provinces, along with New Brunswick, signed a memorandum in December as part of a premiers' nuclear initiative to work together on small modular reactor technology.

People need to know that it’s safe

Small modular reactors are units that produce less power than large generating stations, but can be constructed easier and are expected to be safer to operate. Canadian firms have about a dozen of the proposed reactors working their way through the regulatory process, with New Brunswick's SMR plans drawing scrutiny.

The smaller reactors could be used in groups to replace large units, but the industry also hopes to use them in rural or isolated communities, mines or even oilsands projects, potentially replacing the diesel power generators some remote communities use.

The Canadian government issued a road map to support the industry in 2018 and O’Regan committed Thursday to putting some teeth on that proposal later this year, as provinces like Ontario explore new large-scale nuclear plants to meet demand, with specific steps the government will take.

“We have been working so hard to support this industry. We are placing nuclear energy front and centre, something that has never been done before.”

O’Regan said the government’s role is a clear, streamlined regulatory system that will promote the industry, but also help the Canadian public to trust the reactors will be safe.

“People need to know that it’s safe. They need to know that it’s regulated. They need to know that it’s safe for them,” he said.

The Liberals promised during the campaign that they would gradually reduce Canada’s carbon emissions even after hitting the targets in the Paris Agreement by 2030. By 2050, Prime Minister Justin Trudeau said he expects Canada to be carbon neutral, mindful of lessons from Europe's power crisis on reliability.

The government hasn’t outlined how it will achieve that goal. O’Regan said more detail is coming, but it’s clear that nuclear is going to have to play a major part, echoing the UK’s green industrial revolution approach to reactor deployment.

“I have not seen a credible plan for net zero without nuclear as part of the mix. I don’t think we are going to be relying on any one technology. I think it’s going to be a whole host of things.”

O’Regan said large investors are looking for countries that are on the path to net zero.

“Everybody has their shirt sleeves rolled up and we know we need to work on this, not only do we have to work on this for the urgency of the planet, but we have to work on it for Canadian jobs.”

He added, “We must focus on those areas where Canada can and should lead, like nuclear.”

Canadians are ready to take a fresh look at nuclear

John Gorman, president of the Canadian Nuclear Association, said he was thrilled with O’Regan’s comments.

“I took the minister’s remarks this morning as being perhaps the strongest language of support for the nuclear industry in a number of years.”

Gorman said the industry is in strong shape and is working with utility companies such as Ontario Power Generation and regulators to move projects forward.

“It’s this amazing collaboration and coordination that is enabling us to beat others to the roll out of these small modular reactors,” he said.

He said provinces that might not have looked at nuclear before now have an incentive to do it, because of climate change. A former solar industry executive, Gorman said solar and wind power are important, as Ontario plans to seek new wind and solar power to ease supply pressures, but they won’t be able to keep up with rising power demands.

“Globally we are seeing increased recognition that climate change is real and that it’s a crisis, we are also seeing recognition that we are not making as much progress on decarbonizing our electricity system as we thought,” he said. “Canadians are ready to take a fresh look at nuclear and see the real facts.”

 

Related News

View more

Rising Electricity Prices: Inflation, Climate Change, and Clean Energy Challenges

Rising Electricity Prices are driven by inflation, climate change, and the clean energy transition, affecting energy bills, grid resilience, and supply. Renewables, storage, and infrastructure upgrades shape costs, volatility, and long-term sustainability.

 

Key Points

Rising electricity prices stem from inflation, climate risk, and costs of integrating clean energy and storage into modern grids.

✅ Inflation raises fuel, materials, and labor costs for utilities

✅ Extreme weather damages infrastructure and strains peak demand

✅ Clean energy rollout needs storage, backup, and grid upgrades

 

In recent months, consumers have been grappling with a concerning trend: rising electricity prices across the country. This increase is not merely a fluctuation but a complex issue shaped by a confluence of factors including inflation, climate change, and the transition to clean energy. Understanding these dynamics is crucial for navigating the current energy landscape and preparing for its future.

Inflation and Its Impact on Energy Costs

Inflation, the economic phenomenon of rising prices across various sectors, has significantly impacted the cost of living, including electricity and natural gas prices for households. As the price of goods and services increases, so too does the cost of producing and delivering electricity. Energy production relies heavily on raw materials, such as metals and fuels, whose prices have surged in recent years. For instance, the costs associated with mining, transporting, and refining these materials have risen, thereby increasing the operational expenses for power plants.

Moreover, inflation affects labor costs, as wages often need to keep pace with the rising cost of living. As utility companies face higher expenses for both materials and labor, these costs are inevitably passed on to consumers in the form of higher electricity bills.

