Montreal's first STM electric buses roll out


Montreal's first STM electric buses

Arc Flash Training CSA Z462 - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today

STM Electric Buses Montreal launch a zero-emission pilot with rapid charging stations on the 36 Monk line from Angrignon to Square Victoria, winter-tested for reliability and aligned with STM's 2025 fully electric fleet plan.

 

Key Points

STM's pilot deploys zero-emission buses with charging on the 36 Monk line, aiming for a fully electric fleet by 2025.

✅ 36 Monk route: Angrignon to Square Victoria with rapid charging

✅ Winter-tested performance; 15-25 km range per charge

✅ Quebec-built: motors Boucherville; buses Saint-Eustache

 

The first of three STM electric buses are rolling in Montreal, similar to initiatives with Vancouver electric buses elsewhere in Canada today.

The test batch is part of the city's plan to have a fully electric fleet by 2025, mirroring efforts such as St. Albert's electric buses in Alberta as well.

Over the next few weeks, one bus at a time will be put into circulation along the 36 Monk line, a rollout approach similar to Edmonton's first electric bus efforts in that city, going from Angrignon Metro station to Square Victoria Metro station. 

Rapid charging stations have been set up at both locations, a model seen in TTC's battery-electric rollout to support operations, so that batteries can be charged during the day between routes. The buses are also going to be fully charged at regular charging stations overnight.

Each bus can run from 15 to 25 kilometres on a single charge. The Monk line was chosen in part for its length, around 11 kilometres.

The STM has been testing the electric buses to make sure they can stand up to Montreal's harsh winters, drawing on lessons from peers such as the TTC electric bus fleet in Toronto, and now they are ready to take on passengers.

 

Keeping it local

The motors were designed in Boucherville, and the buses themselves were built in Saint-Eustache.

No timeline has been set for when the STM will be ready to roll out the whole fleet, but Montreal Mayor Denis Coderre, who was on hand at Tuesday's unveiling, told reporters he has confidence in the $11.9-million program.

"We start with three. Trust me, there will be more." said Coderre.

 

Related News

Related News

Sparking change: what Tesla's Model 3 could mean for electric utilities

EV Opportunity for Utilities spans EV charging infrastructure, grid modernization, demand response, time-of-use rates, and customer engagement, enabling predictable load growth, flexible charging, and stronger utility branding amid electrification and resilience challenges.

 

Key Points

It is the strategy to leverage EV adoption for load growth, grid flexibility, and branded charging services.

✅ Monetizes EV load via TOU rates, managed charging, and V2G.

✅ Uses rate-based infrastructure to expand equitable charging access.

✅ Enhances resilience and DER integration through smart grid upgrades.

 

Tesla recently announced delivery of the first 30 production units of its Model 3 electric vehicle (EV). EV technology has generated plenty of buzz in the electric utility industry over the past decade and, with last week’s announcement, it would appear that projections of a significant market presence for EVs could give way to rapid growth.

Tesla’s announcement could not have come at a more critical time for utilities, which face unprecedented challenges. For the past 15 years, utilities have been grappling with increasingly frequent “100-year storms,” including hurricanes, snowstorms and windstorms, underscoring the reality that the grid’s aging infrastructure is not fit to withstand increasingly extreme weather, along with other threats, such as cyber attacks.

Coupled with flat or declining load growth, changing regulations, increasing customer demand, and new technology penetration, these challenges have given the electric utility industry good reason to describe its future as “threatened.” These trends, each exacerbating the others, mean essentially that utilities can no longer rely on traditional ways of doing business.

EVs have significant potential to help relieve the industry’s pessimistic outlook. This article will explore what EV growth could mean for utilities and how they can begin establishing critical foundations today to help ensure their ability to exploit this opportunity.

 

The opportunity

At the Bloomberg New Energy Finance (BNEF) Global Summit 2017, BNEF Advisory Board Chairman Michael Liebreich announced the group’s prediction that electric vehicles will comprise 35-47 percent of new vehicle sales globally by 2040.

U.S. utilities have good reason to be optimistic about this potential new revenue source, as EV-driven demand growth could be substantial according to federal lab analyses. If all 236 million gas-powered cars in the U.S. — average miles driven per year: 12,000 — were replaced with electric vehicles, which travel an average of 100 miles on 34 kWh, they would require 956 billion kWh each year. At a national average cost of $0.12 / kWh, the incremental energy sold by utilities in the U.S. would bring in around $115 billion per year in new revenues. A variety of factors could increase or decrease this number, but it still represents an attractive opportunity for the utility sector.

Capturing this burgeoning market is not simply a matter of increased demand; it will also require utilities to be predictable, adaptable and brandable. Moreover, while the aggregate increase in demand might be only 3-4 percent, demand can come as a flexible and adaptable load through targeted programming. Also, if utilities target the appropriate customer groups, they can brand themselves as the providers of choice for EV charging. The power of stronger branding, in a sector that’s experiencing significant third-party encroachment, could be critical to the ongoing financial health of U.S. utilities.

Many utilities are already keenly aware of the EV opportunity and are speeding down this road (no pun intended) as part of their plans for utility business model reinvention. Following are several questions to be asked when evaluating the EV opportunity.

 

Is the EV opportunity feasible with today’s existing grid?

According to a study conducted by the U.S. Department of Energy’s Pacific Northwest National Laboratory, the grid is already capable of supporting more than 150 million pure electric vehicles, even as electric cars could challenge state grids in the years ahead, a number equal to at least 63 percent of all gas-powered cars on the road today. This is significant, considering that a single EV plugged into a Level 2 charger can double a home’s peak electricity demand. Assuming all 236 million car owners eventually convert to EVs, utilities will need to increase grid capacity. However, today’s grid already has the capacity to accommodate the most optimistic prediction of 35-47 percent EV penetration by 2040, which is great news.

 

Should the EV opportunity be owned by utilities?

There’s significant ongoing debate among regulators and consumer advocacy groups as to whether utilities should own the EV charging infrastructure, with fights for control over charging reflecting broader market concerns today. Those who are opposed to this believe that the utilities will have an unfair pricing advantage that will inhibit competition. Similarly, if the infrastructure is incorporated into the rate base, those who do not own electric vehicles would be subsidizing the cost for those who do.

If the country is going to meet the future demands of electric cars, the charging infrastructure and power grid will need help, and electric utilities are in the best position to address the problem, as states like California explore EVs for grid stability through utility-led initiatives that can scale. By rate basing the charging infrastructure, utilities can provide charging services to a wider range of customers. This would not favor one economic group over another, which many fear would happen if the private sector were to control the EV charging market.

 

If you build it, will they come?

At this point, we can conclude that growth in EV market penetration is a tremendous opportunity for utilities, one that’s most advantageous to electricity customers if utilities own some, if not all, of the charging infrastructure. The question is, if you build it, will they come — and what are the consequences if they don’t?

With any new technology, there’s always a debate centered around adoption timing — in this case, whether to build the infrastructure ahead of demand for EV or wait for adoption to spike. Either choice could have disastrous consequences if not considered properly. If utilities wait for the adoption to spike, their lack of EV charging infrastructure could stunt the growth of the EV sector and leave an opening for third-party providers. Moreover, waiting too long will inhibit GHG emissions reduction efforts and generally complicate EV technology adoption. On the other hand, building too soon could lead to costly stranded assets. Both problems are rooted in the inability to control adoption timing, and, until recently, utilities didn’t have the means or the savvy to influence adoption directly.

 

How should utilities prepare for the EV?

Beyond the challenges of developing the hardware, partnerships and operational programs to accommodate EV, including leveraging energy storage and mobile chargers for added flexibility, influencing the adoption of the infrastructure will be a large part of the challenge. A compelling solution to this problem is to develop an engaged customer base.

A more engaged customer base will enable utilities to brand themselves as preferred EV infrastructure providers and, similarly, empower them to influence the adoption rate. There are five key factors in any sector that influence innovation adoption:

  1. Relative advantage – how improved an innovation is over the previous generation.

  2. Compatibility – the level of compatibility an innovation has with an individual’s life.

  3. Complexity – if the innovation is to difficult to use, individuals will not likely adopt it.

  4. Trialability – how easily an innovation can be experimented with as it’s being adopted.

  5. Observability – the extent that an innovation is visible to others.

Although much of EV adoption will depend on the private vehicle sector influencing these five factors, there’s a huge opportunity for utilities to control the compatibility, complexity and observability of the EV. According to  “The New Energy Consumer: Unleashing Business Value in a Digital World,” utilities can influence customers’ EV adoption through digital customer engagement. Studies show that digitally engaged customers:

  • have stronger interest and greater likelihood to be early EV adopters;

  • are 16 percent more likely to purchase home-based electric vehicle charging stations and installation services;

  • are 17 percent more likely to sign up for financing for home-based electric vehicle charging stations; and

  • increase the adoption of consumer-focused programs.