Climate Change and Energy Supply Disruptions

Climate change also plays a significant role in driving up electricity prices. Extreme weather events, such as hurricanes, heatwaves, and floods, have become more frequent and severe due to climate change. These events disrupt energy production and distribution by damaging infrastructure, impeding transportation, and affecting the availability of resources.

For example, hurricanes can knock out power plants and damage transmission lines, leading to shortages and higher costs. During periods of extreme summer heat across many regions, heatwaves can strain the power grid as increased demand for air conditioning pushes the system to its limits. Such disruptions not only lead to higher immediate costs but also necessitate costly repairs and infrastructure upgrades.

Additionally, the increasing frequency of natural disasters forces utilities to invest in more resilient infrastructure, as many utilities spend more on delivery to harden grids and reduce outages, which adds to overall costs. These investments, while necessary for long-term reliability, contribute to short-term price increases for consumers.

The Transition to Clean Energy

The shift towards clean energy is another pivotal factor influencing electricity prices. While renewable energy sources like wind, solar, and hydro power are crucial for reducing greenhouse gas emissions and combating climate change, their integration into the existing grid presents challenges.

Renewable energy infrastructure requires substantial initial investment. The construction of wind farms, solar panels, and the associated grid improvements involve significant capital expenditure. These upfront costs are often reflected in electricity prices. Moreover, renewable energy sources can be intermittent, meaning they do not always produce electricity at times of high demand. This intermittency necessitates the development of energy storage solutions and backup systems, which further adds to the costs.

Utilities are also transitioning from fossil fuel-based energy production to cleaner alternatives, a process that involves both technological and operational shifts and intersects with the broader energy crisis impacts on electricity, gas, and EVs nationwide. These changes can temporarily increase costs as utilities phase out old systems and implement new ones. While the long-term benefits of cleaner energy include environmental sustainability and potentially lower operating costs, the transition period can be financially burdensome for consumers.

The Path Forward

Addressing rising electricity prices requires a multifaceted approach. Policymakers must balance the need for immediate relief, as California regulators face calls for action amid soaring bills, with the long-term goals of sustainability and resilience. Investments in energy efficiency can help reduce overall demand and ease pressure on the grid. Expanding and modernizing energy infrastructure to accommodate renewable sources can also mitigate price volatility.

Additionally, efforts to mitigate climate change through improved resilience and adaptive measures can reduce the frequency and impact of extreme weather events, thereby stabilizing energy costs.

Consumer education is vital in this process. Understanding the factors driving electricity prices can empower individuals to make informed decisions about energy consumption and conservation. Furthermore, exploring energy-efficient appliances and practices can help manage costs in the face of rising prices.

In summary, the rising cost of electricity is a multifaceted issue influenced by inflation, climate change, and the transition to clean energy, and recent developments show Germany's rising energy costs in the coming year. While these factors pose significant challenges, they also offer opportunities for innovation and improvement in how we produce, distribute, and consume energy. By addressing these issues with a balanced approach, it is possible to navigate the complexities of rising electricity prices while working towards a more sustainable and resilient energy future.

 

Related News

View more

Why Canada should invest in "macrogrids" for greener, more reliable electricity

Canadian electricity transmission enables grid resilience, long-distance power trade, and decarbonization by integrating renewables, hydroelectric storage, and HVDC links, providing backup during extreme weather and lowering costs to reach net-zero, clean energy targets.

 

Key Points

An interprovincial high-voltage grid that shares clean power to deliver reliable, low-cost decarbonization.

✅ Enables resilience by sharing power across weather zones

✅ Integrates renewables with hydro storage via HVDC links

✅ Lowers decarbonization costs through interprovincial trade

 

As the recent disaster in Texas showed, climate change requires electricity utilities to prepare for extreme events. This “global weirding” is leaving Canadian electricity grids increasingly exposed to harsh weather that leads to more intense storms, higher wind speeds, heatwaves and droughts that can threaten the performance of electricity systems.

The electricity sector must adapt to this changing climate while also playing a central role in mitigating climate change. Greenhouse gas emissions can be reduced a number of ways, but the electricity sector is expected to play a central role in decarbonization, including powering a net-zero grid by 2050 across Canada. Zero-emissions electricity can be used to electrify transportation, heating and industry and help achieve emissions reduction in these sectors.

Enhancing long-distance transmission is viewed as a cost-effective way to enable a clean and reliable power grid, and to lower the cost of meeting our climate targets. Now is the time to strengthen transmission links in Canada, with concepts like a western Canadian electricity grid gaining traction.