These findings suggest that if utilities are going to seize the full potential of the EV opportunity, they must start engaging customers now so they can appropriately influence the timing and branding of EV charging assets.

 

How can utilities engage consumers in preparation?

If utilities establish the groundwork to engage customers effectively, they can reduce the risks of waiting for an adoption spike and of building and investing in the asset too soon. To improve customer engagement, utilities need to:

  1. Change their customer conversations from bills, kWh, and outages, to personalized, interesting topics, communicated at appropriate intervals and via appropriate communication channels, to gain customers’ attention.

  2. Establish their roles as trusted advisors by presenting useful, personalized recommendations that benefit customers. These tips should change dynamically with changing customer behavior, or they risk becoming stagnant and redundant, thereby causing customers to lose interest.

  3. Convert the perception of the utility as a monopolistic, inflexible entity to a desirable, consumer-oriented brand through appropriate EV marketing.

It’s critical to understand that this type of engagement strategy doesn’t even have to provide EV-specific messaging at first. It can start by engaging customers through topics that are relevant and unique, through established or evolving customer-facing programs, such as EE, BDR, TOU, HER.

As lines of communication open up between utility and users, utilities can begin to understand their customers’ energy habits on a more granular level. This intelligence can be used by business analysts to help educate program developers on the optimal EV program timing. For example, as customers become interested in services in which EV owners typically enlist, utilities can target them for EV program marketing. As the number of these customers grows, the window for program development opens, and their levels of interest can be used to inform program and marketing timelines.

While all this may seem like an added nuisance to an EV asset development strategy, there’s significant risk of losing this new asset to third-party providers. This is a much greater burden to utilities than spending the time to properly own the EV opportunity.

 

Related News

View more

California regulators weigh whether the state needs more power plants

California Natural Gas Plant Rethink signals a shift toward clean energy, renewables, distributed solar, battery storage, and grid modernization as LADWP and regulators pause repowering plans amid an electricity oversupply and rising ratepayer costs.

 

Key Points

California pauses new gas plants to assess renewables, storage, and grid solutions for reliability.

✅ LADWP delays $2.2B gas repowers to study clean alternatives

✅ CEC weighs halting Oxnard plant amid grid oversupply

✅ Distributed solar, batteries, demand response boost reliability

 

California energy officials are, for the first time, rethinking plans to build expensive natural gas power plants in the face of an electricity glut and growing use of cleaner and cheaper energy alternatives.

The Los Angeles Department of Water and Power announced Tuesday that it has put a hold on a $2.2-billion plan to rebuild several old natural gas power plants while it studies clean energy alternatives to meet electricity demands. And the California Energy Commission may decide as early as Thursday to halt a natural gas project in Ventura County.

The scrutiny comes after an investigation found that the state is operating with an oversupply of electricity, driven largely by the construction of gas-fueled generating plants, leading to higher rates as regulators consider a rate overhaul to clean the grid. The state’s power plants are on track to be able to produce at least 21% more electricity than needed by 2020, according to the Times report.

Californians are footing a $40-billion annual bill while using less electricity, paying $6.8 billion more than they did in 2008 when power use in the state was at its all-time high. Electricity consumption has since fallen and remained largely flat.

Utilities in California have been on a years-long building binge, adding new natural gas plants even as the nation’s electricity system has undergone significant change, including consumer choice reforms that are reshaping the market.

Where utilities once delivered all electrical services from huge power plants along miles of transmission lines, the industry now must consider power delivered to the electric grid not only from its own sources, but also from solar systems and batteries at homes and businesses.

At the same time, utilities have been aggressively upgrading or rebuilding their aging natural gas plants — a move critics have said is unnecessary because consumers are using less power and clean energy technology is making those plants obsolete.

The DWP and energy commission moves involve as many as seven natural gas plant projects proposed for Southern California, despite warnings about a looming shortage if capacity is retired too fast, from Oxnard to Carlsbad, at a cost of more than $6 billion.

Reiko Kerr, the DWP’s senior assistant general manager of power systems, said given the changes in the energy world, the assessment is necessary to protect ratepayer dollars and the environment.

“The whole utility paradigm has shifted,” Kerr said in an interview. “We really are doing our ratepayers a disservice by not considering all viable options.

“We’re just looking at everything,” she said. “What can help us solve this reliability, renewable and greenhouse gas challenge that we all have?”

State and local governments have felt a heightened sense of urgency to deal with climate change after President Trump decided last week to withdraw the United States from the Paris climate accord.