Insurance for climate extremes
An early lesson from the Texas power outages is that extreme conditions can lead to failures across all forms of power supply. The state lost the capacity to generate electricity from natural gas, coal, nuclear and wind simultaneously. But it also lacked cross-border transmission to other electricity systems that could have bolstered supply.

Join thousands of Canadians who subscribe to free evidence-based news.
Long-distance transmission offers the opportunity to escape the correlative clutch of extreme weather, by accessing energy and spare capacity in areas not beset by the same weather patterns. For example, while Texas was in its deep freeze, relatively balmy conditions in California meant there was a surplus of electricity generation capability in that region — but no means to get it to Texas. Building new transmission lines and connections across broader regions, including projects like a hydropower line to New York that expand access, can act as an insurance policy, providing a back-up for regions hit by the crippling effects of climate change.

A transmission tower crumpled under the weight of ice.
The 1998 Quebec ice storm left 3.5 million Quebecers and a million Ontarians, as well as thousands in in New Brunswick, without power. CP Photo/Robert Galbraith
Transmission is also vulnerable to climate disruptions, such as crippling ice storms that leave wires temporarily inoperable. This may mean using stronger poles when building transmission, or burying major high-voltage transmission links, or deploying superconducting cables to reduce losses.

In any event, more transmission links between regions can improve resilience by co-ordinating supply across larger regions. Well-connected grids that are larger than the areas disrupted by weather systems can be more resilient to climate extremes.


Lowering the cost of clean power
Adding more transmission can also play a role in mitigating climate change. Numerous studies have found that building a larger transmission grid allows for greater shares of renewables onto the grid, ultimately lowering the overall cost of electricity.

In a recent study, two of us looked at the role transmission could play in lowering greenhouse gas emissions in Canada’s electricity sector. We found the cost of reducing greenhouse gas emissions is lower when new or enhanced transmission links can be built between provinces.

Average cost increase to electricity in Canada at different levels of decarbonization, with new transmission (black) and without new transmission (red). New transmission lowers the cost of reducing greenhouse gas emissions. (Authors), Author provided
Much of the value of transmission in these scenarios comes from linking high-quality wind and solar resources with flexible zero-emission generation that can produce electricity on demand. In Canada, our system is dominated by hydroelectricity, but most of this hydro capacity is located in five provinces: British Columbia, Manitoba, Ontario, Québec and Newfoundland and Labrador.

In the west, Alberta and Saskatchewan are great locations for building low-cost wind and solar farms. Enhanced interprovincial transmission would allow Alberta and Saskatchewan to build more variable wind and solar, with the assurance that they could receive backup power from B.C. and Manitoba when the wind isn’t blowing and the sun isn’t shining.

When wind and solar are plentiful, the flow of low cost energy can reverse to allow B.C. and Manitoba the opportunity to better manage their hydro reservoir levels. Provinces can only benefit from trading with each other if we have the infrastructure to make that trade possible.

A recent working paper examined the role that new transmission links could play in decarbonizing the B.C. and Alberta electricity systems. We again found that enabling greater electricity trade between B.C. and Alberta can reduce the cost of deep cuts to greenhouse gas emissions by billions of dollars a year. Although we focused on the value of the Site C project, in the context of B.C.'s clean energy shift, the analysis showed that new transmission would offer benefits of much greater value than a single hydroelectric project.

The value of enabling new transmission links between Alberta and B.C. as greenhouse gas emissions reductions are pursued. (Authors), Author provided
Getting transmission built
With the benefits that enhanced electricity transmission links can provide, one might think new projects would be a slam dunk. But there are barriers to getting projects built.

First, electricity grids in Canada are managed at the provincial level, most often by Crown corporations. Decisions by the Crowns are influenced not simply by economics, but also by political considerations. If a transmission project enables greater imports of electricity to Saskatchewan from Manitoba, it raises a flag about lost economic development opportunity within Saskatchewan. Successful transmission agreements need to ensure a two-way flow of benefits.

Second, transmission can be expensive. On this front, the Canadian government could open up the purse strings to fund new transmission links between provinces. It has already shown a willingness to do so.

Lastly, transmission lines are long linear projects, not unlike pipelines. Siting transmission lines can be contentious, even when they are delivering zero-emissions electricity. Using infrastructure corridors, such as existing railway right of ways or the proposed Canadian Northern Corridor, could help better facilitate co-operation between regions and reduce the risks of siting transmission lines.

If Canada can address these barriers to transmission, we should find ourselves in an advantageous position, where we are more resilient to climate extremes and have achieved a lower-cost, zero-emissions electricity grid.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.