California already has mandated that at least 50% of the state’s electricity come from clean energy sources by 2030. Senate leader Kevin de León (D-Los Angeles) wants to increase that to 100% by 2045.

Building or overhauling natural gas plants throughout Southern California, environmentalists argue, isn’t helping achieve those goals, even as some contend the state can't keep the lights on without gas during the transition.

The DWP’s move to delay plans for the fossil fuel plants, which seemed all but set to be built, came as a surprise to clean-energy advocates, who hailed the decision.

“This is a great first step toward smart energy investments that save customers money, ensure the lights stay on and protect our health and environment,” Graciela Geyer of the Sierra Club said.

The environmental group said that if the utility had moved ahead with the $2.2-billion investment in repowering natural gas plants, it “would have blown an irreparable hole in the city and the state’s hopes to achieve 100% generation” from clean energy sources.

Angela Johnson Meszaros, attorney at EarthJustice, said in a statement: "As our city struggles with the worst smog we’ve seen in years, we appreciate that LADWP is taking some much-needed time to reassess its plans to build fossil fuel power plants. We look forward to the day that LADWP announces that we are going to power our city with 100% clean energy.”

The gas-fired generating units slated for demolition and rebuilding are at the Scattergood, Haynes and Harbor electricity plants, which range from 34 to 67 years old.

As a group, the three plants have generated less than 20% of their combined capacity since 2001. The Harbor facility has operated on the low end at just 7%, while Haynes ran on the high end at 22%.

“The old model, the old legacy clunkers, won’t get us into the future we want,” DWP’s Kerr said.

DWP staff members told the utility’s’ commissioners Tuesday that their analysis of possible alternatives would be completed no later than early 2018.

Separately, the California Energy Commission this week is evaluating whether to halt a natural gas project in Ventura County after the state’s electric grid operator offered to conduct a study of clean energy alternatives to the roughly $250-million project on Mandalay Bay in Oxnard.

An energy commission committee has been deliberating since a hearing Monday during which Southern California Edison and the project’s developer, NRG Energy, argued that a study is simply a delay tactic that probably would kill a project needed to ensure reliable electric service and to avoid blackouts during peak demand.

The California Independent System Operator, which runs the state’s electric grid, told the energy commission that it would take three to four weeks to conduct its study on alternatives to the Oxnard natural gas project.

“Here we have an actual offer by the ISO to do such an analysis,” Ellison Folk, a lawyer representing the city of Oxnard, told the energy commission as she pushed for the study. “Its view that this is an analysis worth doing is something worth taking seriously.”

Energy commission members reviewing the study proposal are scheduled to meet again Thursday to consider the offer.

The board of governors for the California Independent System Operator made the unusual offer at its May 1 meeting to conduct a eleventh-hour study of clean-energy alternatives to building a new natural gas plant.

“If we’re going to be moving forward with a gas plant at this time, in this juncture, in the context of everything that’s going on, not evaluating other alternatives that are viable, noncombustion alternatives, is a missed opportunity,” Angelina Galetiva. a commission board member, said during the May 1 meeting.

 

Related News

View more

New Alberta bill enables consumer price cap on power bills

Alberta Electricity Rate Cap shields RRO customers with a 6.8 cents/kWh price ceiling, stabilizing power bills amid capacity market transition, using carbon tax funding to offset spikes and enhance consumer protection from volatility.

 

Key Points

A four-year 6.8 cents/kWh ceiling on Alberta's RRO power price, backed by carbon tax to stabilize bills.

✅ Applies to RRO customers from Jun 2017 to May 2021

✅ Caps rates at 6.8 cents/kWh; lower RRO still applies

✅ Funded by carbon tax when market prices exceed cap

 

The Alberta government introduced a bill Tuesday, part of new electricity rules that will allow it to place a cap on regulated electricity rates for the next four years.

The move to cap consumer power rates at a maximum of 6.8 cents per kilowatt-hour for four years was announced in November 2016 by Premier Rachel Notley, although it was later scrapped by the UCP during a subsequent policy shift.

The cap is intended to protect consumers from price fluctuations from June 1, 2017, to May 31, 2021, as the province moves from a deregulated to a capacity power market amid a power market overhaul that is underway.

The price ceiling will apply to people with a regulated rate option. If the RRO is below 6.8 cents, they will still pay the lower rate.

The government isn't forecasting price fluctuations above 6.8 cents in this four-year period. If the price goes above that amount, funding would come from the carbon tax if required.

Funding may come from carbon tax

"We're taking a number of steps to keep prices low," said Energy Minister Marg McCuaig-Boyd. "But in the event that prices were to spike, the cap would automatically prevent the energy rate from going over 6.8 cents to give Albertans even more peace of mind." 

The government isn't forecasting price fluctuations above 6.8 cents in this four-year period. If the price goes above that amount, funding would come from the carbon tax.

McCuaig-Boyd said this would be an appropriate use for the carbon tax as the cap helps Albertans move to a greener energy system and change how the province produces and pays for electricity without relying as much on coal-fired electricity. 

The government estimates the program will cost $10 million a month for each cent the rate goes above 6.8 cents per kilowatt-hour. If rates remain below that amount, the program may not cost anything.

Wildrose electricity and renewables critic Don MacInytre said the move shows the government expects retail electricity rates will double over the next four years. 

MacIntyre argued a rate cap simply shifts increasing electricity costs away from consumers to the Alberta government. But ultimately everyone pays. 

"It's simply a shift of a burden from the ratepayer to the taxpayer, which is essentially the same person," he said. 

The City of Medicine Hat runs its own electrical system without a regulated rate option. The government will talk with the city to see if it is interested in taking part in the price cap protection.

About 60 per cent of eligible Albertans or one million households use the regulated rate option in their electricity contracts.

The current regulated rate option averages less than three cents per kilowatt-hour.

 

Related News

View more

Premier warns NDP, Greens that delaying Site C dam could cost $600M

Site C Project Delay raises BC Hydro costs as Christy Clark warns $600 million impact; NDP and Greens seek BCUC review of the hydroelectric dam on the Peace River, challenging evictions and construction contracts.

 

Key Points

A potential slowdown of B.C.'s Site C dam, risking $600M overruns, evictions, and schedule delays pending a BCUC review.

✅ Clark warns $600M cost if river diversion slips a year

✅ NDP-Green seek BCUC review; request to pause contracts, evictions

✅ Peace River hydro dam; schedule critical to budget, ratepayers

 

Premier Christy Clark is warning the NDP and Greens that delaying work on the Site C project in northeast British Columbia could cost taxpayers $600 million.

NDP Leader John Horgan wrote to BC Hydro last week asking it to suspend the evictions of two homeowners and urging it not to sign any new contracts on the $8.6-billion hydroelectric dam until a new government has gained the confidence of the legislature.

But Clark says in letters sent to Horgan and Green Leader Andrew Weaver on Tuesday that the evictions are necessary as part of a road and bridge construction project that are needed to divert a river in September 2019.

Any delay could postpone the diversion by a year and cost taxpayers hundreds of millions of dollars, she says.

“With a project of this size and scale, keeping to a tight schedule is critical to delivering a completed project on time and on budget,” she says. “The requests contained in your letter are not without consequences to the construction schedule and ultimately have financial ramifications to ratepayers.”

The premier has asked Horgan and Weaver to reply by Saturday on whether they still want to put the evictions on hold.

She also asks whether they want the government to issue a “tools down” request to BC Hydro on other decisions that she says are essential to maintaining the budget and construction schedule.

An agreement between the NDP and Green party was signed last week that would allow the New Democrats to form a minority government, ousting Clark's Liberals.

The agreement includes a promise to refer the Site C project to the B.C. Utilities Commission to determine its economic viability.

Some analysts argue that better B.C.-Alberta power integration could improve climate outcomes and market flexibility.

But Clark says the project is likely to progress past the “point of no return” before a review can be completed.

Clark did not define what she meant by “point of no return,” nor did she explain how she reached the $600-million figure. Her press secretary Stephen Smart referred questions to BC Hydro, which did not immediately respond.

During prolonged drought conditions, BC Hydro has had to adapt power generation across the province, affecting planning assumptions.

In a written response to Clark, Weaver says before he can comment on her assertions he requires access to supporting evidence, including signed contracts, the project schedule and potential alternative project timelines.

“Please let me express my disappointment in how your government is choosing to proceed with this project,” he says.

“Your government is turning a significant capital project that potentially poses massive economic risks to British Columbians into a political debate rather than one informed by evidence and supported by independent analysis.”

The dam will be the third on the Peace River, flooding an 83-kilometre stretch of valley, and local First Nations, landowners and farmers have fiercely opposed the project.

Construction began two years ago.

A report written by University of British Columbia researchers in April argued it wasn't too late to press pause on the project and that the electricity produced by Site C won't be fully required for nearly a decade after it's complete.

 

Related News

View more

Student group asking government for incentives on electric cars

PEI Electric Vehicle Incentives aim to boost EV adoption through subsidies and rebates, advocated by Renewable Transport PEI, with MLAs engagement, modeling Norway's approach, offsetting HST gaps, and making electric cars more competitive for Islanders.

 

Key Points

PEI Electric Vehicle Incentives are proposed subsidies and rebates to make EVs affordable and competitive for Islanders.

✅ Targets EV adoption with rebates up to 20 percent

✅ Modeled on Norway policies; offsets prior HST-era gaps

✅ Backed by Renewable Transport PEI engaging MLAs

 

Noah Ellis, assistant director of Renewable Transport P.E.I., is asking government to introduce incentives for Islanders to buy electric cars, as cost barriers remain a key hurdle for many.

RTPEI is a group composed of high school students at Colonel Gray going into their final year."We wanted to give back and contribute to our community and our country and we thought this would be a good way to do so," Ellis told Compass.

 

Meeting with government

"We want to see the government bring in incentives for electric vehicles, similar to New Brunswick's rebate program, because it would make them more competitive with their gasoline counterparts," Ellis said.

'We wanted to give back and contribute to our community … we thought this would be a good way to do so.'— Noah Ellis

Ellis said the group has spoken with opposition MLAs and is meeting with cabinet ministers soon to discuss subsidies for Islanders to buy electric cars, noting that Atlantic Canadians are less inclined to buy EVs compared to the rest of the country.

He referred to Norway as a prime example for the province to model potential incentives, even as Labrador's EV infrastructure gaps underscore regional challenges — a country that, as of last year, announced nearly 40 per cent of the nation's newly registered passenger vehicles as electric powered.

'Incentives that are fiscally responsible'

Ellis said they group isn't looking for anything less than a 20 per cent incentive on electric vehicles — 10 per cent higher than the provinces cancelled hybrid car tax rebate that existed prior to HST.

"Electric vehicle incentives do work we just have to work with economists and environmentalists, and address critics of EV subsidies, to find the right balance of incentives that are fiscally responsible for the province but will also be effective," Ellis said.

 

Related News

View more

Renewables generated more electricity than brown coal over summer, report finds

Renewables Beat Brown Coal in Australia, as solar and wind surged to nearly 10,000 GWh, stabilizing the grid with battery storage during peak demand, after Hazelwood's closure, Green Energy Markets reported.

 

Key Points

It describes a 2017-18 summer when solar, wind, and storage generated more electricity than brown coal in Australia.

✅ Solar and wind hit nearly 10,000 GWh in summer 2017-18

✅ Brown coal fell to about 9,100 GWh after Hazelwood closure

✅ Batteries stabilized peak demand; Tesla responded in milliseconds

 

Renewable energy generated more electricity than brown coal during Australia’s summer for the first time in 2017-18, according to a new report by Green Energy Markets.

Continued growth in solar, as part of Australia's energy transition, pushed renewable generation in Australia to just under 10,000 gigawatt hours between December 2017 and February 2018. With the Hazelwood plant knocked out of the system last year, brown coal’s output in the same period was just over 9,100 GWh.

Renewables produced 40% more than gas over the period, and was exceeded only by black coal, reflecting trends seen in U.S. renewables surpassing coal in 2022.

#google#

The report, commissioned by GetUp, found renewables were generating particularly large amounts of electricity when it was most needed, producing 32% more than brown coal during summer between 11am and 7pm, when demand peaks.

 

Coal in decline: an energy industry on life support

Solar in particular was working to support the system, on average producing more than Hazelwood was capable of producing between 9am and 5pm.

A further 5,000 megawatts of large-scale renewables projects was under construction in February, supporting 17,445 jobs, while renewables became the second-most prevalent U.S. electricity source in 2020.

GetUp’s campaign director, Miriam Lyons, said the latest renewable energy index showed renewables were keeping the lights on while coal became increasingly unreliable, a trend echoed as renewables surpassed coal in the U.S. in recent years.

“Over summer renewables kept houses cool and lights on during peak demand times when people needed electricity most,” Lyons said. “Meanwhile dirty old coal plants are becoming increasingly unreliable in the heat.

“These ageing clunkers failed 36 times over summer.

“Clean energy rescued people from blackouts this summer. When the clapped-out Loy Yang coal plant tripped, South Australia’s giant Tesla battery reacted in milliseconds to keep the power on.

“It’s clear that a smart electricity grid based on a combination of renewable energy and storage is the best way to deliver clean, affordable energy for all Australians.”

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified